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Abstract

The coronavirus disease-19 (COVID-19) pandemic is an unprecedented worldwide health crisis. COVID-19 is caused
by SARS-CoV-2, a highly infectious pathogen that is genetically similar to SARS-CoV. Similar to other recent
coronavirus outbreaks, including SARS and MERS, SARS-CoV-2 infected patients typically present with fever, dry
cough, fatigue, and lower respiratory system dysfunction, including high rates of pneumonia and acute respiratory
distress syndrome (ARDS); however, a rapidly accumulating set of clinical studies revealed atypical symptoms of
COVID-19 that involve neurological signs, including headaches, anosmia, nausea, dysgeusia, damage to respiratory
centers, and cerebral infarction. These unexpected findings may provide important clues regarding the pathological
sequela of SARS-CoV-2 infection. Moreover, no efficacious therapies or vaccines are currently available, complicating
the clinical management of COVID-19 patients and emphasizing the public health need for controlled, hypothesis-
driven experimental studies to provide a framework for therapeutic development. In this mini-review, we
summarize the current body of literature regarding the central nervous system (CNS) effects of SARS-CoV-2 and
discuss several potential targets for therapeutic development to reduce neurological consequences in COVID-19
patients.
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Introduction
A series of pneumonia cases of unknown origin emerged
in December 2019 at Wuhan, China, resembling the re-
cent severe acute respiratory syndrome coronavirus
(SARS-CoV) and Middle East respiratory syndrome cor-
onavirus (MERS-CoV) outbreaks [1–5]. Genetic sequen-
cing of samples derived from infected patients
subsequently identified the pathogen as a novel

coronavirus, initially named 2019 novel coronavirus
(2019-nCoV), with the associated disease called corona-
virus disease-19 (COVID-19) [6]. Given the genetic simi-
larity to SARS-CoV, the nomenclature of the novel
coronavirus was later revised to severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) by the Inter-
national Committee on Taxonomy of Viruses. Corona-
viruses, enveloped positive-sense RNA viruses belonging
to family Coronaviridae and the order Nidovirales, are
widely infectious across species [7]. Indeed, SARS-CoV-
2 is believed to have a zoonotic origin and is 96% genet-
ically similar to RaTG13, a previously described bat cor-
onavirus [8]. The highly contagious and virulent nature
of SARS-CoV-2 is evidenced by approximately 30,000,

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: kdhandapani@augusta.edu
†The authors Abbas Jarrahi and Meenakshi Ahluwalia contributed equally
and should be considered co-first authors.
1Department of Neurosurgery, Medical College of Georgia, Augusta
University, 1120 15th Street, 30912 Augusta, Georgia
Full list of author information is available at the end of the article

Jarrahi et al. Journal of Neuroinflammation          (2020) 17:286 
https://doi.org/10.1186/s12974-020-01957-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12974-020-01957-4&domain=pdf
http://orcid.org/0000-0001-7044-1117
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:kdhandapani@augusta.edu


000 documented cases and 1,000,000 deaths worldwide,
creating a global pandemic that has inflicted economic
damage on an unprecedented scale.
The SARS-CoV-2 outbreak has generated immense

interest from both the medical community and the gen-
eral public in understanding the biology, epidemiology,
and clinical characteristics, as evidenced by the appear-
ance of over 54,000 peer-reviewed research articles in
PubMed focused on COVID-19. SARS-CoV-2 exhibits
crossover symptomology with two commonly circulating
human coronaviruses (HCoV-NL63, HCoV-HKU1) and
prior infection with these strains may greatly impact pa-
tient outcomes during the present pandemic. Much of
the initial knowledge informing the response to the
current SARS-CoV-2 outbreak was gained during the
SARS-CoV and MERS-CoV outbreaks. SARS-CoV was
first reported in Asia in 2003, spreading to North Amer-
ica, South America, and Europe, which infected over
8000 people worldwide and caused nearly 800 deaths.
The subsequent MERS-CoV outbreak was associated
with a mortality rate of 37%, with most victims exhibit-
ing one or more comorbid conditions. Likewise, the
most characteristic clinical symptoms of COVID-19 pa-
tients are fever, fatigue, dry cough, myalgia, headache,

