"DETECTION OF METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) IN TERTIARY CARE HOSPITAL OF NORTH KARNATAKA."

Thesis submitted to the

B. L. D. E. (DEEMED TO BE UNIVERSITY), VIJAYAPUR KARNATAKA, INDIA

Under the faculty of

MEDICINE

For the Award of the Degree of

Doctor of Philosophy (Medical)

Subject: Microbiology.

Dr. Basavaraj C. Metri

Reg. No-11PhD002

PhD Research Fellow

Department of Microbiology

Shri B. M. Patil Medical College, Hospital

& Research Centre, Vijayapura, Karnataka

2019

B L D E (DEEMED TO BE UNIVERSITY)

Vijayapura, Karnataka, India

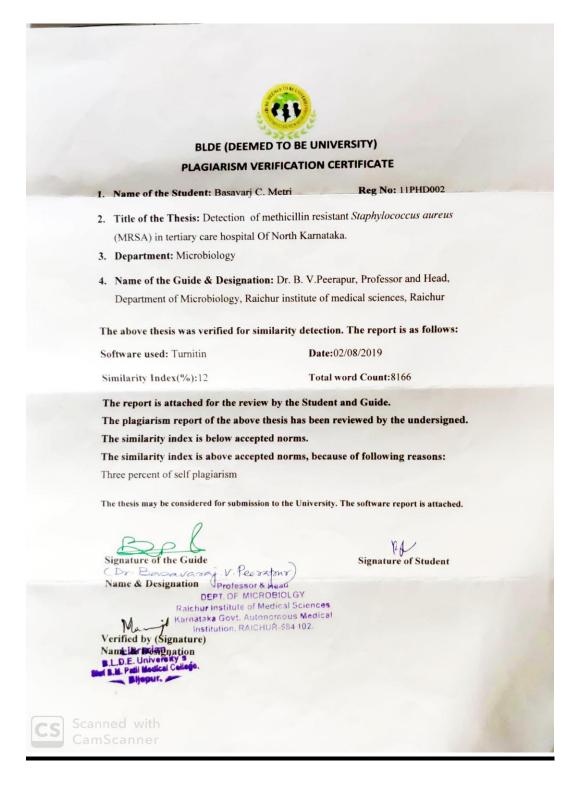
Certificate

This is to certify that this thesis **"DETECTION OF METHICILLIN RESISTANT** *STAPHYLOCOCCUS AUREUS* (MRSA) IN TERTIARY CARE **HOSPITAL OF NORTH KARNATAKA.**" is a bonafide work of **Dr. Basavaraj C Metri** and was carried out under our supervision and guidance in the Department of Microbiology, Shri B. M. Patil Medical College, Hospital & Research Centre, Vijayapura, Karnataka, India.

Dr B. V. Peerapur Guide Professor and Head Department of Microbiology Raichur institute of medical Sciences Raichur, Karnataka **Dr Aravind V Patil.** Principal Shri B. M. Patil Medical College, Hospital &Research Centre Vijayapura, Karnataka

(Former Professor and Head Department of Microbiology Shri B. M. Patil Medical College, Hospital & Research Centre Vijayapura, Karnataka)

Declaration


I declare that the thesis entitled "DETECTION OF METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) IN TERTIARY CARE HOSPITAL OF NORTH KARNATAKA." has been prepared by me under the guidance of Dr B.V. Peerapur, Professor and Head, Department of Microbiology, Raichur institute of medical sciences(RIMS), Raichur, Karnataka, India. (Former professor and Head, Department of Microbiology, Shri B. M. Patil medical college, Hospital and researchcentre, Vijayapura) No part of this thesis has formed the basis for the award of any degree or fellowship previously.

Dr. Basavaraj C. Metri

PhD Research Fellow, Department of Microbiology, Shri B. M. PatilMedical College, Hospital &Research Centre, Vijayapura, Karnataka.

Date:

Plagiarism Verification Certificate

Acknowledgement

Firstly, I express my sincere gratitude to my guide, **Dr B.V. Peerapur**, Professor and Head, Department of Microbiology, Raichur institute of medical sciences(RIMS), Raichur, Karnataka (Former Professor and Head of Microbiology, B.M. Patil Medical College, Hospital and Research Centre, Vijayapura) for his masterly directions, constant support and eminent guidance, at every stage of this study. He has placed a full faith and undoubted trust in me which helped me a lot in carrying out my research work successfully.

My Sincere thanks to Professor **Kusal K Das**, Dept of Physiology, Shri B. M. Patil Medical College, Hospital & Research Centre, Vijayapura, for his great ideas, untiring guidance, affectionate & constant encouragement to complete this research work.

I owe my most sincere gratitude to **Dr M. S. Biradar, Vice Chancellor,** BLDE (Deemed to be University) for the help and support.

I owe my most sincere gratitude to **Dr. Aravind V. Patil.** Principal, Shri B. M. Patil Medical College, Hospital & Research Centre, for the help and support.

I owe my most sincere gratitude to **Dr J G Ambekar** Registrar ,BLDE (Deemed to be University) and **Mr Satish Patil** Dy. Registrar ,BLDE (Deemed to be University) for the help and support.

I would like to express my very great appreciation to the Vice-principal, Shri B. M. Patil Medical College, Hospital & Research Centre **Dr Tejashwini Vallabha**, for her support.

I express heartfelt thanks to all the **Members of PhD committee**, BLDE (Deemed to be University) for correcting my mistake throughout my tenure.

I am sincerely indebted to **Dr A.Y. Takpere**, Professor and Head of the Department of Microbiology, Shri B. M. Patil Medical College, Hospital & Research Centre, Vijayapura for her support.

I would like to express my sincere gratitude to **Dr Kishore Bhatt** sir and **Mr Manohar** for coordination during the study.

I would like to extend my warm thanks to my father Shri Chandrashekhar Metri, my mother Late Smt Bandawwa, sister Smt. Shivaleela Holagi, mama Shri Prabhakar Holagi, sister Smt. Shashikala Tippimani, mama Jagadish Tippimani, brother Shri Siddappa Metri, bhabhi Smt.Anita Metri, father in Law Shri Parameswarappa N, my mother in Law Smt. Malati P, brother in Law Shri Harsha P. and Wife Jyothi P and my lovely kids Deepali and Gagana without their support and help, I could not dedicate toresearch and it would have been extremely difficult for me to accomplish this thesis.

I wish to acknowledge the help provided by all my colleagues of **Department of Microbiology**. I extend my thanks to all the non-teaching staff of Department of Microbiology for assistance during my thesis.

I sincerely take an opportunity to acknowledge gratitude to all the people without whom this thesis would not have been possible.

Dr. Basavaraj C. Metri Date:

Abstract:

Introduction : Methicillin resistant *Staphylococcus aureus* strains emerged after the introduction of methicillin. It leads to various type of skin infections, osteoarthritis and respiratory tract infections and other infections in humans. The objectives of the study included 1.To evaluate different screening tests for detection of Methicillin resistant *Staphylococcus aureus*. (MRSA) 2.To know the antimicrobial profile of MRSA strains. 3.To detect of *mec A* gene by molecular methods(PCR) and Molecular identification of MRSA by detection of SCCmec .4.To compare different phenotypic methods with PCR for identification of MRSA.

Methods: The current study was conducted in Microbiology Department, SBMPMCHRC, Vijayapur.A total of 383 *S.aureus* were identified and antimicrobial susceptibility pattern studied for three years period. Stastistical analysis: Values were expressed in terms of Mean \pm SD. Analysis was done by using SPSS software version 16. MRSA were detected byThe Cefoxitin Disc Diffusion Test and The Oxacillin Disk Diffusion Method. Genotypic detection of MRSA was done by identification of mec A gene by PCR . Molecular characterisation of MRSA isolates were carried out by detection of various staphylococcal cassette chromosome mec (SCCmec) by Multiplex PCR.

Results: The current study revealed the prevalence of MRSA in the tertiary care center in this part of India is very high(48.6%.). The prevalence of MRSA was more prevalent in males. More number of MRSA were from pus samples (76%). Higher rate of MRSA isolates were from department of Surgery (56.5%). Linezolid (89% sensitive), tetracycline (86%) vancomycin (83%) showed better results against MRSA. Out of 186 isolates of MRSA, oxacillin and cefoxitin detected 80%, 96% MRSA respectively. Results of cefoxitin disc diffusion by cefoxitin is in agreement with the PCR for identification of *mecA* gene.. We found a higher number of multidrug-resistant MRSA (76.8%) in our hospital. This study shows that the prevalent MRSA strains in Vijayapur are *SCCmec-III* and *SCCmec-II*.

Conclusion: In the current study, the prevalence of MRSA in the tertiary hospital in this part of India is very high. Therefore, it is mandatory to choose suitable antibiotics with respect to their antimicrobial pattern for treating the infections .Results of disc diffusion test by cefoxitin is in agreement with *mecA* gene detection by PCR, and therefore the disc diffusion test by cefoxitin is ideal for detection of MRSA and the test can be better alternative to PCR for detection of MRSA in resource poor settings. We found a higher number of multidrug-resistant MRSA in our hospital. If we look into the Indian setting , it seems the burden drug resistant-MRSA is increasing over time. This study shows that the prevalent MRSA strains in Vijayapur are *SCCmec-III* and *SCCmec-III*.

CONTENTS

SL. NO	TITLE	PAGE .NO.
1	Introduction	1-3
2.	Aims and Objectives	4-5
3.	Review of Literature	6-17
4.	Materials and Methods	18-25
5.	Results	26-45
6.	Discussion	46-52
7.	Summary and Conclusion	53-55
8.	References	56-65
9.	Annexure	66-82

List	of	tab	les

Table No.	Contents	Page No.
1.	SCCmec types and their primers.	24
2.	Distribution of <i>S. aureus</i> according to age.	27
3.	Distribution of <i>S. aureus</i> according to sex.	28
4.	Association Of Age With Sex Among S. aureus.	29
5.	Distribution of S. aureus according to ward.	30
6.	Distribution Of S. aureus according to specimen	31
7.	Distribution of S. aureus according to department	32
8.	Distribution of MRSA and MSSA	33
9.	Distribution of MRSA and MSSA according to age	34
10.	Distribution of MRSA and MSSA according to sex	35
11.	Distribution of MRSA and MSSA according to ward	36
12.	Distribution of MRSA and MSSA according to department	37
13.	Distribution of MRSA and MSSA according to specimen.	38
14.	Results of various methods for detection of MRSA	39
15.	Comparison of phenotypic methods with genotypic methods of detection of MRSA	39
16.	Antibiotic susceptibility pattern among MSSA isolates	40
17.	Antibiotic susceptibility pattern among MRSA isolates	41
18.	Comparison of resistance pattern.	42
19.	MRSA resistance pattern according to departments	43
20.	MRSA resistance pattern according to departments by	44

	specimen	
21.	Prevalence of SSC gene among MRSA isolates	45
22.	MRSA Prevalence patterns in various studies.	47
23.	Age Wise distribution of MRSA isolates in various studies.	48
24.	Sex-Wise distribution of MRSA isolates in various studies.	48
25.	Department wise distribution of MRSA isolates invarious studies.	49
26.	Sensitivity and specificity of Cefoxitin Disc Diffusion method for detection of MRSA.	50

List of Charts/Figures

No.	Contents	Page No.
1.	Distribution of <i>S. aureus</i> according to age.	27
2.	Distribution of <i>S. aureus</i> according to sex.	28
3.	Association Of Age With Sex Among S. aureus.	29
4.	Distribution of <i>S. aureus</i> according to ward.	30
5.	Distribution Of S. <i>aureus</i> according to specimen	31
6.	Distribution of <i>S. aureus</i> according to department	32
7.	Distribution of MRSA and MSSA	33
8.	Distribution of MRSA and MSSA according to age	34
9.	Distribution of MRSA and MSSA according to sex	35
10.	Distribution of MRSA and MSSA according to ward	36
11.	Distribution of MRSA and MSSA according to	37
	department	
12.	Distribution of MRSA and MSSA according to	38
	specimen.	
13.	Comparison of phenotypic methods with genotypic	39
	methods of detection of MRSA	
14.	Prevalence of SSC gene among MRSA isolates	45

Abbreviations

- MRSA :Methicillin resistant*Staphylococcus aureus*
- MSSA: Methicillin sensitive *Staphylococcus aureus*
- *S aureus : Staphylococcus aureus*
- SCC :Staphylococcal cassette chromosome
- CoNS : Coagulase Negative Staphylococci
- TSST : Toxic shock syndrome toxin
- MIC : Minimum inhibitory concentration
- ABC : ATP Binding Cassette
- MFS : Major facilitator super family
- PCR : Polymerase chain reaction
- CLSI : Clinical and laboratory standards institute
- CFU : Colony forming unit
- HCW : Health care worker

1.Introduction

INTRODUCTION:

Staphylococcus aureus was first described by Sir Alexander Ogston in 1882. This centuries-old pathogen still causes significant morbidity and mortality despite huge advances in medical care. Indeed, infections due to S. aureus continue to grow in number and complexity as a consequence, ironically, of advances in patient care and of its ability to adapt to a changing environment.¹⁻²

Tahnkiwale SS⁴ in his article has stated that "*Staphylococcus aureus* is one of the most frequent bacterial pathogens in humans. It causes skin infections, osteoarthritis and respiratory tract infections and other infections in humans."³ "*Staphylococcus aureus* has been reported to be the a major cause of community and hospital acquired infection".⁴

According to Anupurba S⁶ "Methicillin resistant *Staphylococcus aureus* (MRSA) strains emerged after the introduction of methicillin into the clinical practice".⁵ "MRSA strains were initially described in 1961 and emerged in the last decade as one of the most important nosocomial pathogens. Infected and colonized patients provide the primary reservoir and transmission is mainly through hospital staff. The risk factors which contribute to MRSA are excessive antibiotic usage, prolonged hospitalization, intravascular catheterization and hospitalisation in intensive care unit. With the increased incidence of MRSA, the effectiveness of penicillin and cephalosporins is questioned. In fact many strains of MRSA exhibit resistance to beta -lactams and aminoglycosides." ⁶

"The worst feature of MRSA has been simultaneous drug resistance to many of the antibiotics, chronic carrier stage among health care workers and greater resistance of the strains."⁷

The current study was undertaken to analyze various techniques for detection of MRSA and know the prevalence of MRSA and their antimicrobial profile.

2.Objectives

OBJECTIVES OF STUDY:

- To evaluate different screening tests for detection of Methicillin resistant *Staphylococcus aureus*. (MRSA)
- To know the antimicrobial profile of MRSA strains.
- To detect of *mec A* gene by molecular methods.(PCR) and Molecular characterisation of MRSA strains by detection of SCCmec.
- To compare different phenotypic methods with PCR for identification of MRSA.

REVIEW OF LITERATURE

Boucher HW.¹stated that "Micrococcus, which when limited in its extent and activity, causes acute suppurative inflammation (phlegmon), produces, when more extensive and intense in its action on the human system, the most virulent forms of septicæmia and pyaemia...". "This quote from Sir Alexander Ogston in 1882 describes several facets of *Staphylococcus aureus* that continue to plague physicians in modern times. This centuries-old pathogen still causes significant morbidity and mortality despite huge advances in medical care. Indeed, infections due to *S. aureus* continue to grow in number and complexity as a consequence, ironically, of advances in patient care and of its ability to adapt to a changing environment".¹

Deresinski S⁸ has written "It was only 1 year after an Oxfordshire constable, Albert Alexander, became the first recipient of penicillin, that Rammelkamp reported the identification of isolates of *Staphylococcus aureus* resistant to this miracle drug. Infections caused by penicillin-resistant *S. aureus* were initially limited to hospitalized patients and were only later detected in the community, where they eventually became common. In an historical reprise, the identification of methicillin-resistant *S. aureus* (MRSA) was reported within 1 year after the 1960 introduction of this semisynthetic penicillin, and once again, an organism that was initially present only in hospitals later became prevalent in the community".⁸⁻¹¹

According to first edition of Bergey's manual of systemic bacteriology¹² the family *Micrococcaceae* includes genera: *Staphylococcus, Micrococcus, Planococcus, Stomatococcus*. Application of modern taxonomic concepts to classify *Staphylococci* can be said to have begun with studies of Baird Parker in 1965. According the CDC" the genus *Staphylococci* is now classified into 32 species and 15 subspecies based on chemical composition of their cell wall components and other properties".¹³

Staphylococcus measure 0.5-1.5 μ m and divide incompletely in three planes to form pairs, tetrads, short chains and clusters of variable size resembling bunch of grapes. [Greek = *Staphyle* mean bunch of grapes and *kokkos* = berry]. *Staphylococci* are non-motile, non-sporing, but can occasionally be capsulated. Theyare generally aerobes and facultative anaerobes, catalase positive, oxidase negative, utilize carbohydrates fermentatively.¹⁴

Colony morphology ⁹:

Staphylococci produce distinctive colonies on a variety of selective and nonselective agar media. The commonly used selective media include mannitol-salt agar, lipase-salt-mannitol agar, phenylethyl alcohol, Trypticasesoy agar and Baird-parker agar base supplemented with egg yolk tellurite enrichment.^{9,15} These media inhibit the growth of gram-negative bacteria, but allow the growth of *staphylococci* and other gram positive bacteria. *Staphylococci* grow well in various types of broth media, including tryptose phosphate broth, brain-heart infusion broth and nutrient broth.¹⁵

Habitat:16

S.aureus is commensal found in humans and its primary habitat is the squamous epithelium of the anterior nares; axilla, perineum and vulval skin which accounts for 67%. The superficial layers of skin are acidic due to lactic acid in sweat. *Staphylococci* can grow at this pH and most strains can grow in presence of 10% NaCl and some even at

15% NaCl. There is approximately 30% chance of infection by *S.aureus* in normal healthy population. It can be transmitted from person to person, which upon may become established as part of the recipients normal flora. Carriers play a key role in epidemiology and in the pathogenesis of infection and they are at greatest risk both for development of hospital and community acquired infections. Majority of *Staphylococcal* infections originate as endogenous heat and dry resistant, thus canpersist for long periods on fomites which in turn serve as source of infection.

Cellular components (Virulence factors):

The peptidoglycan and teichoic acid are the major components of the *staphylococcal* cell wall¹⁶. The biological activities of peptidoglycans includeendotoxin-like properties, complement activation, generation of chemotactic factors, inflammatory skin reaction^{9,16}.

Slime is a complex extracellular substance produced by many *staphylococci*. *S. epidermidis* and *S. capitis* produce copious amount of this substance. Continued production of slime by a growing clone of cells attached to a polymer surface results in encasement and formation of connective cell-slime clusters biofilm^{9,16,17}.

Once established, the bacterial biofilm may act as a penetration barrier to antibiotics. Biofilm is the material which embeds sessile bacteria adherent to prosthetic surfaces. The mechanism by which coagulase-negative *staphylococci* (CoNS) attach to prosthetic material is a complex and multiple process^{9,16,18}. One important element in this pathway is the ica operon, a gene cluster encoding the production of PIA which mediate intercellular adherence of bacteria and the accumulation of multilayered biofilm^{9,1619}.

Verwey(1940) described an antigenic substance present in the cell walls of *Staphylococcus aureus* which is responsible for agglutination. In 1958, Jensendesignated it as PROTEIN-A. This unique protein has the ability to bind the F_C region of IgG molecules. It is bound to the cell wall peptidoglycan and also shed into the medium during growth. The presence of Protein-A on *Staphylococcus aureus* provides the basis for a novel bacteriological technique Co-agglutination, used for identification and detection of bacterial antigen in the body fluids ²⁰

In 1978 Todd described a multisystem illness Toxic shock syndrome(TSS) characterized by fever, hypotension, erythroderma, vomiting, diarrhea, etc. Initially it was noticed among menstruating women, who used tampons. Subsequently it has been reported in both males and females. This disease since then ascribed to infection with specific toxigenic strains of *Staphylococcus aureus*²¹.

In 1981 two groups Berg doll, Reiser and cross & Schlivert, Shades and Don – reported "isolation and characterization of unique toxins produced by *Staphylococcus aureus* isolated from toxic shock syndrome patient. These were designated as pyrogenic exotoxin type-C and *staphylococcal* enterotoxin-F. Further studies indicated that these were identical and the toxin is now designated as Toxic Shock Syndrome Toxin (TSST)" ^{22,2 3}

Risk factors and prevention : ²⁴

According to CDC "risk factors for MRSA are excessive antibiotic usage, prolonged hospitalization, intravascular catheterization and hospitalisation in Intensive Care Unit ²⁵". Prevention of *S.aureus* infections according to CDC (1994) recommendations²⁵ for

10

preventing the spread a consensus panel's definition and management guidelines are eradication of *Staphylococcal* carriages, hospital infection control measure to prevent nosocomial infection, including pre-operative antibiotic prophylaxis ²⁵, proper handwashing, appropriate patient isolation, prompt evaluation and intervention when an outbreak occurs, adherence to standard guidelines on disinfection and sterilization and occupational health program for health care providers²⁵.

Antibiotic resistance among MRSA:

Sakoulas G in his article writes that "Historically, the development of antimicrobial resistance in Staphylococcus aureus has been rapid. Resistance to penicillin in S. aureus was noted only a year after its introduction, and, in the early 1950s, three quarters of S. aureus strains in large hospitals in many countries had become penicillin resistant. Currently, 90%–95% of clinical S. aureus strains throughout the world are resistant to penicillin. In 1959, the first antistaphylococcal penicillin—methicillin—was introduced. Within 2 years, the first methicillin-resistant S. aureus (MRSA) strain emerged"²⁶

In the year 1928 Alexander Fleming made an epoch making discovery. He noted that colonies of *staphylococci* around a mould penicillium, a common laboratory contaminant, were undergoing lysis²⁷. It was the oxford group of workers led by Flory and Chain did lot of experimental works and finally in 1941 the first trails with systemic penicillin began and the result was tremendous.

The *staphylococcus* on which the effect of penicillin was originally seen, had the capacity to produce an enzyme capable of destroying penicillin. Abraham and his associates reported about this enzyme in the year 1940 prior to introduction of penicillin

into human use. The factor responsible for this resistance was first designated as an enzyme penicilinase. When its specific action was noticed as the breaking of β -lactam ring of penicillin, the name was changed to β -lactamases.^{27,28}

Erythromycin came at a time when antibiotic resistant *Staphylococcus aureus* presented a serious clinical problem and this drug proved effective against drug resistant *staphylococcal* infections. However too soon by the year 1953, it became clear that , strains quickly became resistant. The introduction of semisynthetic β -lactamase resistant penicillin — Methicillin in 1960 has made major therapeutic break through for *staphylococcal* infections. But unfortunately the first methicillin resistant *staphylococcus* termed MRSA, was isolated in London in just one year later in 1961, soon after the introduction of Methicillin drug in Britain by Jevons(1961)²⁹.

Methicillin resistance mechanism:⁸

Deresinsky in his article on MRSA states that "The mechanism of resistance to methicillin was uncovered in 1981 with the identification of reduced-affinity penicillinbinding proteins in MRSA. The altered protein, PBP2a (PBP2 in the United Kingdom), retains effective transpeptidase activity while having reduced affinity for penicillin and other available b-lactam antibiotics. PBP2a exhibit both a reduced rate-constant for acylation by b-lactams and elevated dissociation constants. These 2 factors, acting together, prevent acylation of PBP2a and thus result in b-lactam resistance . PBP2a is encoded by the mecA gene.⁸ The mobile mecA gene complex is comprised of mecA together with its regulator genes, mecI and mecR, and resides within a genomic island, the staphylococcal cassette chromosome mec (SCCmec) that constitutes 1%–2% of the

~2.9 million–bp S. aureus chromosome⁸. SCCmec also contains the insertion sequence, IS431mec, as well as recombinases necessary for site-specific integration and excision. Some SCCmec types also contain various additional genetic elements, such as Tn554 (which encodes resistance to macrolides, clindamycin, and streptogramin B) and pT181 (which encodes resistance to tetracyclines) . The expression of PBP2a is induced by the binding of b-lactam antibiotics to a cytoplasmic membrane sensor-transducer receptor encoded by the mecR1 gene, triggering a signal leading to the proteolytic release of the mecI repressor from the operator region of the mecA gene. Phenotypic resistance to methicillin is variably expressed, and population analysis demonstrates that each MRSA strain has a characteristic growth profile at each concentration of methicillin examined . In contrast to this heterogeneously expressed resistance to methicillin, homogeneous resistance requires the interaction of additional factors, such as the femA–F genes that are involved in peptidoglycan synthesis".

REVIEW OF PREVIOUS STUDIES:

Prevalence:

In a study conducted by K Rajaduraipandi et al³⁰ in 2006, *S.aureus* isolates, 250 (31.1%) out of 803 clinical samples were MRSA. Almost all strains were resistant to Penicillin, Ampicillin, Gentamicin, Cotrimoxazole, Cefotaxime. Multidrug resistance was observed among 63 % and all isolates were sensitive to Vancomycin.

In a study conducted by Vijay Mohan et al^{31} in 2014, "Out of total 61 strains of *S.aureus* isolated, 16(22.2%) were found to be Methicillin resistant; which were sensitive to Amikacin, Clindamycin, Vancomycin, Linezolid and Rifampin". Ameer Abbas et al^{32}

in 2015 conducted study on prevalence and antibiogram of hospital and community acquired MRSA in Rajasthan. Of the 500 strains of *S.aureus* isolated from different clinical samples, 201 were MRSA (40.2%), withmajor sensitivity to Vancomycin and Linezolid. The study showed 16.38% resistance to Teicoplanin.

Sex-wise distribution:

Goyal A. et al ³³ in 2013 conducted study which revealed 58% male preponderance below 20 years of age group. No resistance Vancomycin, Linezolid, Teicoplani.Fomda BA et al³⁴ in 2014 conducted study on nasal carriage of Methicillin resistant *Staphylococcus aureus* among healthy population of Kashmir, showing 53% malepreponderance among the age group of 21–30 years respectively. All the isolates were sensitive to Clindamycin, Vancomycin, Linezolid, Teicoplanin.

Sumit Kumar et al³⁵ in 2015 conducted a study on prevalence of MRSA in patients admitted in a tertiary care hospital of North India showing 55% male preponderance compared to females. Common age group affected was 21-40 years. Antibiotic susceptibility showed 32% resistance to Ciprofloxacin, 21% resistance to Amikacin, 45% resistance to Clindamycin. All the strains were sensitive to Vancomycin, Teicoplanin, Linezolid.

Phenotypic detection methods:

Karami S. et al³⁶ in 2011 conducted a study evaluation of five phenotypic tests for identification of of MRSA. Out of 294 isolates, MRSA was detected with specificity of 98.9%, 97.9% by Cefoxitin Disc Diffusion method, CHROMagar MRSA respectively. Priya et al³⁷ in 2011 conducted a study on detection of MRSA strains and susceptibility

14

patterns. PCR *mecA* was taken as the gold standard in this study. Out of 200 isolates, 70 were MRSA positive by *mecA* gene detection. These isolates were 100%, 99.2% found specific by Cefoxitin Disc Diffusion method and CHROMagar MRSA respectively. Comparison of Cefoxitin disc diffusion method and *mecA* for MRSA detection were correlated, which confirmed Cefoxitin as the surrogate marker for *mecA* gene. CHROMagar MRSA had an accuracy in detecting MRSA isolates.

Zaidi et al³⁸ in 2013 conducted a study on comparison of Chromogenic agar medium and Disc diffusion test for detection of HA-MRSA from patients. Out of 148 samples, 96 were culture positive for MRSA, 84.6% were detected specific by Cefoxitin disc and 100% by CHROMagar MRSA. Isolates positive by disc diffusion were confirmed by Chromogenic agar. CHROMagar MRSA generated positive results in lesser period of time in this study with higher sensitivity and specificity. Poojary et al³⁹ in 2015 conducted a study on rapid identification of MRSA using Chromogenic media compared with conventional methods. Out of 246 samples, 40(16.26%) were culture positive for MRSA, detected by CHROMagar MRSA and disc diffusion method. 83.7%, 93% specificities were observed with Cefoxitin disc diffusion and CHROMagar MRSA. Turn around time for CHROMagar was reduced compared to disc diffusion methods in the study, concluding CHROMagar as reliable test for the early identification of MRSA and to initiate decolonization measures.

Type of predominant sample:

Anupurba S et al⁶ in 2013 conducted a study on MRSA. Out of 549 strains of *S.aureus* isolated from different clinical specimen, 52.5% were isolated from pus

15

samples. 55% were found to be MRSA. Of the total isolates, 80% were found to be resistant to, Ciprofloxacin, Gentamicin, Penicillin and Tetracycline. Many strains were multidrug resistant.Uma Chaudhary et al⁴⁰ in 2012 conducted a study on comparative study of community and health care associated Methicillin resistant *Staphylococcus aureus* infections, where maximum isolates were from pus samples (43.2%) received from various departments.

In the study conducted by Bilal Ahmed Mir et al⁴¹ in 2013 on antimicrobial susceptibility patterns and prevalence in MRSA and coagulase negative *Staphylococcus aureus* in a tertiary center, Jammu and Kashmir. MRSA were isolated in majority from pus samples received from various departments contributing to 52% of total samples.

Sensitivity pattern by disc diffusion:

Kunsang Ongmoo Bhutia et al⁴² in 2012 conducted a study on occurrence and antimicrobial susceptibility of CA-MRSA, HA-MRSA in Sikkim, out of 38.65% MRSA strains isolated,maximum resistance of 10.5% was observed with Linezolid. All the isolates were sensitive to Vancomycin, Teicoplanin. 92% isolates were resistant to Cotrimoxazole, 97% resistant to Amoxicillin, 31% resistant to Ciprofloxacin. Hajera M et al⁴³ in 2014 conducted a study on antimicrobial patterns and prevalence and of MRSA from a tertiary center, in which 100% resistance was observed with Penicillin, Cefoxitin, 87% with Amoxicillin and Clavulanate combination, 4.2% with Clindamycin, 6.7% with Linezolid, 2% with Vancomycin, 1.6% with Teicoplanin respectively.

Apoorva Tripathi et al⁴⁴ in 2015 conducted a study on prevalence and antimicrobial susceptibility patterns of Methicillin resistant *Staphylococcus aureus* in

central India, with 100% sensitivity to Clindamycin, Vancomycin, Linezolid, Teicoplanin. Isolates were 100% resistant to Penicillin and Cefoxitin, 98% resistant to Amoxicillin, 47% to Cotrimoxazole, 56% to Ciprofloxacin respectively.

MATERIALS AND METHODS:

The study was conducted in the Department of Microbiology, Shri B.M Patil Medical College Hospital and Research center, Vijayapur. *S. aureus* isolated from all the clinical samples formed the material for study.Clinical samples like pus, urine, sputum, blood and other body fluids of patients attending Shri B M Patil Medical College and Hospital were selected for study.

Sample size :With 5% margin of error and at 95% level of confidence and prevalence rate of 40%, the calculated sample size n=383 using statistical formula

$$n=(1.96)^2 p(1-p)/d^2$$

Hence a minimum of 383 *S.aureus* were identified and antimicrobial susceptibility pattern studied for three years period

Stastistical analysis: Values were expressed in terms of Mean \pm SD. Analysis we done by using SPSS software version 16. P \leq 0.05 was considered statistically significant.

Inclusion criterion: Samples which yielded pure growth of *S. aureus* were included.

Exclusion criterion: Samples which did not yield *S. aureus* were excluded from the study.

Specimens were screened by preliminary Gram's stain and then inoculated on 10% sheep blood agar and MacConkey's agar. *S. aureus* were identified by conventional techniques. Antimicrobial susceptibility testing of the isolates was performed by Kirby Bauer disc diffusion method using following discs.penicillin-G (10 unit); cloxacillin (30µg); cephalexin (30µg); cefuroxime(30 µg); tetracycline (30µg) ; erythromycin

(15µg); gentamicin (10µg); ciprofloxacin (5µg); pefloxacin (5µg); Cefoperazone /salbactam(75 µg/ 30 µg); azithromycin(15µg); linezolid (15µg). Vancomycin(30µg); piperacillin/tazobactam(100µg/10 µg); amoxicillin/clavulanic acid (20 µg /10 µg). The data were recorded and analyzed at the completion of the study as per recommendations of the CLSI.⁴⁵

Detection of MRSA:

• The Cefoxitin Disc Diffusion Test:

The Cefoxitin disc diffusion method was carried out on Mueller-Hinton agar by using a 30 µg cefoxitin disc. Inoculum was prepared and compared with 0.5 McFarland turbidity constant. Mueller-Hinton agar was inoculated and excess was removed. Cefoxitin 30mcg discs were applied with forceps and pressed gently to ensure even contact with the medium. The plates were incubated for 18 - 24 hours at 37° c. Interpretation was done using the Kirby-Bauer charts. An inhibition zone diameter of \leq 21 mm was reported as methicillin resistant.⁴⁶

• The Oxacillin Disk Diffusion Method:

The Oxacillin disk (1 μ g) diffusion method was carried out on Mueller-Hinton agar which was supplemented with 4% NaCl to detect MRSA according to the CLSI guidelines. The isolates were considered as resistant when the diameter of inhibition was \leq 10 mm.⁴⁷

Genotypic detection of MRSA by PCR (mec A gene):⁴⁸⁻⁵⁰DNA Extraction Procedure was done by Modified Proteinase-K method.MRSA strains were amplified by

conventional PCR. Following set of PCR primers were used which were specific to Methicillin resistant *S.aureus.*¹

Forward Primer : 5'- TGC TAT CCA CCC TCA AAC AGG -3'

Reverse Primer : 3'-AAC GTT GTA ACC ACC CCA AGA -5'

AMPLIQON RED 2X Mastermix was used which contain following reagents

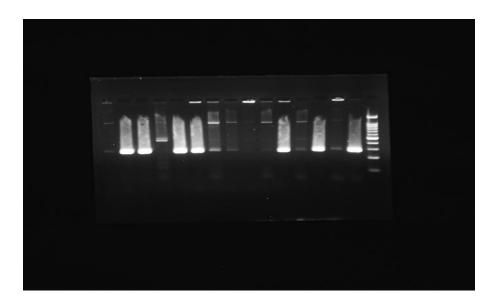
Tris-HCL pH 8.5, $(NH_4)_2SO_4$, 3mM MgCl₂, 0.2% Tween 20, 0.4mM of each dNTP ,

0.2 units/µl Ampliqon Taq DNA Polymerase

The PCR conditions were as follows

Initial denaturation $(94^{\circ} \text{ C}, 5 \text{min})$, Denaturation $(94^{\circ} \text{ C}, 1 \text{ min})$, Annealing $(50^{\circ} \text{ C}, 1 \text{ min})$

Extension (72[°]C, 2 min), Final extension(72[°]C for 5 min)


Reagents with their company names : PCR Master mix: Ampliqon Oligonucleotide Primers: Bioserve India pvt Ltd

Instruments:

Thermal cycler: Applied Biosystems, USA. Electrophoresis apparatus: Bio bee Tech, Bangalore. Gel Documentation system: Major Science, USA.

Interpretation:

- The PCR was carried out for MRSA strains with MRSA specific primer set. After PCR, the agarose gel electrophoresis was done where PCR amplified products were run on a 2% agarose gel.
- After running the electrophoresis, the amplified products will get separated on the gel according to the product size which was determined while choosing a primer.
- We had chosen a primer set which gives amplified product of size 280 base pair. So the well which gives DNA band of 280 base pair is considered positive, whereas the well which does not have any DNA band is indicated as negative.
- The size or the position of the DNA band can be known by running the DNA ladder simultaneously with each gel.

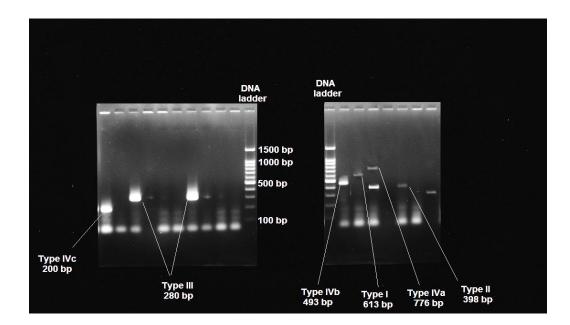
Results of mecA gene

Lane 1: Molecular weight marker

Lane 2: MRSA ATCC 43300

Lane 3: MSSA ATCC 25923

Lane 4, 6, 11,12,14 and 15: MRSA isolates from clinical samples(280 BP)


Lane 5,7-10,13,16: MSSA isolates from clinical sample

Multiplex PCR⁴⁸⁻⁵² was carried out for detection of SCCmec types, using following primers.

Table 1: SCCmec types and their primers.

Primer Name	Primer Sequence 5'> 3'	Primer Length (bp)	Amplicon size in base pair	
mecA F	TGCTATCCACCCTCAAACAGG	21	286	
mecA R	AACGTTGTAACCACCCCAAGA	21	280	
Type I F	GCTTTAAAGAGTGTCGTTACAGG	23	612	
Type I R	GTTCTCTCATAGTATGACGTCC	22	613	
Type II F	CGTTGAAGATGATGAAGCG	19	398	
Type II R	CGAAATCAATGGTTAATGGACC	22		
Type III F	CCATATTGTGTACGATGCG	19	280	
Type III R	CCTTAGTTGTCGTAACAGATCG	22	200	
Type IVa F	GCCTTATTCGAAGAAACCG	19	776	
Type IVa R	CTACTCTTCTGAAAAGCGTCG	21	770	
Type IVb F	TCTGGAATTACTTCAGCTGC	20	493	
Type IVbR	AAACAATATTGCTCTCCCTC	20	495	
Type IVc F	ACAATATTTGTATTATCGGAGAGC	24	200	
Type IVc R	TTGGTATGAGGTATTGCTGG	20	200	
Type IVd F	CTCAAAATACGGACCCCAATACA	23	881	
Type IVdR	TGCTCCAGTAATTGCTAAAG	20	001	
Type V F	GAACATTGTTACTTAAATGAGCG	23	325	
Type V R	TGAAAGTTGTACCCTTGACACC	22	323	

SCCmec typing in MRSA isolates.

5.Results

RESULTS:

AGE (YRS)	N	%
<1	4	1.0
1-10	48	12.5
11-20	33	8.6
21-30	71	18.5
31-40	46	12.0
41-50	63	16.4
51-60	55	14.4
>80	63	16.4
Total	383	100.0

 Table 2: Distribution of S. aureus according to age.

 $MEAN {\pm} SD {=} 38.4 {\pm} 21.7$

Figure 1: Distribution of *S. aureus* according to age.

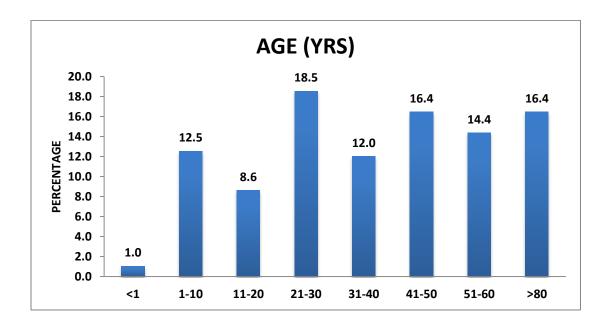
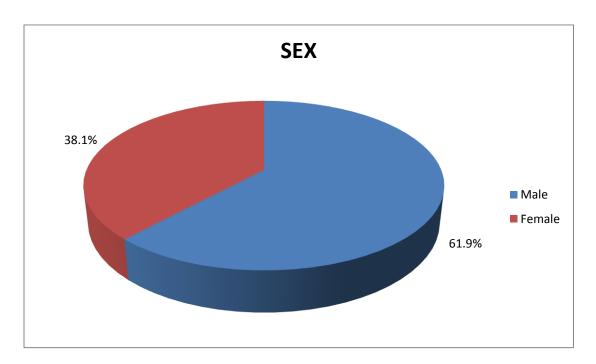



Table 3: Distribution of *S. aureus* according to sex.

SEX	N	%
Male	237	61.9
Female	146	38.1
Total	383	100.0

Figure 2: Distribution of *S. aureus* according to sex.

AGE		Male	Female		p value
(YRS)	N	%	N	%	F
<1	2	0.8	2	1.4	
1-10	33	13.9	15	10.3	
11-20	16	6.8	17	11.6	
21-30	34	14.3	37	25.3	
31-40	24	10.1	22	15.1	0.013*
41-50	46	19.4	17	11.6	
51-60	39	16.5	16	11.0	
>80	43	18.1	20	13.7	
Total	237	100.0	146	100.0	

 Table 4: Association Of Age WithSex AmongS. aureus.

Figure 3 : Association Of Age With Sex Among *S. aureus*.

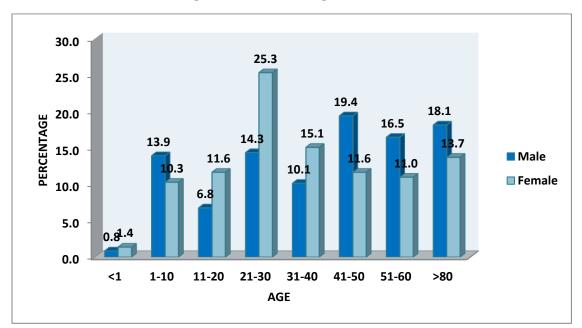


 Table 5: Ward wise Distribution of S. aureus.

WARD	Ν	%
IPD	281	73.4
OPD	102	26.6
Total	383	100

Figure 4: Ward wise Distribution of *S. aureus*.