dizziness, abdominal pain, diarrhea, nausea, and vomit-
ing. More severe cases involve respiratory distress, which
may require admittance to the intensive care unit and
use of a ventilator [9]. Patients with underlying comor-
bidities such as hypertension, diabetes, cardiovascular
disorders (CVD), and cerebrovascular diseases are more
vulnerable to infection and exhibit a higher rate of
hospitalization [9].
In addition to the classical symptoms of a respiratory

virus, increasing evidence suggests COVID-19 patients
may present with a diversity of unanticipated neuro-
logical symptoms, such as headache, nausea, anosmia,
ageusia, myalgia/fatigue, confusion, disorientation, and
vomiting [10–12] (Fig. 1). Human coronavirus (HCoV)
infections are not restricted to the respiratory tract, with
RNA from two HCoV strains (229E, OC43) detected in
human brain autopsy samples from neurologically dis-
ease patients. Moreover, inter-neuronal propagation and
axonal transport may favor viral invasion into the central
nervous system (CNS) [11, 13, 14]. Indeed, olfactory and
gustatory deficits are regarded as early symptoms of
SARS-CoV-2 infection. Of particular interest, reports of
ischemic strokes in younger, asymptomatic patients
without comorbidities are appearing in the scientific

Fig. 1 Schematic illustration of COVID-19-related symptoms. Primary issues associated with COVID-19 are shown within the inner circle (see white
text). These symptoms are widely reported in a large majority of patients infected with SARS-CoV-2. The outer circle (see black text) depicts
neurological issues/symptoms that have been reported after COVID-19
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literature, even after the infection has seemingly resolved
[15–17]. These limited case reports suggest the need for
a deeper understanding of SARS-CoV-2 infection, in-
cluding elucidation of how the CNS may be affected.
Larger clinical studies will undoubtedly shed new light
on the clinical manifestations of COVID-19 infection in
the brain; however, in this mini-review, we summarize
what is currently known regarding SARS-CoV-2-medi-
ated neurological injury to establish a framework for fu-
ture pre-clinical and clinical investigations. We discuss
evidence supporting both hematogenous and retrograde
neuronal dissemination of SARS-CoV-2 invasion into
the CNS, including secondary neuropathologies, and
highlight potential therapeutic approaches for future
exploration.

Neurological manifestations in COVID-19 patients
As COVID-19 rapidly spread throughout the world, an-
ecdotal reports of neurological issues emerged. An
internet-based, cross-sectional study found 59 COVID-
19 patients from a study population of 1480 patients
exhibiting influenza-like symptoms. Notably, loss of
smell (68% of COVID-19 patients) and gustatory impair-
ments (71% of COVID-19 patients) were distinguishing
features of SARS-CoV-2 infection [10]. In line with this
finding, approximately one-third of COVID-19 patients
reported a loss of smell. Likewise, headache (about 8%)
and nausea and vomiting (1%) were apparent in
COVID-19 patients [9, 11, 13]. In addition, case studies
of a 24-year-old male infected with SARS-CoV-2 in
Japan presented with a fever and meningitis/meningeal
irritation [18] while an infected 56-year-old male also
was diagnosed with encephalitis [19]. In another case
study, a 29-year-old woman diagnosed with COVID-19
presented with a left temporoparietal hemorrhagic ven-
ous infarction with transverse sigmoid sinus thrombosis
on the left side [20]. These observational reports sug-
gesting CNS involvement in the course of COVID-19
identified many interesting, yet unexplored, avenues for
physicians and neuroscientists.
In a study in Strasbourg, France, neurological function

was assessed in 58 COVID-19 patients with acute re-
spiratory distress syndrome (ARDS) that were admitted
into the intensive care unit (ICU) [12]. Neurological ab-
normalities were observed in 14% (8/58 patients) upon
admission to the ICU, while 67% (39/58) showed neuro-
logical signs along with 69% (40/58) who showed agita-
tion following termination of sedation or a
neuromuscular blocker [12]. Further, 45% (26/58) of pa-
tients showed confusion and corticospinal tract signs
were evident in 67% (39/58) of admitted patients. More-
over, 13 patients (22.41%) showing encephalopathic fea-
tures exhibited leptomeningeal enhancement (8/13) and
bilateral frontotemporal hypoperfusion (11/13) on

magnetic resonance imaging (MRI). Electroencephalog-
raphy revealed diffuse bifrontal encephalopathy in one pa-
tient (1/8) [12]. Follow-up studies of 45 discharged
patients revealed that 33% (15/45) exhibited dysexecutive
syndrome and showed signs of inattention, disorientation,
and poorly organized movements and response [12].
A study of 214 COVID-19 patients from Wuhan,

China, showed severe respiratory infections in 41% (88/
214) of patients, with 36% (78/214) of patients displaying
diverse neurologic signs, including loss of smell and
taste, neuropathic pain, seizures, and strokes [21]. In-
deed, loss of smell and taste were similarly reported in
COVID-19 patients worldwide [10]. To better under-
stand the neurological manifestations of COVID-19,
symptoms were broadly categorized into three categor-
ies: skeletal muscular injury indexes, CNS indexes (e.g.,
acute cerebrovascular disease, headache, dizziness, im-
paired consciousness, seizure, and ataxia), and peripheral
nervous system indexes (nerve pain, impaired taste,
smell, or vision). Of the 78 patients displaying neuro-
logical abnormalities, 25% showed symptoms related to
CNS dysfunction, 11% showed issues related to skeletal
muscle injury, and 9% exhibited issues with peripheral
nervous system (PNS) function [21]. Of note, neuro-
logical symptoms were more commonly observed in
older patients (mean age = 59.2 years), in patients with
more severe infection, and in patient with pre-existing
conditions, such as hypertension, diabetes, malignancy,
or cardiac/cerebrovascular disease. Importantly, most of
the neurological consequences of COVID-19 were ap-
parent within the first 2 days of infection, although cere-
brovascular events and impaired consciousness were
often delayed beyond this acute time period and associ-
ated with the increased mortality rate [21].
A case study in January 2020, identified a 61-year-old

woman that presented with acute weakness in both
legs, and severe, progressive fatigue within 1 week after
traveling to Wuhan, China. Of note, the observed
neurological symptoms and subsequent diagnosis of
Guillain-Barre syndrome (GBS) occurred several days
prior to the development of respiratory symptoms and
before a positive PCR test for SARS-CoV-2 [22]. Simi-
larly, a 67-year-old female patient with a history of
breast cancer presented in New York City with rapidly
progressive quadriparesis, lower back pain, paresthesias,
and urinary retention, diagnosed as severe, rapidly pro-
gressing GBS [23]. Moreover, several reports have
emerged showing an acute GBS in pediatric patients in-
fected with SARS-CoV-2 [24, 25]. While an association
between SARS-CoV-2 infection and symptoms of GBS
is evident [26], it remains unclear whether GBS mani-
festation is a coincidental presentation during SARS-
CoV-2 infection or whether this represents a causative
relationship.
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How does SARS-CoV-2 directly affect brain function?
The previous section detailed a number of international
studies that clearly established the nervous system as a target
of COVID-19 infection. These early-stage clinical reports il-
lustrate the need for an improved mechanistic understand-
ing of how SARS-CoV-2 affects neurological function. This
knowledge will be essential for the development of effica-
cious therapies to alleviate suffering in affected individuals.
In this section, we propose several mechanisms to explain
how a respiratory virus afflicts the CNS.