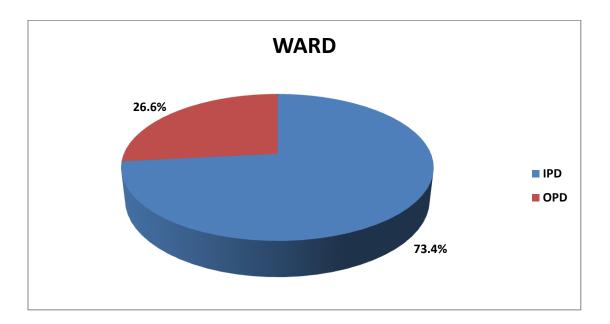
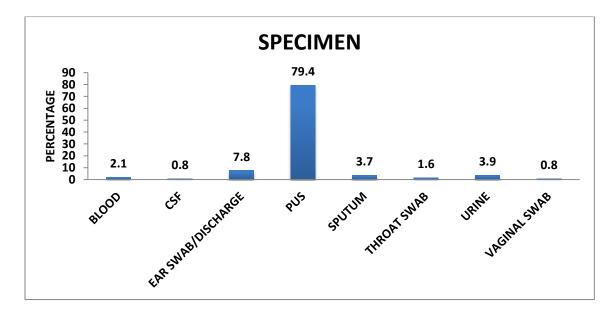
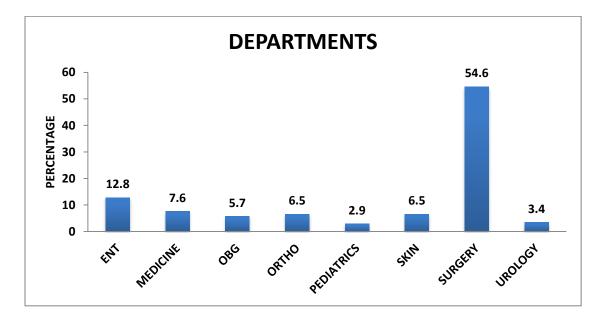



 Table 6: Specimen wise distribution of S. aureus.

Specimen	Ν	%
Blood	8	2.1
CSF	3	0.8
Ear swab/discharge	30	7.8
Pus	304	79.4
Sputum	14	3.7
Throat swab	6	1.6
Urine	15	3.9
Vaginal swab	3	0.8
Total	383	100


Figure 5: Specimen wise distribution of *S. aureus*.

Department	Ν	%
Ent	49	12.8
Medicine	29	7.6
Obg	22	5.7
Ortho	25	6.5
Pediatrics	11	2.9
Skin	25	6.5
Surgery	209	54.6
Urology	13	3.4
Total	383	100

 Table 7: Distribution of S. aureus according to department

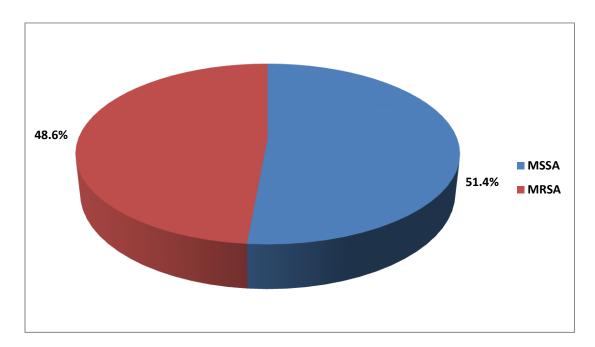
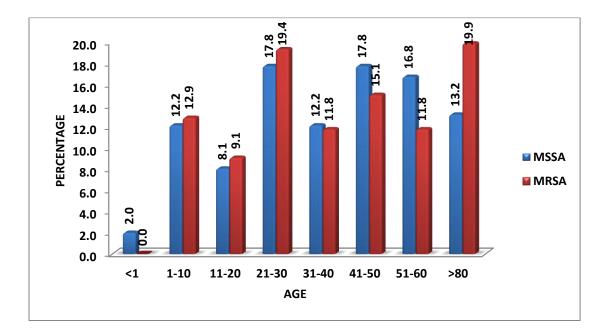

Figure 6: Distribution of S. aureus according to department

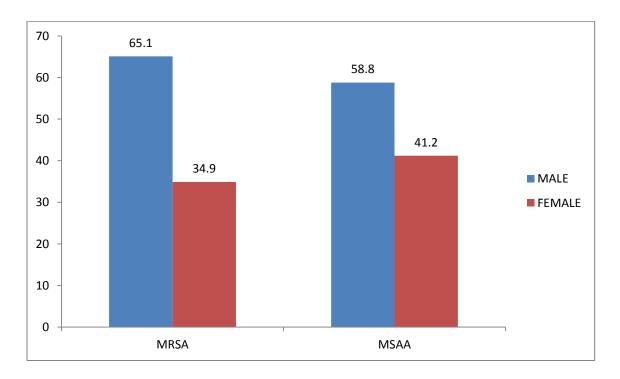
Table 8: Distribution of MRSA and MSSA

S. aureus	Ν	%
MSSA	197	51.4
MRSA	186	48.6
Total	383	100


Figure 7: Distribution of MRSA and MSSA

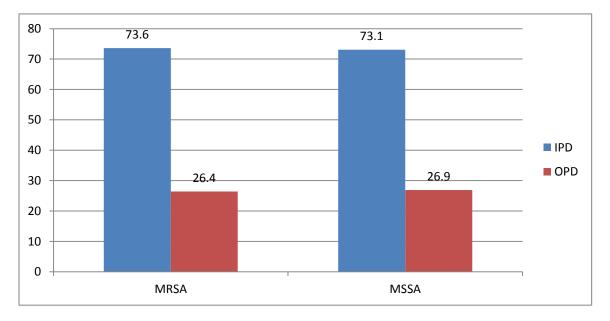
AGE	N	MSSA		MRSA		p value
(YRS)	Ν	%	N	%		1
<1	4	2.0	0	0.0	4	
1-10	24	12.2	24	12.9	48	
11-20	16	8.1	17	9.1	33	
21-30	35	17.8	36	19.4	71	
31-40	24	12.2	22	11.8	46	0.273
41-50	35	17.8	28	15.1	63	
51-60	33	16.8	22	11.8	55	-
>80	26	13.2	37	19.9	63	
Total	197	100.0	186	100.0	383	

Table 9: Distribution of MRSA and MSSA according to age


Figure 8: Distribution of MRSA and MSSA according to age

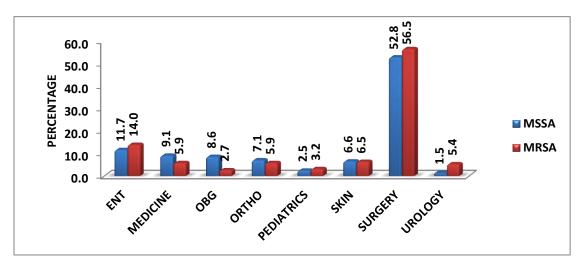
SEX	M	SSA	M	MRSA Total		p value
	Ν	%	Ν	%		
MALE	116	58.8	121	65.1	237	
FEMALE	81	41.2	65	34.9	146	0.214
Total	197	100	186	100	383	

Table 10: Distribution of MRSA and MSSA according to sex


Figure 9: Distribution of MRSA and MSSA according to sex

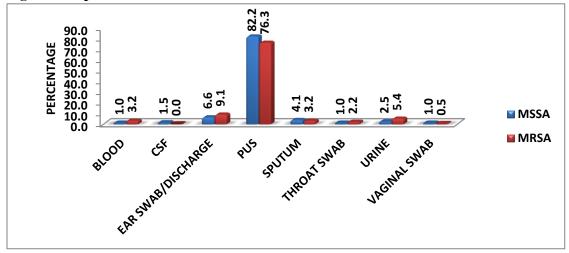
WARD	Μ	MSSA		MRSA		p value
	Ν	%	Ν	%	Total	P · ·····
IPD	144	73.1	137	73.6	281	
OPD	53	26.9	49	26.4	102	0.901
Total	197	100	186	100	383	

Table 11: Ward wise distribution of MRSA and MSSA .


Figure 10: Ward wise distribution of MRSA and MSSA .

Department	N	ISSA	M	IRSA	Total	p value
Department	N	%	Ν	%	I otal	p value
Ent	23	11.7	26	14.0	49	
Medicine	18	9.1	11	5.9	29	
Obg	17	8.6	5	2.7	22	
Ortho	14	7.1	11	5.9	25	
Pediatrics	5	2.5	6	3.2	11	0.089
Skin	13	6.6	12	6.5	25	-
Surgery	104	52.8	105	56.5	209	
Urology	3	1.5	10	5.4	13	
Total	197	100.0	186	100.0	383	

Table 12: Distribution of MRSA and MSSA according to department


Figure11: Distribution of MRSA and MSSA according to department

	MS	SSA	Μ	RSA		
SPECIMEN	Ν	%	Ν	%	Total	p value
BLOOD	2	1.0	6	3.2	8	
CSF	3	1.5	0	0.0	3	
EAR SWAB/ DISCHARGE	13	6.6	17	9.1	30	
PUS	162	82.2	142	76.3	304	
SPUTUM	8	4.1	6	3.2	14	0.329
THROAT SWAB	2	1.0	4	2.2	6	
URINE	5	2.5	10	5.4	15	
VAGINAL SWAB	2	1.0	1	0.5	3	
Total	197	100.0	186	100.0	383	

Table 13 :Specimen wise distribution of MRSA and MSSA .

Figure 12 :Specimen wise distribution of MRSA and MSSA .

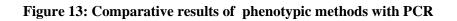


Table 14: Results of different methods for identification of MRSA

Total no of isolates=383
MRSA isolates detected by PCR (mec A gene) =186(gold std)
MRSA isolates detected by Oxacillin disc =148
MRSA isolates detected by cefoxitin disc =178

Table 15: Comparative results of phenotypic methods with PCR.

TEST METHODS	MRSA isolates detected	Sensitivity	Specificity	PPV	NPV	Accuracy
Oxacillin	148	79.6%	94.9%	93.7	83.1	87.5%
Cefoxitin	178	95.7%	100.0%	100.0	96.1	97.9%
PCR	186	100.0%	100.0%	100.0	100.0	100.0%

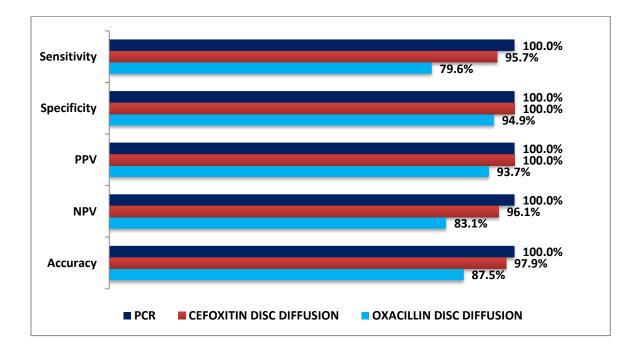


Table 16: Antibiotic susceptibility pattern among MSSA isolates

	MSSA (N=197)						
Antibiotic	SENS	SITIVE	RESI	STANT			
	N	%	N	%			
PENICILLIN-G	18	9.1	179	90.9			
EYTHROMYCIN	87	44.2	110	55.8			
TETRACYCLINE	176	89.3	21	10.7			
CEPHALEXIN	109	55.3	88	44.7			
CLOXACILLIN	91	48.9	95	51.1			
PEFLOXACIN	50	25.4	147	74.6			
PIPERACILLIN/TAZOBACTAM	147	79.0	39	21.0			
CEFOPERAZONE /SULBACTAM	136	69.0	61	31.0			
GENTAMICIN	151	76.6	46	23.4			
CIPROFLOXACIN	47	25.3	139	74.7			
AMOXICILLIN/CLAVULANIC ACID	69	35.0	128	65.0			
CEFUROXIME	128	65.0	69	35.0			
AZITHROMYCIN	118	59.9	79	40.1			
VANCOMYCIN	163	87.6	23	12.4			
LINEZOLID	172	92.5	14	7.5			

	MRSA (N=186)								
Antibiotic	SENS	SITIVE	RESI	STANT					
	Ν	%	N	%					
PENICILLIN-G	7	3.8	179	96.2					
EYTHROMYCIN	67	36.0	119	64.0					
TETRACYCLINE	158	84.9	28	15.1					
CEPHALEXIN	61	32.8	125	67.2					
CLOXACILLIN	98	49.7	99	50.3					
PEFLOXACIN	34	18.3	152	81.7					
PIPERACILLIN/TAZOBACTAM	152	77.2	45	22.8					
CEFOPERAZONE /SULBACTAM	122	65.6	64	34.4					
GENTAMICIN	124	66.7	62	33.3					
CIPROFLOXACIN	47	23.9	150	76.1					
AMOXICILLIN/CLAVULANIC ACID	45	24.2	141	75.8					
CEFUROXIME	109	58.6	77	41.4					
AZITHROMYCIN	81	43.5	105	56.5					
VANCOMYCIN	166	84.3	31	15.7					
LINEZOLID	176	89.3	21	10.7					

 Table 18: Comparison of resistance pattern.

Antibiotic susceptibility pattern	MSSA	(N=197)	MRSA	MRSA (N=186)		
Antibiotic susceptibility pattern	R	%	R	%	p value	
PENICILLIN-G	179	90.9	179	96.2	0.033*	
EYTHROMYCIN	110	55.8	119	64.0	0.106	
TETRACYCLINE	21	10.7	28	15.1	0.199	
CEPHALEXIN	88	44.7	125	67.2	0.001*	
CLOXACILLIN	95	48.2	99	53.2	0.883	
PEFLOXACIN	147	74.6	152	81.7	0.114	
PIPERACILLIN/TAZOBACTAM	39	19.8	45	24.2	0.652	
CEFOPERAZONE /SULBACTAM	61	31.0	64	34.4	0.485	
GENTAMICIN	46	23.4	62	33.3	0.032*	
CIPROFLOXACIN	139	70.6	150	80.6	0.732	
AMOXICILLIN/CLAVULANATE	128	65.0	141	75.8	0.031*	
CEFUROXIME	69	35.0	77	41.4	0.215	
AZITHROMYCIN	79	40.1	105	56.5	0.002*	
VANCOMYCIN	23	11.7	31	16.7	0.339	
LINEZOLID	14	7.1	21	11.3	0.284	

Note: * significant at 5% level of significance (p<0.05)

	EN	T	MED F		O	BG	UROI Y			ATRIC S	SK	IN	SURG	ERY	OR	гно
	N (26)	%	N (11)	%	N (5)	%	N(10)	%	N(6)	%	N(12)	%	N(105)	%	N(11)	%
Р	25	96. 2	11	100. 0	5	100. 0	8	80. 0	6	100.0	12	100. 0	101	96. 2	11	100. 0
Е	16	61. 5	6	54.5	3	60.0	7	70. 0	2	33.3	9	75.0	65	61. 9	7	63.6
Т	4	15. 4	2	18.2	0	0.0	3	30. 0	0	0.0	3	25.0	14	13. 3	0	0.0
СЕР	15	57. 7	9	81.8	2	40.0	8	80. 0	5	83.3	5	41.7	73	69. 5	6	54.5
CLO	13	50. 0	4	36.4	2	40.0	9	90. 0	1	16.7	5	41.7	55	52. 4	5	45.5
PEF	21	80. 8	10	90.9	2	40.0	9	90. 0	4	66.7	7	58.3	85	81. 0	11	100. 0
РТ	5	19. 2	2	18.2	0	0.0	4	40. 0	2	33.3	2	16.7	20	19. 0	2	18.2
CS	8	30. 8	4	36.4	1	20.0	2	20. 0	4	66.7	2	16.7	38	36. 2	2	18.2
G	9	34. 6	4	36.4	1	20.0	2	20. 0	0	0.0	3	25.0	41	39. 0	1	9.1
CIP	20	76. 9	9	81.8	2	40.0	8	80. 0	4	66.7	8	66.7	79	75. 2	7	63.6
AC	18	69. 2	9	81.8	4	80.0	8	80. 0	5	83.3	9	75.0	75	71. 4	6	54.5
CEF	7	26. 9	8	72.7	2	40.0	5	50. 0	2	33.3	4	33.3	43	41. 0	4	36.4
AZ	11	42. 3	6	54.5	3	60.0	8	80. 0	3	50.0	9	75.0	55	52. 4	6	54.5
v	4	15. 4	1	9.1	0	0.0	3	30. 0	1	16.7	3	25.0	10	9.5	1	9.1
L	1	3.8	0	0.0	0	0.0	3	30. 0	1	16.7	2	16.7	6	5.7	1	9.1

 Table 19: MRSA resistance pattern according to departments

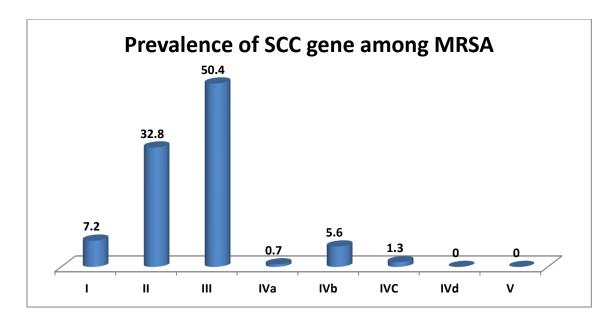

	DEPARTMENT															
SPECIMEN	Eľ	NT	MED	CINE	0	BG	OR	гно	PEDIA	TRICS	SK	IN	SURG	ERY	URO	LOGY
	N (26)	%	N (11)	%	N (5)	%	N (11)	%	N (6)	%	N (12)	%	N (105)	%	N (10)	%
BLOOD	0	0.0	1	9.1	0	0.0	0	0.0	1	16.7	0	0.0	4	3.8	0	0.0
CSF	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
EAR SWAB /DISCHARGE	16	61.5	0	0.0	0	0.0	0	0.0	1	16.7	0	0.0	0	0.0	0	0.0
PUS	8	30.8	5	45.5	3	60.0	10	90.9	1	16.7	11	91.7	98	93.3	6	60.0
SPUTUM	1	3.8	4	36.4	0	0.0	1	9.1	0	0.0	0	0.0	0	0.0	0	0.0
THROAT SWAB	1	3.8	0	0.0	0	0.0	0	0.0	3	50.0	0	0.0	0	0.0	0	0.0
URINE	0	0.0	1	9.1	1	20.0	0	0.0	0	0.0	1	8.3	3	2.9	4	40.0
VAGINAL SWAB	0	0.0	0	0.0	1	20.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0

Table 20: MRSA resistance pattern according to departments by specimen

SCC type	Numbers	Prevalence in %
I	14	7.2
II	59	32.8
III	94	50.4
Iva	1	0.7
IVb	10	5.6
IVC	2	1.3
IVd	0	0
V	0	0

Table 21: Prevalence of SCC gene among MRSA isolates

Figure 14: Prevalence of SCC gene among MRSA isolates

6. Discussion

Discussion:

MRSA is a major nosocomial pathogen causing significant morbidity and mortality. Predominant mode of transmission being person to person, important reservoirs of MRSA in hospital or institutions are, infected or colonized patients and transient carriage on the hands of health care personnel³⁰. MRSA had been recognized late and emerged as a problem in the 80's and in the 90's.³⁰

Study	Prevalence
K Rajaduraipandi et al ³⁰ (2006)	31.1%
Bandara et al ⁵³ (2012)	47%
Virendra et al ⁵⁴ (2014)	61.4
Eshani et al ⁵⁵ (2014)	40%
Present Study (2018)	48.6%

Table 22: MRSA Prevalence patterns in various studies.

As shown in the Table 22, prevalence of MRSA in the present study was 48.6% which correlates with the study of Bandara et al⁵³ (47%). Study of Eshani et al⁵⁵ (40%) was close to the present study. However some western countries have reported decline in MRSA rates, specially in UK which was achieved due to nationwide intervention based on audit and quality improvement.

Year	Study	Age in years	Percentage
2006	Huang et al ⁵⁶	21 - 30	31%
2015	Sumit et al ³⁵	21 - 30	30.90%
2015	Tahira et al ⁵⁷	21 - 30	50%
2018	Present study	21 - 30	19.4%

Table 23: Age Wise distribution of MRSA isolates in various studies.

(Age wise distribution of MRSA isolates in the present study analysed in table 23). As shown in Table 23, in the present study, 19% of MRSA isolates were observed in the age group of 21 - 30 years, which correlates with the study of Sumit et al³⁵(30.9%) and Huang et al⁵⁷(31%) respectively. The highest prevalence rates of MRSA infections were observed in the young and elderly. The association between MRSA and younger age group, likely to reflect acquisition in the community.

Table 24: Sex-Wise distribution of MRSA isolates in various studies.

Study	Predominant sex in %	Predominant sex in %	
Goyal et al ¹⁸ (2013)	Male (58%)		
Fomda et al ¹⁹ (2014)	Male (53%)		
Sumit et al ³⁵ (2015)	Male (55%)		
Present study (2018)	Male (65%)		

(Sex wise distribution of MRSA isolates analysed in table 24). As shown in table 13, in the present study, MRSA was predominantly isolated from males(65%) which correlated with study of Sumit et al^{35} (male 55%) and Fomda et al^{19} (male 53%).

Study	Ward	Percentage
Lahari et al ⁵⁸ (2009)	Surgery	47%
V. Pai et al ⁵⁹ (2010)	Surgery	71%
Virendra et al ⁵⁴ (2014)	Surgery	61.40%
Present study (2018)	Surgery	54.50%

Table 25 :Department wise distribution of MRSA isolates invarious studies.