Is SARS-CoV-2 neurotropic?
A simple explanation for the neurological effects of
COVID-19 is direct viral entry and infection of the CNS.
Epidemiological data show a latency of up to 1 week be-
tween the initial infection and hospital admittance for
COVID-19 patients [9, 21], providing a window for po-
tential viral entry into the CNS. Neurotropism is com-
monly observed in coronaviruses, with neuro-invasive
properties well documented in SARS-CoV, MERS-CoV,
HCoV-229E, HCoV-OC43, and porcine hemagglutinat-
ing encephalomyelitis coronavirus (PHE) [11, 13, 27, 28].
The SARS-CoV-2 spike protein also alters barrier func-
tion in human models of the blood-brain barrier, provid-
ing an additional mechanism of potential CNS entry
[29]. Given the genetic similarity and conserved viral
structure with SARS-CoV, it appears likely that SARS-
CoV-2 may also exhibit neurotropic properties [30, 31].
Tissue distribution of host receptors is generally be-

lieved to decide the tropisms of viruses [32–34]. In con-
trast to MERS-CoV, which exploits dipeptidyl peptidase 4
(DPP4) to evade host cells [35, 36], the densely glycosyl-
ated spike protein of SARS-CoV-2 virus binds with high
affinity to the type I transmembrane metallocarboxypepti-
dase, angiotensin-converting enzyme 2 (ACE2), providing
a mechanism of viral entry into human cells that mirrors
the entry point for SARS-CoV [8, 37–41]. ACE2, which
negatively regulates the renin-angiotensin-aldosterone sys-
tem by degrading angiotensin II to generate angiotensin
1-7, is required to lower blood pressure and as such, is a
frequent target for anti-hypertensive drug development
[40, 42–46]. Other functions of ACE2 include the metab-
olism of apelin-13, neurotensin, kinetensin, dynorphin,
[des-Arg9]-bradykinin, and [Lys-des-Arg9]-bradykinin
[47]. ACE2 is widely expressed in airway epithelium, lung
parenchyma, vasculature, kidney, heart, and the gastro-
intestinal tract [48, 49], primary sites of infection by
SARS-CoV and SARS-CoV-2; however, it is interesting to
note that ACE2-expressing endothelial cells and human
intestinal cells were unaffected by SARS-CoV [50, 51],
while ACE2 negative hepatocytes were susceptible to
SARS-CoV infection [32]. Thus, the expression of ACE2
alone may not be sufficient for host cell infection by
SARS-CoV-2.

Initial studies failed to observe ACE2 expression in the
brain [48, 49]; yet, RT-PCR studies detected low levels of
ACE2 mRNA expression in the human brain while sub-
sequent studies revealed that ACE2 immunoreactivity
was exclusively within brain endothelial and smooth
muscle cells [52]. ACE2 expression is also reported in
both neurons and glia [53, 54], suggesting the brain may
be a potential target of SARS-CoV-2. Consistent with
the possibility of direct CNS infection, SARS-CoV-2
RNA was detectable in the cerebrospinal fluid (CSF), but
not in a nasopharyngeal swab from a 24-year-old
COVID-19 patient presenting with seizures, hippocam-
pal atrophy, and pan-paranasal sinusitis that was subse-
quently diagnosed with viral meningitis [18]. Similarly, a
56-year-old encephalitis patient exhibiting reduced con-
sciousness had detectable SARS-CoV-2 in the CSF.
These findings in COVID-19 patients are in agreement
with reports showing HCoV-OC43 RNA in the CSF of a
15-year-old acute demyelinating encephalomyelitis pa-
tient [55], whereas SARS-CoV was detected in the serum
and CSF from SARS patients with persistent epilepsy
[56]. Therefore, the capacity to leave the respiratory tract
and potentially infect other tissues may be a defining
feature of CoVs.

Does SARS-CoV-2 use a trans-synaptic mechanism of CNS
infection?
CoVs may enter the CNS via retrograde neuronal diffusion,
potentially via the cribriform plate of the ethmoid bone
[57]. In mice, ACE2 and TMPRSS2, a protease that contrib-
utes toward the spread of CoVs [58], were expressed in sus-
tentacular cells of the olfactory epithelium, with a more
pronounced expression in aged mice [59]. SARS-CoV and
MERS-CoV were observed within the CNS, raising the pos-
sibility of trans-synaptic viral spread via peripheral nerve
terminals as a possible mechanism whereby CoVs may gain
access to the CNS [27, 28, 60–62]. SARS-CoV particles
were observed in CNS neurons and brain samples from pa-
tients diagnosed with SARS [62–64] while other CoVs, in-
cluding HEV67 and avian bronchitis virus utilized trans-
synaptic transfer [27, 28, 61]. Transgenic mice expressing
human DPP4 (hDPP4) under the control of the surfactant
protein C or cytokeratin-18 promoter showed a progressive
fatal course that was paralleled by high viral titers in thal-
amus and brain stem within 2–6 days after intranasal ad-
ministration of MERS-CoV [65]. Similarly, lethal intranasal
inoculation of SARS-CoV in transgenic mice expressing hu-
man ACE2 (hACE2) in the airway and other epithelia re-
sulted in pro-inflammatory activation and the presence of
the virus within the olfactory bulb, thalamus, and brain
stem via postulated spread through the olfactory nerves
[66]. Following the viral entry into the CNS, infection rap-
idly spread via a trans-neuronal route to other connected
brain regions, culminating in mortality due to neuronal loss
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in the cardiorespiratory centers within the medulla [67]. Fi-
nally, SARS was associated with delayed olfactory neur-
opathy while the loss of olfactory function is an
internationally reported symptom of COVID-19, with some
patients showing bilateral obstructive inflammation of the
olfactory clefts correlating with impaired olfaction [68–71].
Thus, retrograde trans-synaptic transport from the lung
and lower respiratory airways to the medullary cardiorespi-
ratory centers of the brain and the olfactory centers may
mediate the progressive acute respiratory failure and anos-
mia in COVID-19 patients.
Beyond trans-synaptic spread from the respiratory sys-

tem, another possibility is movement via the brain-gut
axis. The gastrointestinal (GI) tract is directly infected
by SARS-CoV-2 and up to a quarter of COVID-19 pa-
tients display GI issues, including nausea, anorexia,
vomiting, and diarrhea [72, 73]. A temporal correlation
exists between GI and neurological symptoms, and it is
postulated that anorexia and nausea may be caused, at
least in part, by infection of the lateral hypothalamic nu-
clei [73, 74]. Toward this end, SARS-CoV-2 may enter
the CNS via the vagus nerve, a cranial nerve that regu-
lates parasympathetic control of the heart, lungs, and GI
tract.
In addition to direct neuronal entry, SARS-CoV-2 may

infect non-neuronal cell types to produce neurological
complications. The SARS-CoV-2 entry genes, ACEs and
TMPRSS2, are detectable in non-neuronal cell types in
the olfactory epithelium and olfactory bulb [75]. Thus,
infection of glia and vascular cells could contribute to-
ward hypoperfusion, local inflammation, and cytokine
release, loss of function of supporting cells, or damage
to sustentacular and Bowman’s gland cells to induce ol-
factory neuronal dysfunction or death [68, 76–78]. Fu-
ture studies surely will shed new light on these
mechanisms of CNS spread, which may have significant
implications for the future treatment of CoV-infected
patients.