In the current study more number of the organisms were from surgical patients and which correlates well with suppurative nature of Staphylococcal infections. Similar results were revealed by various studies as shown in table. The reasons for higher proportion of MRSA cases in surgery department may be related to the poor environmental cleaning, operation theatre surveillance and infection control measures of hospitals in Indian setup and also because of high usage of antibiotics as noted by Swanston et al². In the present study, MRSA isolates (76%) were from pus samples, which coincides with the study of Khadri et al⁶⁰ [Pus, 55%].

Table 26: Sensitivity and specificity of Cefoxitin Disc Diffusion method for detection of MRSA.

Authors	Sensitivity(%)	Specificity(%)
Karami et al ³⁶ (2011)	100	98.9
Priya et al ³⁷ (2011)	98.5	100
Zaidi et al ³⁸ (2013)	94	84.6
Present study (2018)	95	100
1 1050ht Study (2010))))	100

Detection of mecA gene is considered the gold standard for MRSA confirmation. In our study, the mecA gene PCR detected 186 isolates as MRSA and the 197 isolates as MSSA.

Recent studies including our s indicate that cefoxitin disc diffusion test is better than most of the phenotypic methods like oxacillin disc diffusion and oxacillin screen agar testing and is now an accepted method for the detection of MRSA by many reference groups including CLSI. The accurate and early determination of methicillin resistance is of key importance in the prognosis of infections caused by S. aureus.⁵ This higher sensitivity to cefoxitin can be explained by the increased expression of the mecAencoded protein PBP2a, cefoxitin being an inducer of the mecA gene.⁵ Our study reveals that cefoxitin disc is better than oxacillin disc for the detection of methicillin resistance. Results of cefoxitin disc diffusion test is as good as PCR used for mecA gene, and thus the cefoxitin can be used for identification of MRSA and the test can be used as cost effective method when compared to PCR for detection of MRSA . Antibiotic suseptibility pattren of the MRSA isolates:

Antibiotic susceptibility pattern revealed a high resistance to routinely used antibiotics . Resistance to quinolones i,e. ciprofloxacin and pefloxacin were high in this study. This is comparable to the study done by Sanjana et al⁶¹., in Nepal. Resistance to cephalexin (67%) was also much higher in this study. This is consistent with the study carried out by Sanjana et al.,⁶¹ who reported the similar resistant rate to cephalexin. Vidhani *et al.* found that there was a marked difference between sensitivity pattern of MRSA and MSSA isolates. Majumder et al.⁶² also revealed that resistance to various antibiotics with methicillin resistant strains was higher in comparison to methicillin-sensitive isolates. Factors responsible for drug resistance in MRSA are as follows. Antibiotics are available without prescription at drug stores or even at general stores and injudiciously used in communities, animal husbandries, and fisheries and use of allopathic drugs by traditional practitioners.²

Multidrug resistance among MRSA:

Multidrug resistance is defined as resistance of a MRSA strain towards three or more antibiotics at a given point of time. In the USA, some workers have reported multidrug resistance rates of 65.7% MRSA isolates. In Nigerian women, a total of 43 *S. aureus out of 60* were found to be multidrug resistant. We found a high percentage of multidrugresistant MRSA (76.8%) in our hospital. If we look into the Indian literature, it seems the burden of multi drug resistant-MRSA is increasing over time: for instance, 23.2% was reported by Majumder and colleagues⁶², 32% by Anupurba and colleagues⁶ and 63.6% by Rajaduraipandi and colleagues.³⁰ The lesson is clear: MRSA surveillance and strict drug policy are of paramount importance, or else the threat will increase. SCCmec typing:

This is the first reports of the prevalent genotypes of MRSA in Vijayapur. This study shows that the prevalent MRSA types in Vijayapur are SCCmec-III and SCCmec-II.Of 186 MRSA isolates tested, 50% were SCCmec type III, 33% were SCCmec type II. These results are similar to those from most Asian countries⁶³⁻⁶⁶. In addition to the mecA gene, SCCmec type III contains genes encoding resistance to several non-b-lactam antibiotic classes, such as macrolides and tetracyclines. These resistance genes are found on transposons and plasmids integrated into the SCCmec element. Five different SCCmec types have been characterised in MRSA. Two distinct SCCmec types of MRSA strains have been identified in Asia. SCCmec type II is most common distributed in Japan and Korea whereas SCCmec type III is predominant in some other Asian countries such as Saudi Arabia, India, Sri Lanka, Singapore, China, Thailand⁶³⁻⁶⁷ (Chongtrakool et al. Ko et al. 1999). In Europe, varied SCCmec types have distributed and dominated in different countries. The SCCmec type I have been identified especially in Croatia, and Switzerland . The SCCmec type IV has been reported from Spain, Portugal, Germany. In the US, SCCmec type II and IV have been observed most common types.⁶⁸

7.Summary and Conclusion

Summary and Conclusion:

- Our study observed that the prevalence of MRSA as a whole did not vary significantly by gender but were more frequent among male patients,
- > The predominant age group commonly affected was 21 30 years (19%).
- ▶ In the present study, majority of MRSA isolates were from pus samples (76%).
- ▶ Higher rate of MRSA isolates were from department of Surgery (56.5%).
- Linezolid (89% sensitive) was the most effective agent against MRSA isolates followed by tetracycline (86%) and Vancomycin (83%).
- Anti-biograms of MRSA isolates revealed high level of resistance(more than 75%) to penicillin, pefloxacin ,gentamicin and amoxicillin/clavulanic acid.
- Results of cefoxitin disc diffusion test was as good as PCR for *mecA* gene, and thus the cefoxitin disk diffusion method is very suitable for detection of MRSA and the test can be an alternative to PCR for detection of MRSA in resource constraint settings.
- The current study revealed the prevalence of MRSA in the tertiary hospital in this part of India is very high(48.6%.). Therefore, it is necessary to choose suitable antibiotics with respect to their antimicrobial profiles for treating the infections.
- We found a higher number of multidrug-resistant MRSA in our hospital. If we look into the Indian setting, it seems the burden drug resistant-MRSA is increasing over time.

This is the first reports of the prevalent genotypes of MRSA in our hospital settings in Vijayapur. This study shows that the prevalent MRSA types in Vijayapur are SCCmec-III and SCCmec-II.

Study limitations:

- > Molecular diagnosis was restricted to MRSA cases .
- > Complete gene sequencing.

Future Prospective: Previously unknown genotypes of the SCCmec have been identified. Future study of these genotypes may reveal various features that enable these isolates to succeed in this setting.

8. References

Bibliography:

- Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 2008;46(Suppl 5):S344–S9.
- Metri BC, Peerapur BV, P Jyothi. Comparison of antimicrobial resistance pattern of hospital-and community-acquired Methicillin resistant Staphylococcus aureus. J Chem Pharm Res 2014;6:201-5.
- Al-Ruaily MA, Khalil OM.Detection of (*mecA*)gene in methicillin resistant *Staphylococcus aureus* (MRSA) at Prince A / Rhman Sidery Hospital, Al-Jouf, Saudi Arabia.J Med Genet Genomics 2011;3:41-5.
- Tahnkiwale SS, Roy S, Jalgaonkar SV. Methicillin resistance among isolates of Staphylococcus aureus : Antibiotic sensitivity pattern & phage typing. Indian J Med Sci 2002 ; 56 : 330 – 4.
- Anand KB, Agrawal P, Kumar S, K Kapila K. Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for *mecA* gene for detection of MRSA. Indian J Med Microbiol 2003;27: 27-9.
- Anupurba S, Sen MR, Nath G, Sharma BM, Gulati AK, Mohapatra TM. Prevalence of methicillin resistant Staphylococcus aureus in a tertiary referral hospital in eastern Uttar Pradesh.Indian J Med Microbiol. 2003;21:49-51.
- Verma S, Joshi S, Chitnis V, Hemwani N, Chitnis D Growing problem of methicillin resistant staphylococci - Indian scenario. Indian J Med Sci 2000;54:535-40.
- Deresinski S. Methicillin-Resistant Staphylococcus aureus: An Evolutionary, Epidemiologic, and Therapeutic Odyssey. Clin Infect Dis 2005;40:52-73

- Peacock S J. Staphylococcus. In: Borriello S P, Murry P R , Funke G.Editors.Topley and Wilsons Microbiology and microbial infections.Arnold.2010:771-832.
- Evans, J.B. Jr., Bradford, W.L. and Niven, C.F. 1955. Comments concerning the taxonomy of the genera *Micrococcus* and *staphylococcus*. Int Bull Bacterial Nomencl Taxon, 5, 61-6.
- 11. Baird-Parker, A.C. A classification of *micrococci* and *staphylococci* base on physiological and biochemical tests. J Gen Microbiol 1963
- Prescott IM, Harley JP, Klien DA, Bacteria. The high G+C Gram positives, Microbiology 5th edition Mc Graw Hill Publications, 536-551.
- 13. Centers for Disease Control and prevention, Interim guidelines for prevention and control of Staphylococcal infection associated with reduced susceptibility to Vancomycin, morbidity and mortality weekly report, 1997; 46: 626-628, 635.
- Staphylococcus aureus. Chapter 22 in Ananthanarayanan and Paniker Textbook of Microbiology. 8th edi Publ. Universities Press [India] Pvt.Ltd. 2009: 195-196
- 15. Schleifer,K.H.,Geyer, U. Elevation of *staphylococcus sciuri* subsps. to species status. Syst Appl Microbiol 1983;4:382-7.
- Charles Easmon SF. Staphylococcal Diseases. Topley and Wilson Principles of Bacteriology, virology and immunity. Edited by Parker T, Collier LH, 8th edition: 215-238.
- 17. Peters, G., Schumacher-perdreau, F., et al. 1987. Biology of *S.Epidermidis* extracellular slime. In:Pulvere .G., Pathogenicity and significance of *coagulase negative Staphylococci*. Gustev Fisher Veralag 1987;23:15-32.

- Mack, D. Molecular mechanism of *staphylococcus epidermis* biofilm formation. J Hosp Infect 1999,43,Suppl,S113-25.
- 19. Heilmann, C., Schweitzer, O. Molecular basis of intercellular Adhesion in biofilm- forming *staphylococcus epidermidis* Mol Microbiol 1996; 20:1083-91.
- 20. Mahon CR, Lehman D.C Manuselis G. Editors. Staphylococi, Chapter 14. Text book of Diagnostic Microbiology , 5th edition ,Elsevier2011:314-327.
- 21. Todd J, Fishaut M: Toxic Shock syndrome associated with phage-group-1 Staphylococci. Lancet 1978 ;2:116-18.
- 22. Bergdoll MS, Reiser RF, Crass BA ET AL:A new *staphylococcal* enterotoxin, enterotoxin F, associated wit toxic shock syndrome staph aureus isolates. Lancet 1981;1:1017-21
- 23. Bergdoll MS, Schlievert PM: Toxic schock syndrome toxin. Lancet 1984;2:691
- 24. DeLeo FR. Waves of resistance: *Staphylococcus aureus* in the Antibiotic Era.Nat Rev Microbiol 2009; 7(9): 629-641.
- 25. Centers for Disease Control and prevention, Interm guidelines for prevention and control of Staphylococcal infection associated with reduced susceptibility to Vancomycin, morbidity and mortality weekly report, 1997; 46: 626-628, 635.
- 26. Sakoulas G, Moellering, Jr R C. Increasing Antibiotic Resistance among Methicillin Resistant Staphylococcus aureus Strains. Clin Infect Dis 2008;46(Suppl 5):S360-67.
- 27. Konemann EW, Allen SD, Janda WM, Schreckenberger PC, Winn Jr WC. Antimicrobiol susceptibility testing. Chapter 15. Color atlas and text book of Diagnostic Microbiology, 5th edition lippicott, Philadelphia 1997;785.

- Konemann EW, Janda WM, Schreckenberger PC, Winn Jr WC, Gram positive coccipart-1(chapter on *staphylococci* and related organisms), Diagnostic Microbiology, 5th ed. Lippincott 1997: 406-30.
- 29. Jaw, Melnick, Adelberg. Text book of Diagnostic Microbiology 22nd Edition 2001.
- 30. K Rajaduraipandi, KR Mani, K Paneerselvam, M Mani, M Bhskar. Prevalence and antimicrobial susceptibility pattern of MRSA. A multicenter study–IJMM, 2006 V(24) I(1):34-38.
- 31. Vijay Mohan N, S Sandeep Nair. Study of prevalence of MRSA in dermatology in-patients. Dept of DVL, Kerela, Indian Derma Journ. 2014,v(5),I(4),441-445.
- 32. Ameer Abbas, PS Nirwan, Preeti Srivastava. Prevalence and Antibiogram of hospital and community acquired MRSA at a tertiary care hospital, National Institute of Medical Sciences, Rajasthan, India. caijournal–Community Aquired Infect 2015; 2:13-5.
- 33. Ankur Goyal, Sapna Goyal, Dharmendra Kumar, Gaurav Khandelwal. Microbiological profile and their antimicrobial susceptibility pattern in patients of otitis media with ear discharge. Indian Journal of Otology;March 2013;19(1):5-8.
- 34. BA Fomda, MA Thokar, Bhat, Ray P. Nasal carriage of MRSA among healthy population of Kashmir, India. IJMM, 2014 V(32), I(1):39-43.
- 35. Sumit Kumar, Ankur Kumar, Umar Farooq, Rhena Begum. Prevalence of MRSA in patients admitted in a tertiary care hospital of North India. ICARI 2015;2(5): 217-221.

- 36. Somayeh Karami, Md.Rahbar, Jalil Vand Yousefi. Evaluation of five phenotypic methods for detection of Methicillin resistant *Staphylococcusaureus*. Iranian Journal of Pathology 2011; 6(1):27-31.
- 37. Priya Datta, Neelam Gulati, Nidhi Singla, Hemarani Vasdeva, Varsha Gupta. Evaluation of various methods for the detection of MRSA strains and susceptibility patterns. J of Med Microbiol 2011; 60:1613-1616.
- 38. Jawad R Al-Zaidi, Amin A Al-Sulami. Comparison of Chromogenic agar medium and Disc Diffusion test for detection of hospital acquired MRSA from patients and hospital environment in Iraq. African journal of Microbiology Research–AJMR. 7(19): 7 may 2013; 1888-1895.
- 39. AA Poojary, LD Bhandarkar. Rapid identification of MRSA using Chromogenic media compared with conventional methods. IJCMAS – International Journal of Current Microbiological and Applied Sciences; 2015 4(4):939-947.
- 40. Dr Uma Chaudhary, Dr Swati Behara, Dr Madhu Sharma. A comparative study of Community and health care associated MRSA infections. Int J Pharma Bio Sci 2012 July;3(3): (13) 717-722.
- 41. Bilal Ahmed Mir, Dr Srikanth. Prevalence and Antimicrobial susceptibility patterns in MRSA & CONS in a tertiary care hospital Jammu and Kashmir. Asian J of Clinical Research 2013, S(3), v(6): 231-234.
- 42. Kunsang Ongmoo Bhutia, TSK Singh, Luna Adhikari, Shilpi Biswas. Occurrence and Antimicrobial susceptibility of community and Hospital acquired MRSA strains in Sikkim, JIMSA 2012 v(25), 4 : 235-237.

- 43. Hajera M, Mustafa M, Sreenivasa Reddy C, Naidu NV, Kiran kumar V, Jayasimha Rayalu D. Prevalence and antimicrobial susceptibility patterns of MRSA from a tertiary care hospital, Hyderabad 2014; Int Jour of Plant, Animal, Environmental sciences.
- 44. Apoorva Tripathi. Prevalence and antimicrobial susceptibility pattern of MRSA in central India. MedPulse. Inter Med J J (2015) v(1) 2(1) :45-48.
- 45. Villanova PA. Performance standards for antimicrobial disk susceptibility tests.In:National Committee for Clinical Laboratory Standards. Approved standard. 7th edn. National Committee for Clinical Laboratory Standards; 2000. p. M2-A7.
- 46. Isenberg HD, editor. Clinical microbiology procedures hand book. 2 nd ed.
 Washington DC: ASM Press; 2004.
- 47. Brown DF, Edwards DI, Hawkey PM, Morrison D, Ridgway GL, Towner KJ, *et al*.Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphyloccocus aureus. J Antimicrob Chemother 2005;56:1000-18.
- 48. Rao Venkatakrishna I, Bhat Kishore G, Kugaji Manohar S, Manjula PV. Detection of methicillin Resistance in Staphylococcus aureus: Comparison of Disc diffusion and MIC with mecA gene detection by PCR. Int J Pharm Bio Sci. 2011;1:518-21.
- 49. Vanpelt E, Belkum VAV, Hays JP. Principles and Technical aspects of PCR amplification. Springer 2008; 34.
- 50. Zhang K, McClure JA, Elsayed S, Louie T, Conly JM. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette

chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. Journal of clinical microbiology. 2005 Oct 1;43(10):5026-33.

- 51. Goudarzi M, Seyedjavadi SS, Nasiri MJ, Goudarzi H, Nia RS, Dabiri H. Molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from patients with bacteremia based on MLST, SCCmec, spa, and agr locus types analysis. Microbial pathogenesis. 2017 Mar 1;104:328-35.
- 52. Harmsen D, Claus H, Witte W, Rothgänger J, Claus H, Turnwald D, Vogel U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. Journal of clinical microbiology. 2003 Dec 1;41(12):5442-8.
- 53. Bandara, Jayatilleke K. Antibiotic sensitivity pattern of *Staphylococcus aureus* in a tertiary care hospital, Sri Lanka. Sri Lanka J Infect Dis.2012; 2:13-7.
- 54. Virendra S Kohle, Sanjay R More, Santosh M Mangalkar. Incidence of antibiotic resistance in MRSA in burn patients in tertiary care hospital, India. International Journal of Pharma and Biosciences; Oct 2014; 5(4):B 537-541.
- 55. Eshani Dewan, Aroma Oberai. Gram positive bugs Bugging us in today'sera. A study from tertiary care hospital in Punjab, North India. Int J Basic Appl Sci 2014;3:86-92.
- 56. Huang SS, Platt R. Risk of Methicillin resistant *Staphylococcus aureus* infection after previous or colonization.Clin Infect Dis 2003; 36:281-5.
- 57. Yousuf Tahira, Yousuf sajad, DK Kakru, Suhail Md. Screening of MRSA susceptibility towards Linezolid, Vancomycin in Jammu and Kashmir. WJPPS vol.4, 1(11),2015: 2007-2022.

- Lahari Saikia, Reema Nath, Basabdatta Chowdary, Mili Sarkar. Prevalence and antimicrobial susceptibility pattern of MRSA in Assam, Indian J Critical Care Med 2009; 13: 156-8.
- 59. Vidya Pai, Venkata Krishna Rao, Sunil P Rao. Prevalence and Antimicrobial Susceptibility pattern of MRSA at a tertiary care hospital in Mangalore, South India. J Lab Physician 2010; 2:82-4.
- 60. Md Fareed Khadri, Arvind Naral, Vikas Yadav, Sarfaraz. Incidence and antimicrobial susceptibility patterns of MRSA in pus samples of patients from Central India. South Asian Journal 2010; 2: 204-8.
- 61. Sanjana RK, Shah R, Chaudhary N, Singh YI. Prevalence and antimicrobial susceptibility pattern of methicillin-resistant *Staphylococcus aureus* (MRSA) in CMS-teaching hospital: a preliminary report. J College Med Sci Nepal 2010;6:1-6.
- 62. Majumder D, Bordoloi JS, Phukan AC, Mahanta J. Antimicrobial susceptibility pattern among methicillin resistant *staphylococcus* isolates in Assam. Indian J Med Microbiol2001;19:138-40.
- 63. Arakere G, Nadig S, Swedberg G, Macaden R, Amarnath S & Raghunath D (2005) Genotyping of methicillin resistant Staphylococcus aureus strains from two hospitals in Bangalore, South India. J Clin Microbiol 43: 3198–3202.
- 64. Okuma K, Iwakawa K, Turnidge JD et al. (2002) Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 40: 4289–4294.

- 65. Kwan SK, Lee J-Y, Suh JY, Oh WS, Peck KR, Lee NY & Song J-H (2005) Distribution of major genotypes among methicilinresistant Staphylococcus aureus clones in Asian countries. J Clin Microbiol 43: 421–426
- 66. Nadig S, Namburi P, Raghunath D & Arakere G (2006) Genotyping of methicillin resistant Staphylococcus aureus isolates from Indian Hospitals. Curr Sci 91: 1364–1369.
- 67. Chongtrakool P, Ito T, Ma X, Kondo Y, Trakulsomboon S, Tiensasitorn C, Jamklang M, Chavalit T, Song H, Hiramatsu K. Staphylococcal Cassette Chromosome mec (SCCmec) Typing of Methicillin-Resistant Staphylococcus aureus Strains Isolated in 11 Asian Countries: a Proposal for a New Nomenclature for SCCmec Elements. Antimicrob. Agents chemother 2006;50:1001-12.
- 68. Abdullah K, Guclu AU, Senses Z, Bedir O, Aydogan . Basustaoglu C. Staphylococcal cassette chromosome mec (SCCmec) characterization and panton-valentine leukocidin gene occurrence for methicillin-resistant Staphylococcus aureus in Turkey, from 2003 to 2006. Antonie van Leeuwenhoek 2008; 94:607–14.