Does immune activation contribute to neurological
dysfunction after CoV infections?
Inflammation is the first line of defense against patho-
gens. The innate immune system provides an early
mechanism of host protection by producing type I inter-
ferons (IFN), complement proteins, and chemokines/cy-
tokines to limit viral infection [79, 80]. While a robust
innate immune response is necessary to elicit protective
adaptive immunity, a prolonged and/or overactive im-
mune response contributes toward pathological tissue
injury [81]. Interestingly, pre-clinical studies showed that
excess cytokine release after SARS-CoV infection damp-
ened adaptive immunity [82]. In line with this observa-
tion, despite an increase in leukocyte activation and
massive release of pro-inflammatory cytokines, SARS-

CoV-2 infection is associated with lymphopenia, including
suppression of both CD4+ and CD8+ T cells as well as the
increased appearance of exhausted T cells [83–85]. Given
this progression, significant attention has been focused on
the development of a “cytokine storm,” the rapid patho-
logical release of excess cytokines, which is associated with
high fever, respiratory distress, multi-organ failure, and in-
creased mortality over the first 2 weeks in COVID-19 pa-
tients [86].

Cytokine storm
Critically ill COVID-19 patients exhibited an increased
ratio of white blood cells/lymphocytes and higher
plasma levels of C-reactive protein (CRP), IL-2, IL-7, IL-
10, GSCF, IP10 (CXCL10), MCP-1 (CCL2), MIP-1α
(CCL3), and TNF-α, as compared to non-ICU patients
[9, 87]. Inflammatory cytokines, such as IL-6, IL-10, and
TNF-α, are elevated following infection with SARS-CoV-
2 and are believed to orchestrate a cytokine storm [84].
Given these appreciated detrimental effects, a number of
clinical trials using tocilizumab, an IL-6 receptor antag-
onist (NCT04306705, NCT04322773); sarilumab, a IL-6
receptor antagonist (NCT04322773, NCT04315298); or
clazakizumab, an IL-6 neutralizing antibody
(NCT04343989; NCT04348500), were initiated as poten-
tial therapies to limit the cytokine storm in COVID-19
patients.
In contrast to the established association between the

cytokine storm and respiratory distress in COVID-19 pa-
tients, relatively less is known about the lasting neurological
effects of these events. The CNS is regarded as an immune-
privileged organ, yet the brain is highly vulnerable to in-
flammatory mediators and tissue hypoxia [88–91]. Infec-
tious encephalitis is an inflammation of the brain that may
develop in bacteria- or virus-infected children, elderly, and
immuno-compromised individuals. While mild encephalitis
produces transient flu-like symptoms, including fever,
headache, seizures, light sensitivity, neck stiffness, and loss
of consciousness, more severe cases can produce confusion,
psychosis, limb weakness, double vision, cognitive impair-
ments, speech and hearing deficits, coma, and increased fa-
tality. During the course of COVID-19 infection, reports of
a rare condition, acute necrotizing hemorrhagic encephal-
opathy, emerged in patients showing intracranial cytokine
storm syndrome without direct viral invasion [92]. Radio-
logical imaging of acute necrotizing hemorrhagic encephal-
opathy indicates lesions within the thalamus, brain stem,
and cerebral white matter [93], suggesting the likely need
for neurological assessments of COVID-19 patients. In
addition, cytokine-induced pulmonary injury during ARDS
may adversely affect brain function due to the intimate as-
sociation between the lungs and the respiratory centers in
the medulla and pons of the brain stem [94–97]. Thus, the
neurological manifestations of COVID-19 may be
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secondary to the consequences of ARDS-mediated inflam-
mation and hypoxemia/hypoxia [94, 95]. As clinical data
becomes more widely available regarding the link between
the nervous and respiratory systems, this knowledge will
greatly shape further pre-clinical efforts.

Immunomodulatory therapies to manage the neurological
complications from SARS-CoV-2
Understanding the immune dysregulation in patients
with COVID-19 will provide a greater understanding of
SARS-CoV-2 pathogenesis. The detrimental impact of
unrestrained immune activation and the cytokine storm
are clearly evident, but therapeutic targets beyond anti-
viral drugs remain a major obstacle to limiting neuro-
logical injury secondary to COVID-19. As a significant
member of the pattern recognition receptor (PRR) fam-
ily, Toll-like receptors (TLRs) play a crucial role in the
initiation of immune responses against viral infections.
In addition to initiating the intracellular response to viral
RNA, TLRs induce signaling cascades and activate tran-
scription factors that shape the cellular response to in-
fection. Along these lines, activation of TLRs mobilize
and recruit innate immune cells (e.g., neutrophils,
monocytes, innate lymphoid cells) and induce cytokines
and chemokines that limit viral progression and activate
acquired immunity [98]. Of the TLRs, TLR3, which is
expressed in both immune and non-immune cells, rec-
ognizes double-stranded RNA (CoVs are double-
stranded RNA viruses). Upon activation, TLR3 induces
interferon regulatory transcription factor 3 (IRF3) to
stimulate the production of type I interferons as a host
defense mechanism against viruses [99]. Importantly,
mounting evidence suggests that TLR3 may initiate the
cytokine storm and drive systemic inflammatory re-
sponses [100–102]. Thus, TLR3 may represent a target
for immunotherapeutic modulation to limit neurological
dysfunction in COVID-19 patients [103].

Do coagulopathies contribute to the neurological
consequences of COVID-19?
COVID-19 patients frequently exhibit complications as-
sociated with coagulopathy, including venous thrombo-
embolism, acute coronary syndrome, myocardial
infarction, and cerebral infarction [104–107]. SARS-
CoV-2 infection was associated with prolonged pro-
thrombin time, platelet abnormalities, elevated levels of
D-dimer, increased fibrinogen/fibrin degradation prod-
ucts, and sepsis-induced coagulopathy (SIC), a form of
disseminated intravascular coagulation (DIC), which was
observed in the majority of COVID-19-related deaths
[108, 109]. Severe COVID-19 patients exhibit hypoxia, a
risk factor that increases thrombosis via activation of
hypoxia-inducible transcriptional regulation and by in-
creasing blood viscosity [110]. Given the role of

coagulopathy, administration of anticoagulants were
postulated as a treatment for severe COVID-19 patients
[106, 109]; however, anticoagulation did not reduce life-
threatening thrombotic complications in a recent multi-
center prospective cohort study of 150 COVID-19 pa-
tients with ARDS [105], suggesting the need for exten-
sive research to identify alternative targets for
therapeutic intervention.
With respect to the CNS, cytokine release, encephal-

opathy, and onset of ischemic stroke symptoms are cor-
related in COVID-19 patients [111, 112]. Inflammation
and coagulation are inextricably linked processes that
exhibit reciprocal cross-talk [113]. Systemic inflamma-
tion activates coagulation mechanisms by driving tissue
factor-mediated thrombin generation and inhibiting en-
dogenous fibrinolysis. In turn, activation of the coagula-
tion system may influence inflammatory activity and
contribute toward the development of hemorrhagic fever
and thrombotic microangiopathy. While a clear associ-
ation exists between SARS-CoV-2 and stroke incidence,
it remains unanswered whether coagulation, secondary
to COVID-19 infection, is an initiating factor for ische-
mic stroke or whether the immune response in response
to the viral infection worsens the severity of a stroke. In
support of the former possibility, elevated inflammation
may heighten the risk of developing an acute ischemic
stroke in the elderly, potentially via modulation of the
coagulation cascade, whereas the latter possibility may
be explained by exacerbation of the post-stroke inflam-
matory response [114–117]. While it is clear that
COVID-19 patients exhibiting pro-thrombotic and/or
pro-inflammatory activation may require neurological
evaluation, further clinical data and pre-clinical research
are needed to define the mechanistic link between
SARS-CoV-2 and stroke outcomes.
Given the limited efficacy of broad anticoagulants in