9. Annexure

Papers presented in conferences:

INDIAN	DEPARTMENT OF I K.R. Road, Fort, Be ASSOCIATION OF MEDI KC-MICRO Certif	ngaluru – 560002. CAL MICROBIOLOGISTS CON 2016	
This is to certify that Dr./Mr Bearing Reg. No	t Registered with Karnatak <u>it</u> e / Chairperson / pre	a Medical Council Addr sented a scientific paper	
Karnataka Medical Council	has granted 2 credit hours	vide letter KMC/CME/075/2	016 Dated 23.01.2016
Zonal Chairman Karnataka Medical Council - CME Bengaluru	Dr. Ambica R. Organising Secretary Department of Microbiology BMCRI, Bengaluru	Dr. Nagarathnamma T. Organising Chairperson Department of Microbiology BMCRI, Bengaluru President, IAMM (KC)	Dr. Devadass P.K. Director Cum Dean BMCRI, Bengaluru

Proforma

Patient details

١	Name	:		Age & sex	:
I	Address	:		IP No. / OP No.	:
ŀ	Referred by	:		Lab No.	:
Ι	Date of receipt	:			
Present	ing complaints				
(Chills and rigors	:	Urgency	:	
I	Frequency	:	Fever	:	
H	Pain abdomen	:	Burning n	nicturation:	

History of present illness:

Past history and treatment

General physical examination

Pallor	:	Pulse	:
Icterus	:	Temperature	:
BP	:		
Systemic exami	nation :		
CVS		RS	

PA	CNS
----	-----

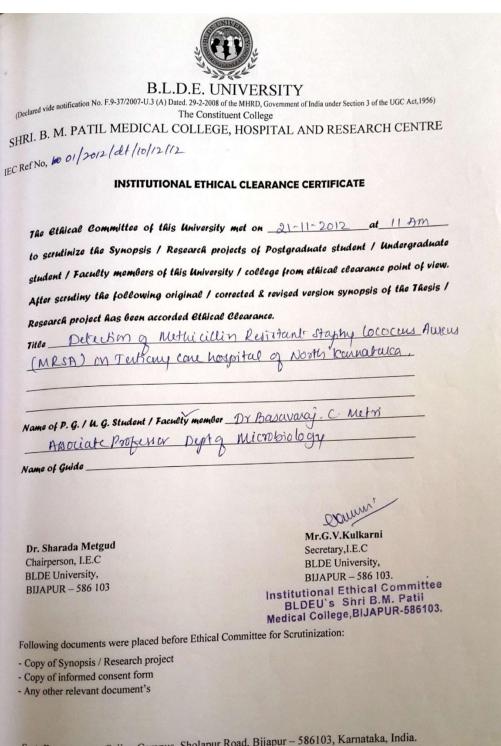
Investigation:

Blood routine :	Hb	TC	DC	ESR
Urine routine :	Microscopy Sugar		Protein	
Microbiological study:	C		Tiotom	
I. Preliminary tests:				
Gram stainingCatalase	e test			
Slide coagulase				
II. Cultural study:				
Mac Conkey'	s Agar:	-	Nutrient agar :	
Blood Agar :		CLED aga	r:	
III. Biochemical tests	:			
Tube coagulase		D	NAase test	
Mannitol fermentati	on	В	acitracin disc test	
Nonobiosin disc test	t	0	rnithine decarbox	ylase
DNAase test		L	ysostaphin test	
Tellurite media		C	elatin liquefaction	n
Phosphatase test		Ŭ	rease test	
Nitrate reduction tes	st	١	'P test	

Sugar fermentation tests: Mannose, Mannitol, Trehalose, Lactose .

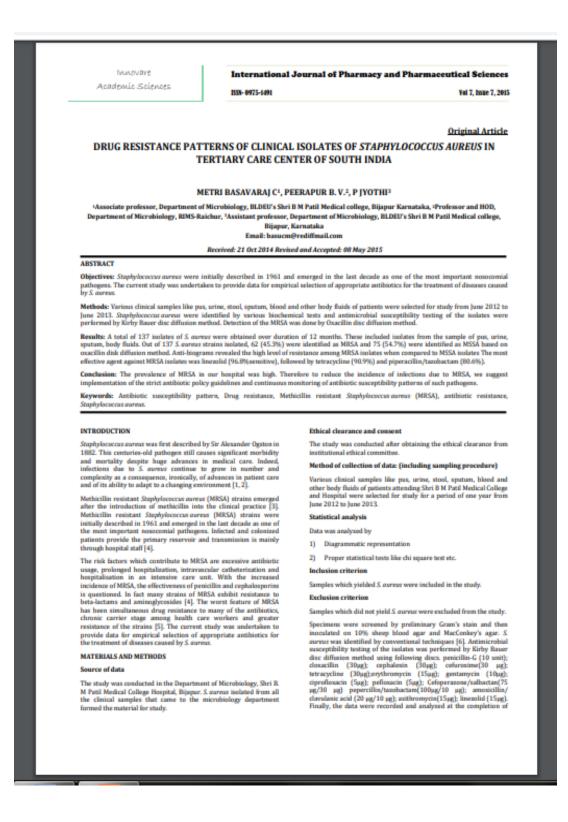
IV. Antibiogram :By Kirby-Bauer disc diffusion method.

Ampicillin	Pefloxacin
Penicillin	Amoxycillin-clavulinic acid
Pipercillin-Tazobactam	Cefoperazone-Salbactam
Cloxacillin	Cephalxin
Ciprofloxacin	Erythromycin
Azithromycin	Tetracycline
Gentamicin	Linezolid
Vancomycin	


V. Detection of the MRSA

- Oxacillin disc diffusion method ^{13,14}
- Cefoxitin disc diffusion test

VI. Confirmation of MRSA


- PCR amplification of the *mecA* gene.
- Typing of SCCmec gene

Ethical clearance certificate

Smt. Bangaramma Sajjan Campus, Sholapur Road, Bijapur – 586103, Karnataka, India. University: Phone: +918352-262770, Fax: +918352-263303, Website: www.bldeuniversity.org, E-mail: office@bldeuniversity.org College: Phone: +918352-262770, Fax: +918352-263019, Website: www.bldea.org, E-mail: bmpmc1@yahoo.co.in

Articles published:

Vol 8, Issue 2, 2015

BBN - 0974-2441 Research Article

SCREENING OF STAPHYLOCOCCUS AUREUS AND COAGULASE NEGATIVE STAPHYLOCOCCUS FROM URINE SAMPLES

METRI BASAVARAJ C*, JYOTHI P

Department of Microbiology, BLDEU's Shri B M Patil Medical College, Bijapur, Karnataka, India. Email: hasacm@rediffmail.com

Received: 02 September 2014, Revised and Accepted: 25 October 2014

ABSTRACT

Objectives: The resistance profile of isolated Gran-positive organisms such as Shaphylococcus surress were left undone despite the increasing prevalent rate of this seganism in urinary tract infections (UTI) and its role in antibiotic resistance. Therefore, the current study was carried out to identify the antibiotic resistance pattern of the 5 aureus and coagulase negative Staphylococcus (CONS).

Methods: The study was carried out in the Department of Microhiology, Shri BM Patil Medical College, Bijapar, India over a period of 3 years from January 2010 to December 2012. Unine specimens from both outpatients and inpatients of our hospital having one or more urinary symptoms, such as huming during micturition, fever, pyuria, frequency of urine, dysuria, hematuria, flank pain, suprapable disconfort, etc., were processed.

Besults: Out of total staphylococcal isolates, 55% were 5. surves and 45% were CONS. Out of total isolates of Staphylococci 60.5% were from inpatient department and 30.5% were from out patient department. Linexolid (0.52%) propercilin/tacobactam (24.3%) coloperazone/solbactam (20.6%) showed lumit resistance against 5. surves and penicillin-6 (00.5%), clowacilin (71.4%), ciproflocacin (71.4%) showed highest resistance against 5 surves. CONS isolates showed similar resistance profile, but when compared with 5. surves, CONS were more sensitive to the all antibiotic used.

Conclusion: This study observed that Staphylococcus is the one of the must common etiologic agent of UTI in our hospital. The drug of chnice that could be considered in the treatment of UTI caused by staphylococcus in our setting are lineardid, pepersillin/taxobactam, cefopenazone/salbactan. Staphylococcus was found to be highly resistant to penicillin-G, clonacillin, and ciproflonacin.

Keywords: Antimicrobial resistance, Drug resistance, Stephylococcus eurour, Coagulase negative staphylococcus, Urinary tract infactions.

INTRODUCTION

Stophylococcus auveus is one of the most important pathogens affecting humans, has acquired resistance to various ambletics and is a leading cause of humpital and community acquired infections [1]. S. carena, which was first isolated by Alexinder Ogstos in 1800a, is known to cause post-operative wound infections. The mortality rate of the individuals, due to S. currun, infections was around 80% before the introduction of periodillis. The first periodillis resistant S. sureaw was isolated from a clinical environment in 1942. The problem of periodillis resistance was later circumvented by the introduction of methicillis. In 1964, methicillis resistant S. survay made an appearance, probably due to the acquisition of the meck gene, feaving summycin as the drug of last resort to trust in [2].

litinary tract infections (UTI) are one of the most common bacterial infections in humans both in the community and hospital setting [3]. UTI is a heterogeneous disease, which can be divided into several types of infection, such as acute, uncomplicated bacterial pyelorephritis, complicated UTI, recurrent cyclitis and asymptomatic bacteriaria. The urinary tract is generally a hostile environment for hacteria and except for the distal urethra it is usually sterile. Infection results when the bacteria strulence factor overcomes the numerous host defense mechanism [4].

The common pathogens of UTI include enteric Gram-negative bacteria with Eacherichia cali being the most predominant, coagalase negative Staphylococcus nurraphytics (CONS) accounting for 10–20% while Prateus mirabile, Kleizeinla and Entersosoccus account for <5%. However, recent studies have reported the increasing prevalence of 5 azeroa in UTIs [4–9]. This changing spectrum of microorganisms involved in UTI necessitates the need for continuous and regular antimicrobial resistance surveillance in these organisms in order to guide empirical thorapy in UTI. Most studies on UTI have concentrated on the antimicrobial resistance profile of Genm-negative entershacteria, especially E colwhich is knewn to be the most prevalent UTI causative organisms while the resistance profile of isolated Geam-positive organisms while the resistance profile of isolated Geam-positive organisms such as S survex, were left undone despite the increasing prevalent rate of this organism in UTI and its rule in antibiotic resistance [9]. Therefore, the current study was done to identify the antibiotic resistance pattern of the S-surves and CONS.

METHODS

The study was carried out in the Department of Microbiology over a period of 3 years from January 2010 to December 2012.

Ethical clearance and consent

As it was a retrospective study, ethical clearance and consent were not obtained.

Patient evaluation

Urine specimens from both outpatients and inpatients of our hospital having one or more urinary symptems, such as burning during micturition, ferer, pyurin, frequency of urine, dyiuria, hematuria, flank pain, suprapulsic disconfect, etc., were processed.

Inclusion criterion

Urine samples which yielded Staphylocaccus were included in the study.

Master Chart

																				Cefopera			Amoxici				
										oxacilin	cefoxitin								Pepercill	zone			llin/clav				
										disc	disc	PCR mec	Penicilli	Eythrom	Tetracyc	Cenhale	Cloxacil	Pefloxac	in/tazoha	/salbacta	Gentamy	Ciproflo	ulanic	Cefiroxi	Azithrom		Line
SI. No	NAME AGE	WAR) SEX	0/1	DATE	DOC	DEPT	HISTORY		diffusion	diffusion	A dene	n-G	vcin	line	xin	lin	in	ctam	1	cin	xacin	acid	me	vcin		
DI. INU												J		1							UII					Vancomyc	-
	1 BHMANN	38 IPD	MALE	1-12857		RAMAKA		LEG ABCES			S				-	S		R	•	S	1	R	_	•			S
	2 BHMANN	19 IPD	MALE	1-12826		TEJASW		HAND ABC	8		S			-	S	S		•	-		S	S		•		-	S
	3 POOJA	16 OPD	FEMALE	0-156364	13-Jun	K S PATI	LSUR		ę	5	S	N	R	S	S	R	R	R	S	S	S	R	R	S	R	R	S
	4 BORAMN	30 IPD	FEMALE	1-12999	14 Jun	BBMET	A SUR	ARM CELLU	J F	R	R	Y	R	S	S	S	R		S	S	S	R	I	S	S	S	S
	5 AISHWAR	5 IPD	FEMALE	1-13177	16-Jun	S WPAT	1 SUR	THIGH ABC	ESS S	S	S	N	R	S	S	S	R	R	S	S	S	R	S	S	R	S	S
	6 BANDENN	45 IPD	MALE	1-13130	16. lun	TEJASW		BERGER DI		p	R	Ŷ	R	R	R	R	R	R	S	S	R	R	R	R	S	S	S
																			-	-					-		-
	7 SANGAWI	50 IPD	FEMALE	I-13441	19-Jun	RAMAKA	NSUR	GLUTIAL AE	BSUESS F	K	R	Ŷ	R	R	S	S	R	R	S	S	R	R	R	S	R	S	S
	8 NAGARAT	45 OPD	FEMALE	0-167086	20-Jun	VENKAT	e ent	CSOM	Ş	S	R	Y	R	S	S	S	R	R	S	S	S	R	R	S	S	S	S
	9 VANMALA	52 IPD	FEMALE	I-11402	21-Jun	METAN	SUR	GLUTIAL AE	BSCESS S	S	S	N	R	S	S	R	R	R	S	S	1	R	R	S	S	S	S
	0 DUNDAPF	46 IPD	MALE	I-13770	22 lun	RASHM	SI IP	FOOT ABCE	ESS S	ç	S	N	R	S	S	S	R	R	S	S	S	R	R	S	S	S	S
											•					-											
	1 BHIMROA	76 IPD	MALE	1-13934	ZƏ-JUN	TEJASW	II SUK	GLUTIAL AE			R				•	R				S	R	R		•			S
	2 BIOGANGI 9D	IPD	MALE	1-13930	25-Jun	KALYAN	S SUR	ABCES NEO	CK F	R	S	N	R	S	S	S	R	R	S	S	S	R	S	S	R	S	S
	3 SHIVANAY	50 IPD	MALE	1-14033	30-Jun	VIJAYA	SUR	ABCESS L	EFTARMS	S	S	N	R	R	S	S	R	R	S	R	S	R	R	S	R	R	S
	4 SANGAM	45 IPD	FEMALE	1-14347	30. lun	VIJAYA	SI IP	GLUTIAL AE		ç	S	N	R	R	S	S	R	R	S	S	S	R	S	S	R	S	S
															•	•			•	•	•		-				
	5 SAVITHA	24 IPD	FEMALE	I-14672	4-Ju	JAJU	OBG	UTI	ę		S				S		-			S	S	R		-			S
	6 DYMAWW	40 IPD	FEMALE	I-14464	3-Jul	MSBIR	A MED	RVD	ę	S	S	Ν	R	S	S	S	R	R	S	S	R	R	R	S	S	S	S
ľ	7 SANGAPP	42 IPD	MALE	I-14653	5-Jul	METAN	SUR	ABCESS	5	S	S	N	R	R	R	S	R	R	S	S	R	R	R	S	S	S	S
	8 KRISHNAF	75 OPD	MALE	0-182547	5-Jul	OBP	ORTHO	INFECTED	5	S	R	Y	R	S	S	S	R	R	S	S	S	R	S	S	S	S	S
	9 YELLAPPI	65 IPD	MALE	I-14143	8-Jul	TEJASW	II OBG	LIVER ABC	ESS S	S	S	N	R	S	S	S	R	R	S	S	S	R	S	S	S	S	S
1	0 SURESH	49 IPD	MALE	I-15241	15-Jul	GIRISH	SUR	TOE ULCER	2 5	S	S	N	R	R	S	S	R	R	S	S	S	R	R	S	R	S	S
1	1 ASHOK	48 IPD	MALE	1-15694	21-Jul	BASAVA	F SUR	PERINAL A	ABCESS	S	S	N	R	S	S	S	R	R	S	S	S	R	S	S	S	S	S
1	2 JAYASHR	25 OPD	FEMALE	0-199619	22-Jul	ARUNA	OBG	WOUND IN	F S	S	S	N	R	S	S	S	R	R	S	S	S	R	S	S	S	S	S
1	3 MADHU	30 IPD	MALE	1-16038	21-Jul	VIJAYA	SUR	ABCSSFAC	E S	S	S	N	R	S	S	S	R	R	S	S	S	R	S	S	R	S	S
1	4 MAULASA	12 IPD	MALE	1-15895	22-Jul	KOTENN	A SUR	ILIAC ABCE	ESS S	S	S	N	R	S	S	S	R	S	S	S	S	R	I	S	S	S	S
1	5 RAMAPPA	64 IPD	MALE	1-16052	21-Ju	NHKUL	(ENT	ORAL ULCE	ER F	R	R	Y	R	S	S	S	R	R	S	S	S	R	R	S	S	R	S
1	6 GURAPPA	28 IPD	MALE	1-16034		TEJASW		RTA	5		S			S	S	S	R	S	S	S	S	S		S	S	S	S
	7 SHASHIKI	5 IPD	MALE	1-16122		NHKUL		EAR ABCES	SS S	S	S	-			S	S	R			S	S	R	S	S			S
	18 IRAPPA	49 IPD	MALE	1-16664		S B PAT		CALCULI		S	S	N	R	S	S	S	R	R	S	S	S	R					S
	9 NISHA	2 IPD	FEMALE	1-16477		RAVI PA		ABCESS N	ECK S	S	S					S				S	S	R	_				S
	IO PUTTAPPI	36 IPD	MALE	1-16452		NAYAK		PAIN KNEE			S			-	-	S					S				•		S
	11 SHNTABA	45 IPD	FEMALE	1-16684		METAN		PERIANAL			S				S	S				S	R	R	_				S
	12 ASHOK	27 OPD	MALE	0-210697		SANTOS		SWELLING			S				S	S		R	-	S	S	R	-	•	•		S
	IS NINGAPP/	75 IPD	WALE	1-17023		SNKAIF		ABCESS LE			S				S	S		S		S	S	R					S
	A BIO SUN(2D	IPD	FEMALE	1-16781		BABUN		SUBMANDI		•	S				-	S				-	S		•	•	•		S
	IS CHIDANAI	60 IPD	MALE	1-17264		A C INAN		PAMPIGUS			S				-	S					S	R					S
	16 SABANNA	54 OPD	WALE	0-207807		TEJASW		FISTULA IN			S				S	S				S	S	R	_				S
	7 BASANGC	55 IPD	WALE	1-16141		TEJASW		ABCESS			R			-	-	R		R	-	S	R	R		•	•		S
	IS NAGAYYA	20 OPD	MALE	0-211275		SANTOS		FISTULA IN		•	R			R	S	S		R		S	R	R	•				S
	9 DUNDAW	62 IPD	FEMALE	I-18070		A C INAI		BULLOUS P			S			-		S	-	-	-	-	S	R	-		-		S
	IO DEEPA	25 OPD	FEMALE	0-208092	-	METAN		DULLUUD	ANFIGU		R										R			R			S
	II FAZAL	23 UPD 62 IPD	MALE	I-18339		LS PATI		lrti	5							s S		R			S	R	_				s S
	11 Fazal 12 Rajashr	62 IPD 26 OPD	FEMALE	0-231035		KARADI		SINUSITIS			S R					S R					s R						s S
	12 kajashk 13 VANI	26 UPD 24 IPD	FEMALE		•	MB PAT		BREST ABC																			
				1-18725							S										S						S
	4 PAIGAMBI	25 IPD	MALE	1-17246		SANTOS		FOOTULCE			S										S						S
	IS SAHEBGC	60 IPD	MALE	1-19088	27-Aug		SUR	CELLULITIS			S					S					S	S					S
	16 VIRUPAKS	55 IPD	MALE	19180		GUGGAR		SEPTAL AB			R										S	R					S
	7 SWETA	6 OPD	FEMALE	0-241301		i APARNA		ACUTE PAP			S					S					S						S
	18 VAISHNAV	2 IPD	FEMALE			NYAMW		SUBMANDI			R										S						S
	19 AJAY	23 IPD	MALE	I-19771		TEJASW		CELLULITIS			S																S S
ł	io Mohan	24 OPD	MALE	244422	5-Sep	NAYAK	ORTHO	OSTEOMYE	ELITIS S	S	S	N	R	S	S	S	R	R	S	S	S	R	R	S	S	S	

51 SOUMYA	7 IPD	FEMALE	-19666	5-Seo TEJASWII SUR	GLUTIAL ABSCESS	S	S	V R	R	S	S F	R R	S	S	S	R	R	S	S	S	S
52 PRAJWAL	2 OPD	MALE	0-245783	5-Seo KARADI ENT	NASION ABSCESS	S	S	V R	R	 S	S F	R R	S	S	S	S	S	S	S	S	S
53 KAVITHA	40 IPD	FEMALE	19920	6-Sep MANPREE OBG		•	S		S	R	S F		S	R	S	R	S	S	S	S	S
54 JYOTH	30 OPD	FEMALE		18-Sep GURURAJ SURGER		R	R	(R	R	S	RR		S	R	R	R	R	R	S	S	S
55 BANDAW	70 IPD	FEMALE	1-20289	9-Seo DEEPAK MED	PYOPNEUMOTHORA		S I		S	 S	S F		R	S	R	R	S	R	R	S	S
56 KASHBAI	70 IPD	FEWALE	1-20200	16-Sep SHOBHA OBG		•	R		R	 S	S R		S	S	S	R	R	S	R	S	S
57 PRAKASH	18 IPD	MALE	1-20599		Y GLUTIAL ABSCESS		R		S	S	RR		S	R	R	R	R	R	S	S	S
58 MALLAYY	53 IPD	MALE	1-20333	16-Sep BADIGER MED			R		S	S	RR		S	R	R	R	R	R	S	S	S
59 SHARAN	10 OPD	MALE	0-260155	19-Sed MALIPATI ENT			S I		R	 S	S F		S	R	R	R	R	S	S	R	R
60 SEETA	40 OPD	FEMALE	0-207568	19-Sep TEJASWI SURGER		•	S		R	S	S F		S	S	S	R	R	S	S	S	S
61 SHIVAJI K	35 IPD	MALE	1-21471	23-Sep DESHMUK SKIN	SKIN LESIONS ON S		R		R	R	RR		S	S	S	R	R	R	R	R	R
62 SHEETHA	38 IPD	FEMALE	1-214/1	5-Oct A C INAM SKIN			n S		S	n S	n P		S	R	S	R	R	S	S	S	S
63 SADANA	30 IFD 14 IPD	FEMALE	1-22943	10-Oct GOBBUR PED		•	S		R	 S	S F		S	R	R	R	S	R	R	S	S
64 SANTOSH	24 OPD	MALE	1-22345			•	•			 •	s s		S		S			r S		R	S
				11-Oct ORTHO		•	•		R	S	• •			R		R	R	-	R		•
65 PRAJWAL	7 OPD	MALE	0-300791	31-Oct JARIWALA	POSTURETHRAL VA		R		S	S	S R		S	S	S	S	S	S	S	R	R
66 BHIMAPP	75 IPD	MALE	1-24666	11-Nov KOTENNA SURGER		•	S I		R	S	R S		S	S	S	S	S	S	S	S	S
67 SUREKHA	30 IPD	FEMALE	1-24585	11-Nov TEJASWII SURGER		•	S I		R	 S	S R		S	S	R	S	S	S	R	S	S
68 TABASUN	21 IPD	FEMALE	1-25927	14-Nov M S BIRAI MED	DIABETIC KETOACI		S I		S	S	R S		S	S	S	S	R	S	S	R	S
69 SUGUNA I	75 IPD	FEMALE	1-25869	14-Nov TEJASWII SURGER			R		R	R	R F		S	S	R	S	S	S	R	S	S
70 SHIVANAI	60 IPD	MALE	1-22429	7-Nov M B PATIL SURGER		•	S I		S	S	R S		S	S	S	S	R	R	S	S	S
71 SUCHTR/	8 OPD	FEMALE	0-320581	21-Nov MALIPATI ENT			R		R	 S	S S		R	S	R	S	S	S	S	S	S
72 NALLIKARJUN	80 IPD	MALE	1-27266	26-Nov WARAD MED		•	S		S	S	R S	,	R	S	S	R	R	S	S	R	R
73 SHIVALIN	49 IPD	MALE	1-27883	1-Dec VIJAYA SUR		S	S I	N R	S	 S	S F	R R	S	S	S	R	R	S	S	S	S
74 SIDDAPP.	55 IPD	MALE	1-28107	2-Dec KOTENNA SUR	NECROTISING FACI	S	S I	V R	S	S	S S	3	S	S	R	S	R	S	S	S	S
75 SHARANA	55 IPD	MALE	1-28142	6-Dec KARADI ENT	PINNA ABSCESS	R	R	r R	R	S	R R	R R	S	S	R	R	R	S	S	S	S
76 SIKANDAI	28 IPD	MALE	1-28420	6-Dec HEMANTH SUR		R	R	í R	R	S	R R	R R	S	S	R	R	R	R	R	S	S
77 SADASHI	40 IPD	MALE	1-28257	6-Dec HONNUTA MED	BREATHLESSNESS	R	R	í R	S	S	S S	S S	S	S	S	I	R	S	S	S	S
78 ROHNI	28 OPD	FEMALE	0-339838	6-Dec KARADI ENT	CSOM	R	R	(R	R	S	S R	R S	S	S	R	R	R	S	S	S	S
79 MANCHAF	45 IPD	MALE	1-25086	14-Dec METAN SURGER	Y NECROTISING FACI	R	R	r R	R		R R	R R	S	R	R	R	S	R	R	S	S
80 SHRIDEVI	15 OPD	FEMALE	0-338465	17-Dec LATHADE ENT	ASOM	S	S I	N R	R	R	R R	R S	S	S	R	I	I	R	R	S	S
81 NAGESH	80 OPD	MALE	0-22986	17-Dec METAN SURGER	Y BLEEDING ULCER	S	S I	N R	R	S	S S	3	S	S	S	R	I	S	S	S	S
82 SANGEET	31 OPD	FENALE	0-353374	19-Dec MUDANUF OBG	ABSCESS	S	S I	N R	R	R	S F	R R	S	S	S	R	S	S	R	S	S
83 PARVATI	45 OPD	FEMALE	0-355089	21-Dec LATHADE ENT	SEPTAL ABSCESS	S	S I	N R	R	S	1 8	S R	S	S	S	R	R	I	R	S	S
84 NRANJAN	2 IPD	MALE	1-30241	25-Dec TEJASWI SURGER	Y SUPPURATIVE LYM	S	S I	N R	S	S	S R	R R	S	S	S	R	S	S	S	S	S
85 SUJALAB	70 IPD	FENALE	-30825	31-Dec S M BIRAI MED	ABSCESS	S	S	R	R	S	S F	S S	S	S	S	R	S	S	R	S	S
86 AMIRUDD	25 IPD	MALE	1-30834	1-Jan INAMDAR SKIN	CELLULITIS	R	R	(R	S	 S	S R	{ S	S	S	S	R	R	R	S	S	S
87 KOLKAR	35 OPD	MALE	0-7723	6-Jan KARADI ENT			S		R	S	S F		S	S	R	R	R	S	R	S	S
88 LALITA	51 OPD	FEMALE	0-580	7-Jan N H KULK ENT			R		R	S	RR		S	S	S	R	R	S	R	S	S
89 MALLAPP	50 IPD	MALE	1.1067	12-Jan VIJAYA SUR	NACROTIZING FASC		S I		R	 S	S F		S	S	S	R	R	S	R	S	S
90 BASAVAR	13 OPD	MALE	0-14857	13-Jan HARIDAS ORTHO			R		R	 S	RI	R	S	S	S	S	R	R	S	R	R
91 SAVITHRI	65 IPD	FEMALE	1.1217	15-Jan TEJASWII SUR			S I		R	S	RR		S	S	R	R	R	R	R	S	S
92 KASTURB	55 OPD	FEWALE	0-15678	20-Jan BASAVAR SURGER			S I		R	S	s F		S	S	S	S	S	S	R	S	S
93 LAKKAWI	20 IPD	FEWALE	1.1327		PPH SEVERE ANEM		S		R	S	S F		S	S	R	S	R	1	R	S	S
94 MALLAPP	50 IPD	MALE	1027	1-Feb VIJAYA SURGER			S I		R	 S	S F		S	R	S	S	S	S	S	S	S
95 RAVI	1.5 IPD	MALE	1-3789	11-Feb KIATA SUKGEN	SUBMANDIBULAR A		S I		R	S S			S	R	R	R	R	S	S	S	S
96 RACHANN		MALE											S		_	R	_	_	_	s R	S
	64 IPD	FEMALE	1-3898	11-Feb INAMDAR SKIN	FEVER WITH CHILLS				R	R				S	R		R	S	R	ĸ	
97 PREETI	24 IPD		1-3788	13-Feb JAYASHR OBG			S I			S	R R		S	S	S	R	R	S	S		S
98 LAXMAN	40 IPD	MALE	1-5221	25-Feb HONNUTA MED		S	S	R	S	 S	R R	R R	S	S	S	R	R	S	R	S	S

99 RAVI	29 IPD	MALE	1-8967	31-Mar HEMANTH SUR	PERIANAL ABCESS R	R	Y	R	R	S	R	R	S	S	S	S	S	S	S	R	S
100 GEETA	24 IPD	FEMALE	1-8825	29-Mar NEELAMN OBG	S	S	N	R	S	S	S	R	S	R	R	R	S	S	S	S	S
101 KALLAPP/	65 IPD	MALE	1-8844	30-Mar VIJAYA SUR	R	R	Y	R	R	S	R	R	R	S	R	R	R	S	R	S	S
102 SHIVARA,	25 IPD	MALE	1-8841	30-Mar VIJAYA SUR	PERIANAL ABCESS R	R	Y	R	S	S	R	R	R	R	R	R	S	S	S	R	S
103 VIJAY	30 OPD	MALE	0-102465	2-Apr KARADI ENT	CSOM S	S	N	R	R	S	S	R	S	R	R	S	R	R	S	R	S
104 BASAPPA	56 IPD	MALE	1-9084	2-Apr TEJASWII SUR	ABCESS GREAT TO R	R	Y	R	S	S	R	R	S	R	S	S	R	R	S	S	S
105 PRAKASH	55 IPD	MALE	I-9011	2-Apr S B PATILURO	SCROTAL ABCESS R	R	Y	R	R	S	R	R	S	R	S	S	R	R	S	R	S
106 VITHOB	55 IPD	MALE	1-9407	4-Apr BASAVAR SUR	DM WITH ABCESS S	S	N	R	R	S	R	R	S	S	S	S	S	R	S	S	S
107 ANNASAA	46 IPD	MALE	1-9382	4-Apr BASAVAR SUR	DM WITH CARBUNC S	R	Y	R	R	S	S	R	R	S	S	S	S	R	S	S	S
108 BASAVAR	20 OPD	MALE	0-103826	4-Apr MB PATIL SUR	AXILA ABCESS S	R	Y	R	S	S	R	R	S	R	S	R	R	R	R	S	S
109 MARUTI	70 IPD	MALE	1-9648	7-Apr RAVI PAT SUR	FOURNERS GANGR R	R	Y	R	R	S	S	R	S	S	S	R	R	R	R	R	S
110 SAVITRI	25 OPD	FEMALE	0-127994	27-Apr NH KULK/ENT	CSOM R	R	Y	S	R	S	S	S	R	S	S	R	R	S	S	R	S
111 TANUJA	12 OPD	FEMALE	0-127947	29-Apr NH KULK/ ENT	CSOM S	S	N	S	R	S	S	R	R	S	S	S	R	S	S	S	S
112 BASAVAR	52 IPD	MALE	1-11926	30-Apr HEMANTH SUR	R	R	Ŷ	R	R	R	R	R	R	R	R	S	R	R	R	R	S
113 CHANDRA	57 IPD	MALE	1-12548	7-May VIKRAM SUR	R	R	Ŷ	R	S	S	S	S	R	S	S	S	R	R	S	S	S
114 RUKMIN	75 IPD	FEMALE	1-12505	7-May AJIT SUR	CELLULITIS S	R	Ŷ	R	S	S	R	S	R	S	S	S	S	S	S	S	S
115 SURESH	40 IPD	MALE	1-13603	20-May APARNA FSKIN	DERMATITIS R	R	Ŷ	R	R	S	R	S	R	S	S	S	R	R	S	S	S
116 KENCHAV	55 IPD	FEWALE	-14321	25-May MB PATIL SUR	GLUTIAL ABSCESS R	R	Ŷ	S	R		R	S	S	S	S	S	R	R	S	R	S
117 PRABHA	24 IPD	FEMALE	1-14469	27-May SUR	PERIANAL ABCESS R	R	Ŷ	R	S	S	R	R	R	S	S	S	R	R	R	R	S
118 SIDDARAI	18 IPD	MALE	1-13915	28-May SB PATIL URO	S	S	N	R	S	S	S	S	R	S	S	S	1	1	S	R	S
119 NIVBAWN	52 IPD	MALE	-15336	8-Jun SUR	PAROTID ABSESS S	R	Ŷ	R	R	S	S	S	R	S	S	R	R	S	S	R	S
120 RAJSHEK	28 IPD	MALE	1-14904	9-Jun NAYAK ORTHO	RTA S	R	Ŷ	R	R	S	R	S	R	R	R	R	R	R	R	R	S
121 CHANDRA	57 IPD	MALE	1-15653	8-Jun VIJAYA SUR	FOURNERS GANGE S	S	N	R	R	S	R	R	R	1	1	R	R	R	R	R	R
122 SANJU	41 OPD	MALE	0-176098	12-Jun NAYAK ORTHO	REDIAL FRACTURE S	S	N	S	S	S	S	R	S	S	S	S	S	S	S	S	S
123 DESHPAN	38 OPD	MALE	0-176134	12-Jun METAN SUR	ABCESS THIGH S	S	N	R	S	S	S	R	S	S	S	S	S	S	S	S	S
124 ARTH	20 OPD	FEMALE	0-154868	11-Jun HEMANTH SUR	THIGH ABCESS R	R	Ŷ	R	1	S	R	R	R	I	R	S	R	R	S	1	S
125 PRAVEEN	40 OPD	MALE	0-173858	11-Jun NH KULK/ENT	CSOM R	R	Ŷ	R	S	S	R	R	R	R	R	S	R	R	R	R	S
126 BASAVVA	58 IPD	FEMALE	1-15462	13-Jun SUR	LL ABCESS R	R	Y	R	S	S	R	R	R	S	I	S	R	S	S	n I	S
120 DHURI VA	60 IPD	MALE	1-16346	15-Jun SANTOSH MED	KOCH S	S	N	R	I	S	S	R	R	S	S	S	R	S	S	R	S
128 PRAVEEN	6 IPD	MALE	1-16334	15-Jun VIJAYA SUR	RT ARM ABCESS R	R	γ	R	1	S	R	R	R	R	R	S	R	R	J	R	S
129 SIDDAPP	12 IPD	MALE	1-15841	20-Jun PATTANSIORTHO	ULNA FRA R	R	Y	R	R	S	R	R	R	S	R	S	S	R	R	R	S
130 SHANKAR	42 OPD	MALE	0-184228	20-Jun TEJASWIISUR	OLIVATIVA R	R	Y	R	R	S	R	R	R	S	R	R	S	R	S	R	S
131 KAVERI	42 OFD	FEMALE	1-17257	24-Jun NAYAK ORTHO	ABCESS R	R	Y	R	R	S	R	S	R	S	S	S	R	R	R	S	S
132 GURULIN	78 IPD	MALE	1-17015	22-Jun KOTENNA SUR	ABCESS R	R	Y	R	S	S	S	S	S	S	S	R	S	R	S	S	S
133 SHASHKA	40 IPD	FEMALE	1-17199	25-Jun TEJASWIISUR	ABCESS R	R	Y	R	٥ ١	S	R	R	S	R	R	r S	S	R	R	0	S
133 STHOTIN 134 VITTAL	40 IPD 58 IPD	MALE		25-JUN TEJASWI SUR 25-JUN TEJASWI SUR	ABUESS R CELLULITIS R	R	I Y	R	l D	s S	R	R	s S	R	R	s R	o R	R	R	R	S
135 SRISHAIL	30 IPD 45 OPD	MALE	1-17224	26-Jun RAN BEB ENT		S	N	R	R	S	S	R	-	R		r S	R	R	S	r S	S
136 CHIDANAI	40 OPD 50 IPD		0-191795		ASOM S PV R	R	Ν Υ	R	R	s S	o R	R	R R	R	R R	s S	R	R	S R	о R	S
		MALE	1-17059	1-JUI INAMDAR SKIN			1			-						•					
137 SUHASIN	28 IPD	FEMALE	1-18024	2-Jul APARNA FSKIN	IMPETIGO R	R	Y	R	R	S	S	S	R	S	S	S	S	S	S	R	S
138 MADHAV	60 IPD	MALE	1-18026	4-Jul SB PATIL URO	BPH R	R	Ŷ	R	R	S	R	R	R	S	S	S	R	R	R	R	S
139 SUBHASH	64 IPD	MALE	1-1335	10-Jul	R	R	Y	S	S	S	R	R	R	S	S	S	R	R	S	R	S
140 SHIVANN	23 OPD	MALE	0-208272	11-Jul BASAVAR SUR	ABCESS S	R	Y	R	S	S	S	R	R	S	S	S	S	R	S	R	S
141 RASHMI	30 OPD	FEMALE	0-207604	10-Jul KUNAL ENT	TONSILITIS R	R	Y	R	R	R	S	R	R	S	S	S	R	S	S	S	S
142 SANJAPP	58 IPD	MALE	1-19434	15-JU KUNDARAURO	STRICTURE URETHER	R	Y	R	R	S	R	S	R	S	S	S	R	R	R	R	S
143 KHADIRAI	68 IPD	MALE	1-19480	15-Jul KOTENNA SUR	PERIANAL ABCESS R	R	ľ	R		S	R	S	R	S	S	R	S	R	S	S	R
144 ARJUN	40 IPD	MALE	1-19300	16-Jul HARIDAS SUR	R	R	Y	R	R	R	S	S	R	S	S	R	R	R	S	S	S
145 RUKMN	78 IPD	FEMALE	1-214703	17-JULMETAN SUR	LEGULCER R	R	Ý	R	R	S	R	R	S	R	S	R	S	S	R	R	S
146 KASHRAI	28 IPD	MALE	1-18535	17-Jul Kotenna Sur	BURNS S	S	N	R	R	S	R	R	S	S	R	S	S	R	R	R	S
147 GAVAN	50 IPD	MALE	1-20604	26-Jul KOTENNA SUR	CELLULITIS R	R	Y	S	S	S	S	R	S	S	S	R	S	S	S	S	S
148 YASMNE	11 IPD	FEMALE	1-20127	24-Jul TEJASWIISYR	SWELLING INNECK R	R	Y	S	R	S	S	R	R	S	S	S	R	S	R	R	R
149 MAHADE\	63 OPD	MALE	0-222845	24-Jul APARNA FSKIN	R	R	Ŷ	R	S	S	S	S	R	S	S	S	R	R	S	R	S
150 SONABAI	65 IPD	FEMALE	1-20071	25-Jul MUDANUFOBG	CA CERVIX S	S	N	R	R	R	R	R	R	S	R	S	R	R	S	R	S

151 ADITYA	2 IPD	MALE	1-19736	27-Jul TEJASWII SUR	F	R	Y	R	R	S	R	R	R	S	R	S	R	R	S	R	S
152 SUNL	18 IPD	MALE	1-20993	30-Jul HEMANTH SUR	NACROTIZING FASC F	R	Y	R	S	S	R	R	R	S	S	S	S	R	S	R	S
153 SHIVARA.	4 OPD	NALE	0-228178	30-Jul VENKATE ENT	CSOM F	R	Y	R	S	S	S	R	R	S	S	S	S	R	S	S	S
154 DEEPAK	25 OPD	NALE	0-230441	31-Jul NH KULKA ENT	TONSILITIS S	S	N	R	R	S	S	R	R	S	S	S	S	I	S	S	S
155 HASHIRAI	65 IPD	MALE	1-19450	2-Aug KOTENNA SUR	PERIANAL ABCESS R	R	Y	R	R	S	R	R	S	S	S	S	S	R	S	S	S
156 RAJENDR	58 IPD	MALE	-21339	3-Aug RASHM	F	R	Y	S	R	S	S	R	R	S	S	S	S	S	S	S	S
157 SHIVA	25 OPD	WALE	0-23923	8-Aug KARADI ENT	CSOM S	S	N	R	R	R	S	R	R	R	S	R	R	R	S	S	S
158 SANGAPP	75 IPD	WALE	1-19090	8-Aug BADIGER MED	DIABETIC FOOT	R	Y	R	R	R	R	R	R	S	S	S	R	R	R	S	S
159 BANDEPA	76 IPD	WALE	1-21867	8-Aug SANTOSH SUR	NACROTIZING FASC S	R	Y	R	R	S	S	S	R	S	S	R	R	R	S	R	S
160 TIPPAMM	20 OPD	MALE	0-239384	•	PYONEPHROSIS R		Y	R	R	R	R	R	R	S	S	S	R	R	R	R	R
161 BHAGYAV	45 IPD	WALE	1-20863	9-Aug	FRACTURE F	R	Y	R	S	R	R	R	R	S	R	R	R	R	R	R	S
162 SUBHASH	42 IPD	WALE	1-22125	11-Aug METAN SUR	CARBUNCLE F	R	Y	R	S	S	R	S	R	S	S	S	R	R	S	R	S
163 BASAVAR	50 OPD	NALE	0-243513	12-Aug NAYAK ORTHO	5		N	R	S	S	R	S	R	S	S	R	R	R	R	R	S
164 JAYASHR	45 IPD	FENALE	1-21560	14-Aug PATTANSI ORTHO	GLUTIAL ABSCESS S		N	R	S	S	S	R	S	S	S	R	S	R	S	S	R
165 SIDDAPP/	45 IPD	MALE	1-17582	15-Aug PATTANSI ORTHO	SKIN GRAFT F		Ŷ	R	S	S	R	R	R	S	S	S	S	R	S	R	S
166 CHANRAN	70 OPD	WALE	0-248751	17-Aug	WOUND INF F		Ŷ	R	S	S	R	R	R	S	S	S	S	R	R	S	S
167 KASHIBAI	60 IPD	FENALE	1-22681	17-Aug KOTENNA SUR	ABCESS		N	R	R	S	R	R	R	S	S	R	S	R	S	R	S
168 LAXMIBAI	75 OPD	FENALE	0-249878	19-Aug NH KULKAENT	CSOM F		Ŷ	R	S	S	S	R	R	S	S	S	S	R	S	S	S
169 HANAMAN	48 OPD	MALE	0-23439	24-Aug APARNA (SKIN	ABCESS F		Ŷ	R	R	S	S	R	S	S	S	R	R	R	S	R	S
170 BASAPPA	40 OF D	MALE	0-254076	22-Aug MB PATIL SUR	SWELLING INVECK		Ŷ	R	S	S	R	S	R	S	S	S	R	R	S	R	S
171 SHANTA	22 IPD	FENALE	1-23091		BURNS F		Y	R	R	R	R	R	R	0	S	S	R	R	S	S	S
172 MEHBOOE	22 IPD 25 IPD	MALE		20-Aug BASAVAR SUR			Y	R		_	R	S	R	S	S	S	R	R	S	R	S
			1-23691	26-Aug PATTANSIORTHO	AMPUTATION R		Y		R	S					•				-	_	_
173 WALOKAF	65 OPD	MALE	0-258899	27-Aug KUNAL ENT	CSOM R			R	R	R	R	R	R	S	R	S	R	R	R	R	R
174 SANTOSH	35 IPD	FENALE	1-23847	22-Aug APARNA FSKIN	RVD F		Y	R	R	R	S	S	R	S	S	S	S	R	S	R	R
175 MEHBOOE	21 IPD	MALE	1-23844	29-Aug NAYAK ORTHO	IMPLANT REMOVAL R		Y	R	S	S	S	R	R	S	S	S	S		S	S	S
176 BAALU	60 IPD	MALE	1-23978	30-Aug METAN SUR	CELLULITIS F		Y	R	R	S	S	R	R	S	S	S	S	R	S	R	S
177 MALLIKAF	50 IPD	MALE	1-23880	30-Aug NANDI ORTHO	5.0005		N	R	R	S	S	R	S	S	S	R	S	R	S	S	S
178 ALLAPPA	75 IPD	MALE	1-23429	31-Aug INAMDAR SKIN	FURANCLE F		Y	R	S	S	S	S	S	S	S	S	S	S	S	S	S
179 GANGAM	50 IPD	FENALE	1-24236	1-Sep VIJAYA SUR	CARBUNCLE F		Y	R	S	S	S	R	R	S	S	S	R	S	S	S	R
180 RAGHAVE	32 OPD	MALE	0-267178	3-Sep LATHADE ENT	CSOM F		Y	R	R	R	R	R	R	S	S	S	R	R	S	R	S
181 HUSSAINE	22 IPD	FENALE	1-24430	2-Sep SUR	CELLULITIS F		Ŷ	R	R	S	S	S	R	S	S	S	R	R	S	S	S
182 SHASHIKI	22 OPD	FENALE	0-269984	6-Sep KARADI ENT	MASTOIDECTOMY F		Ŷ	R	R	S	S	S	R	S	S	S	R		S	S	S
183 GULABSIN	50 IPD	MALE	1-25008	8-Sep MULIMAN MED	DIABETIC FOOT		Ŷ	R	R	S	R	S	R	S	S	S	R	R	S	R	S
184 SUMNGAL	35 OPD	FENALE	0-216010	7-Sep VIJAYA SUR	8	R	Ŷ	R	R	S	R	S	S	S	S	S	R	R	R	R	S
185 ASHOK	45 IPD	MALE	1-24942	7-Sep KOTENNA SUR	PYUREA R	R	Ŷ	R	R	S	S	S	R	S	S	S	R	R	S	R	S
186 DODDAPF	48 IPD	MALE	1-25253	10-Sep MB PATIL SUR	URETERIC CALCULI S	R	Ŷ	R	S	S	S	S	R	S	S	S	R	S	S	S	S
187 PARVATI	70 IPD	MALE	1-25255	10-Sep KOTENNA SUR	ABCESS	S	N	R	R	S	R	S	R	S	S	S	R	R	S	R	S
188 PRAKASH	45 IPD	NALE	1-25267	10-Sep HEMANTH SUR	S		N	R	S	S	I	S	I	S	S	S	R	S	S	S	S
189 SHARAN	56 OPD	MALE	00274302	10-Sep HEMANTH SUR	SCROTAL ABCESS		N	S	S	S	S	S	R	S	S	S	R	S	S	S	S
190 REVANSII	50 IPD	MALE	1-25277	10-Sep HEMANTH SUR	NECROTISING FACI'R	R	Y	R	S	S	S	S	R	S	S	S	R	S	S	S	S
191 VEERESH	36 OPD	MALE	0-276319	12-Sep NH KULK/ENT	CSOM F	R R	Y	R	S	S	I	S	S	S	S	S	R		S	S	S
192 SHANTA	22 IPD	FENALE	I-23091	13-Sep MB PATIL SUR	BURNS	R	Y	R	R	R	R	R	R	S	R	S	R	R	R	R	S
193 YESH	10 OPD	MALE	0-278688	14-Sep GOBBUR PED	urti f	R R	Y	R	S	S	R	S	R	S	S	S	R	R	R	R	S
194 VEERANG	22 IPD	NALE	1-25686	14-Sep MED	PYLONEPHRITIS R		Y	R	S	S	R	S	R	S	S	S	R	R	R	R	S
195 LAXMAN	1 IPD	MALE	1-24696	16-Sep TEJASWII SUR	5		Y	R	S	S	R	S	R	R	I	S	R	R	S	S	S
196 B/O SAVIT3D	IPD	MALE	1-25676	17-Sep GOBBUR PED	8		N	R	R	R	R	R	R	S	S	S	R	R	R	R	R
197 RAMESH	34 IPD	MALE		20-Sep PATTANSI ORTHO	8		Ŷ	R	R	S		R	R	R	S	S	R	1	S	R	S
	_										_	_	1	_	R		R		_		R
	_										_	_	R	_	-	_	_	_	_		S
											_	_	_		_	_	_	_		_	S
197 RAMESH 198 VIJAY 199 BANDEPP 200 SIDDRAM	34 IPD 3 IPD 76 IPD 55 IPD	MALE MALE MALE MALE	I-25953 I-26481 I-21867 I-25899	20-Sep PATTANSI ORTHO 21-Sep NANDI ORTHO 23-Sep MB PATTL SUR 24-Sep TEJASWI SUR	ULCER F	S R	Y N Y Y	R R R S	R R R S	S S R S	S R R R	R R R R	R I R R	R S S S	_	S R S	_	I R R S	S R R S		R R

201 MAHADE\	28 IPD	WALE	1-26645	24-Sep TEJASWII SUR			R	S	N	R	R	S	R	S	R	S		R	R	S	S	S	S	S
202 GOURAM	75 IPD	FEWALE	-26835	26-Sep METAN SUR		NECROTISING FAC	ſR	S	N	R	R	S	R	S	R	S	S	R	R	R	S	R	S	S
203 BASAVAR	35 IPD	MALE	-26713	26-Seo NAYAK ORTH	HO	FRACTURE	R	S	N	R	S	S	R	S	R	S	S	S	S	R	R	S	S	S
204 AMOGH	9 IPD	MALE	1-27046	27-Seo SUR		ABCESS	R	S	Ŷ	R	R	S	R	S	R	S	S	S	S	R	S	R	S	S
205 SHIVAMM	62 IPD	FEMALE	1-27154	28-Sed APARNA FSKIN	-	CELLULITIS	R	R	Ŷ	R	R	S	R	S	S	S	S	S	S	S	S	R	S	S
206 ABIJIT	9 OPD	MALE	0-302309	5-Oct PED	-	TONSILITIS	R	R	Ŷ	R	R	S	R	S	R	S	S	S	S	R	S	R	S	S
207 AMBAWW	65 IPD	FEMALE	1-29407	23-Oct KOTENNA SUR	-	PERIANAL ABCESS		R	Ŷ	R	R	S	S	S	S	S	S	R	R	R	S	R	S	S
208 SHANTA	23 OPD	FEMALE	0-321369	24-Oct MB PATIL SUR		BURNS	R	R	Ŷ	R	R	R	R	R	R	S	S	R	R	R	R	R	S	S
209 SHAKUNT	52 IPD	FEWALE	1-29828	26-Oct VIJAYA SUR		CARBUNCLE	R	S	N	R	R	S	R	S	R	S	R	S	R	S	S	R	S	S
210 ANL	1 IPD	MALE	-	27-Dec METAN SUR	-	ABCESS	R	S	N	R	R	S	S	S	R	S	S	S	S	R	S	1	S	S
211 SIDDAPP	65 OPD	MALE		26-Dec METAN SUR			R	S	γ	R	R	S	R	S	R	S	R	S	R	R	R	S	S	S
212 SHANTAN	55 IPD	FEWALE	1-4796	26-Dec M S BIRAI MED		DM	R	R	Ŷ	R	R	S	R	S	R	S	R	S	R	R	S	R	R	S
213 BALAPPA	80 IPD	WALE	1-4716	22-Dec ANAND MED			S	R	Ŷ	R	R	S	R	R	R	R	S	R	R	R	R	R	S	S
214 POORAN	35 IPD	WALE	14/10	21-Dec MB PATIL SUR		ABCESS	S	R	Y	R	R	S	S	S	R	S	S	S	R	S	S	R	S	S
215 SANTOSH	26 IPD	WALE	-4717	24-Dec MB PATIL SUR	-	BURNS	R	R	Y	R	R	S	R	R	S	S	R	R	S	R	R	R	S	S
216 SHRISHAI	45 IPD	WALE	-4136	19-Dec VIKRAM SUR	-	ULCER	R	R	Y	R	R	S	R	S	R	S	S	S	R	I.	S	R	S	S
217 ROOPIN	21 IPD	FEMALE	14014	17-Dec RAMAKAN SUR	-	ABCESS	R	R	Y	R	S	S	R	S	R	S	S	S	n I	R	S	S	S	S
218 UDAY	26 OPD	WALE	0-36427	14-Dec VIJAYA SUR			R	R	Y	R	R	S	n I	S	R	S	S	S	S	S	S	R	S	S
219 LAXMBAI	12 IPD	FEMALE	-3592	10-Dec AKKI PED		PHERYNGITIS	S	S	N	R	R	S	R	S	R	S	R	S	R	R	R	R	S	S
219 LANIIDAI 220 SHASHKI	33 IPD	FEMALE	1-3521	11-Dec ANNI PLD	-	ABCESS	R	R	Y	R	R	S	R	S	R	S	R	S	R	R	R	S	S	S
220 STRISTIN 221 APOORVA	3 OPD	FEMALE	0-28153	29-Jan NH KULK/ENT	-	CSOM	R	R	Y	R	S	S	R	S	r S	S	S	R	R	R	S	S	S	S
221 APOURVA 222 RAJESHR	25 IPD	FEMALE	1-2432		_		ĸ	R	Y	R		S	r S	S	s S	s S	s S	r S	ĸ	Γ.	s S	S	S	s S
				25-Jan VIJAYA SUR		HIDKAADENIIS				_	S	•	3		3	-				l D				
223 VIJAY	42 IPD	MALE	1-2447	21-Jan VIJAYA SUR			S	S	N	R	R	S	1	S	l n	S	S	S	R	R	S	R	S	S
224 NEELA	22 OPD	FEMALE	0-16773	26-Jan OBG	-		S	S	N	R	S	S	S	S	R	S	S	S	R	R	S	S	S	S
225 BASAVAR	30 IPD	MALE	1-2335	24-Jan SS PATIL SUR		BEDSORE	R	R	Ŷ	R	R	S	R	R	R	R	S	S	R	R	S	R	S	S
226 PARVATI	68 IPD	FEMALE	1-622	22-Jan TEJASWII SUR			R	R	Y	R	R	S	R	S	R	R	S	S	R	R	R	S	S	S
227 REVANSI	60 IPD	MALE	1-1918	21-Jan TEJASWII SUR		DIABETIC FOOT	R	R	Ŷ	R	S	S	R	S	S	S	S	S	S	S	S	S	S	S
228 CHAMPE(68 IPD	MALE	1-1719	VIJAYA SUR	-	CELLULITIS	R	R	Y	R	R	S	R	S	R	S			R	R	S	R	S	S
229 LAXMBAI	12 IPD	FEMALE	1-5799	1-Feb GOBBUR PED		TONSILITIS	R	R	Y	R	S	S	R	S	S	R	R	S	S	R	S	S	S	S
230 LAXMBAI	22 IPD	FEMALE	1-3137	2-Jan SUR			S	R	Y	R	R	S	R	S	R	R	R	R	R	R	R	S	S	S
231 SAMEER	6 OPD	MALE	0-32601	2-Jan ENT	_	CSOM	S	R	Ŷ	R	R	S	R	S	R	R	R	S	R	R	R	R	S	S
232 FATIMA	36 IPD	FEMALE	I-3160	2-Feb KOTENNA SUR		FOOT ABCESS	S	S	N	R	S	S	S	S	R	S	S	S	R	R	R	S	R	S
233 CHANNAF	65 IPD	MALE	1-3396	4-Feb SKIN		ACTENIC RETUCUL	1	S	N	R	S	S	R	R	R	R	R	S	R	S	R	S	S	S
234 PRAJWAL	54 IPD	MALE	1-4121	11-Feb HEMANTH SUR			S	S	N	R	R	S	R	S	R	R	R	R	R	R	R	R	S	S
235 JAMES	8 IPD	MALE	1-4104	HEMANTH SUR			S	S	N	R	R	S	R	S	R	R	R	R	R	R	R	S	S	S
236 GINDAPPI	28 IPD	MALE	1-3567	17-Feb METAN SUR	_	FOURNERS GANGE	RS	S	N	R	R	R	R	R	R	R	S	R	R	R	R	R	S	S
237 SHANTAG	60 IPD	MALE	1-4528	17-Feb ORTH	HO	ABCESS	S	S	N	R	R	S	R	S	S	R	S	R	R	S	R	S	S	S
238 SACHIN	1 IPD	MALE	1-4358	14-Feb ORTH	-		S	S	N	R	R	S	R	S	S	R	R	S	R	R	R	R	S	S
239 KURSHEE	58 IPD	FEMALE	1-445	14-Feb SUR	-		S	S	N	R	R	S	R	S	R	R	R	S	R	R	R	R	S	S
240 NEELAKK	40 IPD	FEMALE	1-1481	21-Jan METAN SUR	_		S	S	N	R	S	S	S	S	R	S	S	S	S	S	S	S	S	S
241 ANAND	35 IPD	MALE	I-2019	21-Jan SUR		HAND INJURY	R	R	Y	R	R	S	R	S	R	S	S	R	R	R	S	S	S	S
242 SARASWI	68 IPD	FEMALE	l-1758	19-Jan VIJAYA SUR		DIABETIC FOOT	R	R	Y	R	S	S	S	S	R	S	S	S	R	R	S	S	S	S
243 PUNDALI¥	45 IPD	MALE	I-1672	18-Jan KOTENNA SUR		CELLULITIS	R	R	Y	R	S	R	R	S	R	S	S	S	S	R	S	S	S	S
244 ASHOK	44 OPD	MALE	0-16713	18-Jan NH KULK/ENT		ASOM	S	R	Y	R	R	S	R	S	R	S	R	S	R	R	R	R	S	S
245 VARSHA	2 IPD	FEMALE	1-869	10-Jan MB PATIL SUR		ABCESS	R	R	Y	R	S	S	R	S	R	S	R	S	R	R	S	S	S	S
246 ISMAIL	48 IPD	FEMALE	1-3957	10-Jan KUNAL ENT		NASAL ABCESS	S	R	Y	R	S	S	R	S	R	S	R	S	R	R	S	S	S	S
247 BASAMM	25 OPD	FEMALE	0-3388	8-Feb SKIN	I		R	R	Y	R	R	S	R	S	R	R	R	R	R	R	R	R	S	S
248 VIKAS	6 OPD	WALE	0.51384	18-Feb NH KULK/ENT		CSOM	R	R	Y	R	R	S	R	S	R	R	R	R	R	R	R	R	S	S
249 RAJU	12 OPD	MALE	10-51947	18-Feb MALIPATI ENT		SWELLINL	S	S	Y	R	R	S	R	S	R	R	R	R	R	R	R	R	R	S
250 SHRIDEVI	46 IPD	FEWALE	1-19415	21-Feb OBG	_		S	S	N	R	R	S	S	S	R	S	R	S	R	R	S	S	S	S

251 Shridha	44 IPD	MALE	1-5081	21-Feb SUR	CELLULITIS	S	S	N	R	R	S	S	S	R	R	R	S	R	R	R	R	S	S
252 HONNAPP	80 IPD	MALE	1-1793	20-Feb VIJAYA SUR	BEDSORE	R	R	Y	R	R	S	R	R	R	S	R	S	R	R	R	R	S	S
253 PRADIP	12 OPD	MALE	Ol·5381	24-Feb PED	EAR DISCHARGE	R	R	Y	R	S	S	R	S	R	S	R	S	R	R	S	S	S	S
254 ASHOK	38 IPD	MALE	1-5715	28-Feb		S	S	N	R	S	S	R	S	R	S	S	S	R	S	R	S	S	S
255 ARVIND	22 IPD	MALE	1-5829	1-Mar DEVARM4 MED	BEDSORE	S	S	Y	R	R	R	R	R	R	S	R	R	R	R	R	R	S	S
256 SANGEEN	30 OPD	FEMALE	0-67704	karadi ent	CSOM	S	S	N	R	R	S	R	R	R	S	S	S	R	R	R	R	S	S
257 AIYAPPA	87 IPD	MALE	1-5883	2-Mar VIJAYA SUR	DIABETIC FOOT	S	S	N	R	S	S	R	S	R	S	R	S	S	R	S	S	S	S
258 APPASAH	78 IPD	MALE				S	S	N	R	R	S	R	S	R	S	S	S	R	R	R	S	S	S
259 BHEEMAN	80 IPD	MALE	1-6611	7-Mar BADIGER MED	ULCER	S	S	N	R	R	S	R	S	R	S	R	S	R	R	R	R	S	S
260 KAVITA	20 OPD	FEMALE	0-76014	11-Mar OBG		R	R	Y	R	S	S	R	S	S	S	R	S	R	R	R	S	S	S
261 MARUTI	12 IPD	MALE	1-6870	TEJASWII SUR	CELLULITIS	R	R	Y	R	S	S	R	S	R	S	R	S	R	R	S	S	S	S
262 VALMKI	61 IPD	NALE	1-3553	14-Mar METAN SUR		R	R	Y	R	S	S	R	S	R	S	S	S	S	R	S	S	S	S
263 VALABAV	60 IPD	NALE	1-6001	7-Mar KUNDARA URO	PROST ABCESS	S	S	N	R	R	S	S	S	R	S	S	S	R	S	S	S	S	S
264 BASAVAR	60 IPD	MALE	1-6115	5-Mar SUR	ULCER	S	S	N	R	R	R	S	S	R	S	R	S	R	R	R	S	S	S
265 MOHSIN	6 IPD	NALE	1-7312	14-Mar KOTENNA SUR		S	S	N	R	S	S	R	S	R	S	R	S	R	R	S	S	S	S
266 NAMDEB	30 IPD	NALE	1-7221	14-Mar MB PATIL SUR		S	S	N	R	R	S	R	S	S	S	R	S	S	R	S	S	S	S
267 RAMESH	50 OPD	MALE	0-82404	18-Mar KARADI ENT	CSOM	S	S	N	R	R	S	R	S	R	S	S	S	R	R	S	R	S	S
268 ISMAIL	70 OPD	FEMALE	0-85895	18-Mar KARADI ENT	ABCESS	S	S	N	S	R	S	R	S	S	S	S	S	S	S	S	R	S	S
269 SAINATH	1 OPD	MALE	0-74123	19-Mar KARADI ENT	ASOM	S	S	N	R	R	S	R	S	R	R	R	R	R	R	S	R	S	S
270 SANNATI	22 IPD	FENALE	1-7780	20-Mar METAN SUR	ABCESS	S	S	N	R	S	S	R	S	R	S	R	S	R	R	R	S	R	S
271 LALITA	13 IPD	FENALE	1-8025	22-Mar SUR	CELLULTIS	S	S	N	R	R	S	R	S	S	S	R	S	R	R	S	S	S	S
272 AMOGH	4 IPD	MALE	1-8442	26-Mar ENT	ABCESS	S	S	Ŷ	R	R	S	R	S	R	S	R	R	R	S	S	S	S	S
273 BHEEMRA	52 IPD	MALE	1-8581	26-Mar TEJASWII SUR	CELLULTIS	S	S	N	R	R	S	R	R	S	S	R	S	S	R	R	S	S	S
274 SUNANDA	50 IPD	FEMALE	1-8306	26-Mar TEJASWII SUR	ABCESS	S	S	N	R	R	S	R	R	R	R	R	R	R	R	S	S	S	S
275 RAMAPPA	48 IPD	MALE	1-8687	28-Mar MB PATIL SUR	ADULUU	S	S	N	R	R	S	R	R	R	R	R	R	R	R	R	R	S	S
276 RADHKA	40 IPD 30 IPD	FEMALE	1-8559	26-Mar METAN SUR	ABCESS	S	S	N	R	R	R	S	R	R	R	S	R	S	R	R	R	S	S
277 RADHABA	60 OPD	FENALE	0-100395	1-Apr KARADI ENT	CSOM	S	S	N	R	S	S	R	S	R	S	R	S	S	R	S	S	R	S
278 RACHPPA	55 IPD	MALE	1-9402	3-Apr SKIN	UJUII	S	S	N	R	R	S	R	R	R	R	R	R	S	R	R	R	S	S
279 SHRIDEV	27 OPD	FENALE		· · · ·	ABCESS	S	S	N		S	S	R	S		_	_	r S				S		S
2/9 STRIDEVI 280 JAYASHR	27 UPD 27 IPD	FENALE	0-103863	4-Apr KOTENNA SUR	PYLONIDAL SINUS		s S	N	R R			R		R R	R S	R	o R	R	R R	R	s S	S	S
			1-9277	4-Apr SUR	PTLUNUAL SINUS		•	N		R	R		R		-	R		R		R	-	S	•
281 GAJANAN	47 IPD	MALE	1-9539	4-Apr KOTENNA SUR	100500	R	R	ľ	R	R	R	R	R	R	R	R	R	R	R	R	R	S	S
282 LALITA	40 IPD	FENALE	1-9584	5-Apr KOTENNA SUR	ABCESS	S	S	N	R	S	S	R	S	R	R	R	R	R	R	R	S	S	S
283 GURABAS	55 IPD	MALE	1-9931	8-Apr KOTENNA SUR	DIABETIC FOOT	S	S	N	R	R	S	R	S	R	S	S	S	R	S	S	R	S	S
284 ASMA	25 IPD	FENALE	1-10648	15-Apr TEJASWII SUR	ABCESS	R	R	Y	R	R	S	R	S	R	R	R	R	R	R	R	R	S	S
285 MOUSABI	45 IPD	FENALE	1-10729	16-Apr SS PATIL		S	S	Ŷ	R	R	S	R	S	R	S	R	R	R	R	R	S	S	S
286 PARVATI	39 IPD	FENALE	1-10732	16-Apr OBG		S	S	N	R	R	S	R	S	R	S	R	S	R	R	R	R	S	S
287 SAMARTH	1 IPD	MALE	1010394	12-Apr KOTENNA SUR	ABCESS	R	R	Ŷ	R	R	S	R	S	R	S	R	R	S	S	S	S	S	S
288	40 IPD	FENALE	1-10378	12-Apr KOTENNA SUR	ABCESS	S	R	Y	R	R	S	R	S	R	S	R	S	R	S	S	R	S	S
289 SUVARNA	32 IPD	FENALE	1-11042	18-Apr SUR	ABCESS	R	R	Ŷ	R	R	R	R	R	R	S	R	R	R	R	R	S	R	R
290 VIJAYA	48 IPD	FENALE	1-11539	23-Apr MB PATIL SUR		R	R	Y	R	R	S	R	S	R	S	R	S	R	R	S	R	S	S
291 SUSHILAE	55 IPD	FENALE	1-12709	2-May INAMDAR SKIN		S	S	N	R	R	S	R	S	R	S	R	R	R	R	S	S	S	S
292 ISHARABI	40 IPD	FENALE	1-12847	3-May AJIT SKIN		S	S	N	S	S	S	R	S	R	S	S	S	R	S	S	S	S	S
293 BAABUSA	32 IPD	MALE	1-12977	5-May KOTENNA SUR	NACROTIZING FAS	-	S	N	R	R	S	R	S	R	S	S	S	R	R	R	S	S	S
294 TEJA	32 IPD	MALE	1-12912	5-May KOTENNA SUR	ABCESS	S	R	Y	R	R	S	R	S	R	S	R	S	R	R	R	R	S	S
295 VASUMAT	50 IPD	FENALE	1-10786	8-May TEJASWII SUR	ABCESS	S	R	Y	R	R	S	R	S	R	S	R	S	R	S	S	R	S	S
296 GOUDAPI	65 OPD	MALE	0-12527	10-May INAMDAR SKIN	DERMATITIS	S	S	N	R	R	R	R	S	R	S	R	S	R	S	S	S	S	S
297 BALGOUDA	OPD	MALE	0-149240	12-May ORTHC		S	S	N	R	S	S	R	S	S	S	R	R	S	S	R	S	S	S
298 GEETHA	21 IPD	FENALE	1-23983	13-May HEMANTH SUR	CELLULITIS	R	R	Y	R	R	S	R	S	S	S	R	S	R	S	S	S	S	S
299 VIJAY KU	18 IPD	MALE	1-12901	7-May MS BIRAC MED	CEREBROVASCUL	AS	R	Y	R	S	S	R	S	R	S	R	S	R	R	R	S	S	S
300 GURUBAI	60 IPD	FEWALE	-13063	6-May NAMAGOL MED	KOCH	S	S	N	R	S	S	R	S	R	S	S	S	R	R	S	R	S	S

301 MONAPP/	60 IPD	MALE	1-13219	9-May		SUR		R	R	Ŷ	R	R	S	R	R	R	R	R	R	R	R	R	R	S	S
302 shivanna	50 IPD	MALE	26613	20-Aug	KOTENNA	SUR	CHYLOCOE	EL S	S	N	R	R	S	S	S	S	S	S	S	S	S	R	R	S	S
303 RAFIQUE	60 IPD	MALE	26582	16-Aug	M S BIRAI	MED	COUGH	S	S	N	R	R	S	R	R	R	S	S	S	R	R	R	R	S	S
304 KASHIBAI	35 IPD	FEWALE	26705	16-Aug	KOTENNA	SUR	ABCESS	S	S	N	R	R	S	R	R	R	R	S	S	R	R	R	R	S	S
305 ANTA	20 IPD	FEMALE	26783	18-Aug		OBG	WOUND G	APING S	S	N	R	S	S	R	S	R	S	S	S	R	R	R	S	S	S
306 KENCHAPPA	OPD	MALE	124505	17-Aug	TEJASWI	SUR	CELLULITIS	S S	S	N	R	R	S	R	S	S	S	S	S	S	R	R	R	S	S
307 GURUBAS	55 IPD	MALE	26709	16-Aug	KOTENNA	SUR	NECRO FA	SCITIS S	S	N	R	R	R	R	R	S	R	R	S	S	R	R	R	S	S
308 NAGANGC	68 IPD	MALE	25495	17-Aug	M B PATIL	SUR	FISTULA	S	S	N	R	R	R	R	R	S	R	R	R	S	R	S	R	S	S
309 PUNDAPP	55 IPD	MALE	26808	18-Aug	TEJASWI	SUR	DUODINAL	PERFOR S	S	N	R	R	S	R	R	S	S	R	S	S	R	R	R	R	R
310 GANAPAT	65 IPD	MALE	26986	19-Aug		SUR	ULCER	R	R	Ŷ	R	R	R	S	R	R	S	R	R	S	R	S	R	S	S
311 SIDDAPP	45 IPD	MALE	26988	19-Aug		SUR	GLUTIAL A	BCESS R	R	Ŷ	R	S	S	R	S	S	S	R	R	R	R	R	S	S	S
312 LAXM	60 OPD	FEWALE	26641	22-Aug	KOTENNA	SUR	DIABETIC I	FOOTULCS	S	N	R	R	R	R	R	S	R	R	R	S	R	R	R	S	S
313 ASTHA	10 OPD	FEWALE	299280	21-Aug		ENT	OTOMYCO	SIS S	S	N	S	S	S	S	S	S	S	S	S	S	S	R	S	S	S
314 MAHADEN	50 OPD	FEWALE	308615	21-Aug		OBG	M	S	S	N	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
315 MADAPPA	82 OPD	MALE	309199	21-Aug	KARADI	ENT	EAR DISCH	ARGE R	R	Ŷ	R	R	S	S	S	R	S	S	S	S	R	S	R	S	S
316 SUBHAS	65 IPD	MALE	27296	21-Aug	S B PATIL	URO	CALCULUS	R	R	Ŷ	R	R	S	R	R	R	R	S	S	R	R	R	R	S	S
317 SHASHKA	28 OPD	FEWALE	308327	20-Aug		OBG	WHTE DIS	CHARGE R	R	Ŷ	R	R	S	R	S	R	S	S	S	S	S	R	R	S	S
318 RAWESH	35 IPD	MALE	26965	20-Aug	HEWANTH	SUR		R	R	Ŷ	R	R	S	S	S	R	S	R	S	R	R	S	R	S	S
319 MANCHAF	35 IPD	MALE	20957	20-Aug		SUR	ULCER	R	R	Ŷ	R	R	S	R	S	R	R	S	S	R	R	S	R	S	S
320 MAHANAN	35 IPD	FEMALE	26994	20-Aug	HEMANTH			S	S	N	R	S	S	R	S	S	R	S	S	R	R	S	S	S	S
321 RAMA	65 OPD	MALE	307117	20-Auq		ENT	CSOM	S	R	Ŷ	R	S	S	R	S	S	S	S	S	S	S	S	S	S	S
322 SHANTA	55 OPD	FEWALE	307395	20-Aug	JAJU	OBG	VEGINAL D	NSCHARGS	S	N	R	R	S	R	R	R	S	S	S	R	R	S	R	S	S
323 KIRAN	16 IPD	MALE	19258			SUR	ULCER	S	S	N	R	S	S	R	S	R	S	S	S	R	R	S	S	S	S
324 UMESH	6 IPD	MALE	19275	4.Jul	NETAM	SUR	NECRO FA	SCITIS S	S	N	R	S	S	S	S	R	S	S	S	R	S	S	S	S	S
325 ROHT	5 IPD	MALE	20895	3.Jul		SUR	ABCESS	S	S	N	R	S	S	S	S	R	S	R	S	R	S	S	R	S	S
326 PARASHU	2 OPD	MALE	240335	3.Jul		SKIN	PSORIASIS	S S	S	N	R	R	S	S	S	R	S	S	R	R	S	S	R	S	S
327 AWA	44 OPD	FEMALE	255660	14-Jul	BIDRI RC	MED		R	R	Ŷ	R	S	S	S	S	R	S	S	R	S	S	R	S	S	S
328 SHIVAPPA	35 IPD	MALE	22200		LSPATIL			R	R	Ŷ	R	R	S	R	S	R	R	S	S	R	S	R	R	S	S
329 RACHAW	45 IPD	FEWALE	23201	20-Jul			BULLOUS F	PENPHIGIS	S	N	R	R	S	R	S	R	R	R	S	R	S	R	R	S	S
330 PRAJWAL	OPD	MALE	263173		TEJASWI		SWELLING			Ŷ	R	R	S	R	S	R	S	S	R	R	R	R	R	S	S
	25 IPD	FEWALE	23161		BARADOL		BREASTLU			Ŷ	R	R	S	R	R	R	S	S	S	S	S	S	R	S	S
332 ASHA	33 OPD	FEWALE	263396	20-Jul			VEGINAL D			Ŷ	R	S	S	S	S	S	S	S	S	S	R	S	S	S	S
333 KANAKAN	9 IPD	FEWALE	21826	16.Jul			SWELLING		-	Ŷ	R	R	S	S	S	R	S	S	S	R	S	S	R	S	S
334 SHARANA	65 IPD	FEWALE	22209	15.Jul			SWELLING			Ŷ	R	S	S	S	S	R	S	S	S	R	S	S	S	S	S
335 SHIVABAI	38 OPD	FEMALE	258340	16.Jul			DISCHARG			N	S	R	R	R	S	R	S	R	R	R	S	R	R	S	S

336 MADHU	45 IPD	MALE	22410	16-Jul M S Bl		Л	S	S	N	R	R	S	S	R	R	R	R	S	R	R	S	R	S	S
337 MEHBOOE	46 IPD	MALE	22442	16-Jul	SUR	BURN	S	S	N	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
338 SAVALCH	75 IPD	MALE	6509	27-Feb M S BI	RAIMED	COPD	S	S	N	R	R	S	S	S	R	S	R	S	R	R	R	S	R	R
339 KALLAW/	45 IPD	FEMALE	5867	26-Feb	ORTHO	BRODY'S ABSCES	SSS	S	N	R	S	S	S	S	S	S	S	S	R	S	R	S	S	S
340 KIRAN	10 OPD	MALE	78783	29-Feb	ENT	EAR DISCHARGE	S	S	N	S	R	S	S	S	R	S	S	S	R	R	R	R	R	R
341 BANUDAS	50 IPD	MALE	6660	29-Feb	SUR	DIABETIC FOOT	S	S	N	S	R	R	S	R	R	S	R	S	R	S	R	R	R	R
342 NOORJAH	70 IPD	FEMALE	6278	29-Feb	ORTHO		S	S	N	R	R	S	R	R	S	R	R	R	R	S	R	R	S	S
343 MANCKC	55 OPD	MALE	41289	11 Feb MULIN	W MED	DIABETIC FOOT	S	S	N	R	R	S	S	S	R	R	S	S	R	S	R	S	R	R
344 CHANDAN	20 IPD	MALE	4798	11-Feb MB PA	TILSUR		R	R	Y	R	R	S	S	S	R	R	S	S	R	R	S	S	R	R
345 BHEENA E	54 IPD	FEMALE	4607	10-Feb KUNDA	REURO	CALCULI	R	R	Y	R	S	R	R	R	R	R	R	R	R	R	R	R	S	S
346 MAULASA	36 OPD	WALE	75298	26-Feb VIJAY/	P.SUR	ABCESS	S	S	N	R	S	S	S	S	S	S	S	S	R	R	R	S	S	9
347 APPANNA	45 IPD	MALE	5910	25-Feb	ORTHO	FRACTURE	S	S	N	R	S	S	S	S	S	S	S	S	S	S	R	S	S	S
348 PARVATA	70 IPD	FEMALE	6385	25-Feb	SKIN	PAMPHIGUS	S	S	N	R	S	S	R	S	R	S	S	S	S	R	R	S	S	5
349 BHAVAN	11 OPD	FEMALE	72805	24-Feb	ENT	CSOM	S	S	N	R	S	S	S	S	S	S	S	S	S	R	S	S	S	S
350 MAHADEV	2 IPD	WALE	6376	25-Feb	SUR	ABCESS	S	S	N	R	S	S	R	S	R	S	R	R	R	S	R	S	S	S
351 VINAY	14 IPD	FEWALE	7246	24-Feb	ENT	CSOM	S	S	N	R	R	S	R	S	R	S	S	S	R	R	R	S	R	R
352 JAYASHR	35 IPD		4629	23-Feb	SUR	BURNS	R	R	Ŷ	R	R	S	S	R	R	R	R	S	R	S	R	R	R	F
353 JYOTH	23 OPD	FENALE	69715	20 Feb	OBG	WOUND	S	S	N	R	R	S	S	S	R	R	S	S	R	S	S	R	R	F
354 HANMANT	25 IPD	WALE	5985	22-Feb TEJAS		ABCESS	S	S	N	R	R	S	R	S	S	R	S	R	R	S	S	S	R	ŀ
355 RENUKA	30 IPD	FEMALE	6177	22-Feb	SUR	ABCESS	S	S	N	R	S	S	R	S	S	R	S	S	R	R	S	S	S	9
356 AMOGSID	52 IPD	MALE	5105	14-Feb	SUR	CELLUTIS	S	S	N	R	S	S	S	S	R	R	c	R	R	R	R	S	S	(
357 ARIFA	20 OPD	FEMALE		15-Feb	OBG	WOUND	S	S	N	R	R	R	S	S	R	R	R	S	R	S	S	S	S	(
			60895											-	-		-			-				-
358 MAHAJABI 200 CINIL	IPD	FEMALE	5294	16-Feb DAYAN		ABCESS	S	S	N	S	S	S	S	S	S	S	R	S	R	S	R	S	S	0
359 SUNL	4 IPD	MALE	4909	16-Feb KOTTE		ABCESS	R	R	ľ	R	S	S	R	R	R	S	S	R	R	R	R	R	S	0
360 MUBARAK	45 IPD	MALE	5085	16-Feb TEJAS		PERITONOTIS	S	R	Ŷ	R	S	S	S	S	R	S	S	S	R	S	R	S	S	0
361 SUCHTR/	3 IPD	FENALE	5040	13-Feb AKKI	PED	FEVER	S	R	Ŷ	R	R	S	R	R	S	S	R	S	R	S	R	R	R	F
362 BHAGIRA'	60 IPD	FEMALE	5395	16-Feb	MED		R	S	N	R	R	R	R	R	R	S	S	R	R	R	S	R	R	F
363 SANGANA	70 OPD	MALE	41587	18-Feb METAN	SUR	DIABETIC FOOT	S	S	N	R	R	S	R	S	R	S	S	S	R	R	S	S	R	ł
364 SHANKAR	72 OPD	MALE	5461	18-Feb	SUR	CELLUTIS	S	S	N	R	R	S	S	S	S	S	S	S	R	R	S	S	S	Ç
365 KRISHNA	35 IPD	MALE	5199	18-Feb	SUR	ABCESS	S	S	N	R	S	S	S	S	S	S	R	S	R	S	S	S	S	Ģ
366 DEEPA	10 IPD	FEMALE	5732	19-Feb	SKIN	HKO	S	S	N	R	R	S	S	S	S	S	S	S	R	R	S	R	S	3
367 SANATH 18M	IPD	WALE	5525	22-Feb S V PA	TIL PED	ABCESS	S	R	Ŷ	R	S	S	S	S	R	R	R	S	R	R	S	S	S	Ç
368 DHARMAN	6 IPD	MALE	4981	20-Feb	URO	TURP	R	R	Ŷ	R	R	R	R	R	R	R	R	R	R	R	S	R	R	F
369 PINTU	30 IPD	MALE	5735	20-Feb	MED	COUGH	S	S	N	R	S	R	R	R	R	S	S	S	R	S	S	R	S	(
370 SHARADA 5M	IPD	FEMALE	5932	21-Feb	PED	ENCEPHALITIS	S	S	N	R	S	S	R	R	S	R	S	S	R	S	S	S	S	(
371 SHRISHAI	30 IPD	MALE	6222	23-Feb	SUR	HYDROCOELE	R	R	Y	R	R	S	R	R	R	R	R	S	R	S	R	R	R	F
372 MUTALI	6 IPD	MALE	6326	24-Feb	SUR	ABCESS	S	R	Y	R	R	S	S	S	R	R	S	S	R	S	R	S	R	F
373 NOORSAA	47 IPD	MALE	6214	3-Feb HEMAN	-	DIABETIC FOOT	S	S	N	R	S	S	R	R	R	S	R	R	S	S	S	S	S	(
374 MEHAR	11 OPD	FEMALE	58355	13-Feb	ENT	CSOM	S	S	N	R	R	S	S	S	R	R	S	S	R	R	S	S	R	F
375 JAYASHR	38 OPD	FEMALE	59459	14-Feb	ENT	CSOM	S	S	N	R	R	S	S	S	S	R	S	S	S	R	S	S	R	ŀ
376 RATHOD	49 OPD	MALE	58095	13-Feb	SKIN	FOLLICULLITIS	S	S	N	R	R	S	R	S	R	S	S	S	R	R	S	S	R	ŀ
377 YELLAMM	1 IPD	FEMALE	4123	13-Feb AKKI	PED	TCHNF	S	S	N	R	R	S	S	S	S	R	S	S	R	R	S	S	R	ŀ
378 SHAHIN	20 IPD	FEMALE	5085	14-Feb TEJAS	-	ABCESS	S	S	N	S	R	S	S	S	S	R	S	S	R	R	S	S	R	ŀ
379 SACHN	20 IPD 25 OPD	MALE	58820	13-Feb	nd VUN	NUCCO	S	S	N	R	S	S	S	S	S	R	S	S	R	S	S	S	S	
380 RATHNU	23 OPD 80 IPD	MALE	5041	14-Feb TEJAS	NII QI ID	SWELLING	S	S	N	R	S	S	S	S	R	R	S	S	R	R	S	S	S	(
300 KATHINU 381 ALLABAK	52 IPD	MALE			SUR	JIVELLING	s S	s S	_	R	s S	_	S		-	_	s S	s S			s R	s S	s S	i (
	_		4447	10-Feb	-	CTI I DO	-	_	N	_		S	_	S	R	R	_		R	S		_		-
382 BALAWA	70 IPD	FENALE	7479	4-Mar	SUR	CELLUTIS	S	S	N	S	S	S	S	S	R	S	S	S	R	R	R	S	R	
383 YALLAPPI	50 IPD	MALE	4577 1	NARCH MULIM	WI MED	CELLUTIS	S	S	N	R	R	S	S	S	R	S	S	S	R	R	S	S	R	