COVID-19 patients, alternative therapeutic targets are
needed to reduce the detrimental effects of coagulopa-
thies. Neutrophils are circulating innate immune cells that
rapidly mobilize to phagocytose pathogens as a mechan-
ism of host protection after an infection. An elevated
neutrophil-to-lymphocyte ratio was an independent risk
factor for mortality in hospitalized COVID-19 patients
[118–120]. Recent evidence suggests that activated neu-
trophils also may extrude a meshwork of chromatin fibers
into the extracellular space to form cloud-like neutrophil
extracellular traps (NETs), which may function as a mech-
anism of pathogen trapping. Extensive infiltration of neu-
trophils into the pulmonary capillaries of COVID-19
patients was associated with fibrin deposition and vascular
lesions in the absence of sepsis while elevated neutrophil
counts were associated with ocular dysfunction during
SARS-CoV-2 infection [121–125]. Moreover, NETs, which
stimulate pro-inflammatory responses in human airway
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epithelial cells [126], are present in many pulmonary
diseases, including asthma, chronic obstructive pul-
monary disease (COPD), cystic fibrosis, respiratory
syncytial virus bronchiolitis, influenza infection, bac-
terial pneumonia, ARDS, and tuberculosis [127–132].
While the extent of neutrophil priming and NET for-
mation in ARDS patients correlated with disease se-
verity and mortality [130, 133–136], the clinical
significance of NETs in the pathophysiology of
COVID-19 remains undefined.
Sera from COVID-19 patients displayed elevated levels

of cell-free DNA, myeloperoxidase-DNA complexes, and
citrullinated histone H3, suggesting NET formation and
raising the possibility that NETs may provide a potential
target for intervention in COVID-19 patients [121, 137].
Interestingly, in addition to roles in host defense against
viruses and bacteria, NETs also provide a scaffold for
thrombogenesis [138, 139]. Indeed, impaired degradation
of NETs is clinically associated with acute thrombotic
microangiopathies [140], while the presence of citrulli-
nated histone H3, a biomarker of NET formation, within
thrombi retrieved from acute ischemic stroke patients
was independently associated with patient mortality
[141, 142]. Of interest, we recently reported that elevated
NET formation was associated with microvascular occlu-
sion and cerebral hypoperfusion after acute brain injury
in both mice and humans [143]. Conversely, administra-
tion of recombinant human DNase-I, an FDA-approved
drug under investigation for the management of
COVID-19-induced ARDS [144], improved blood flow
and outcomes after both experimental stroke and trau-
matic brain injury [143, 145–147]. Thus, the widespread
generation of NETs after SARS-CoV-2 may provide a
potential target to reduce acute and chronic neurological
consequences, including headache, elevated stroke risk,
and potential cognitive issues due to COVID-19.

Challenges for the clinical management of COVID-19
A number of medications are being investigated in
COVID-19 management, including remdesivir, lopina-
vir/ritonavir combination, HIV protease inhibitors,
chloroquine, and hydroxychloroquine, which may inhibit
viral replication in the early stages of infection [148]. In
addition, immune-based approaches, such as convales-
cent plasma, SARS-CoV-2 immunoglobulins, non-
specific intravenous immunoglobulins (IVIG), and mes-
enchymal stem cells, as well as immunomodulatory
medications such as corticosteroids (dexamethasone), in-
terferons (IFNα and IFNβ), interleukin inhibitors (IL-1
and IL-6 inhibitors), and kinase inhibitors (Bruton’s
tyrosine kinase or Janus kinase inhibitors) are frequently
employed as treatment options [3]. On top of the neuro-
logical manifestations of SARS-CoV-2, many of these
therapies potentially exhibit adverse neurological effects.

For example, chloroquine and hydroxychloroquine may
be associated with neuropsychiatric adverse effects, ret-
inopathy, ataxia, seizures, and limbic encephalitis [149]
while ribavirin and interferons are linked to retinopathy
and neuropsychiatric consequences [150]. Seizures a re-
ported symptom of SARS-CoV-2 infection, even in pa-
tients with no past medical history of epilepsy; however,
an increased occurrence of seizures may be an adverse
effect of anti-viral medications (e.g., lopinavir, ritonavir,
ribavirin) [151]. Thus, further research to distinguish the
deleterious neurological consequences of SARS-CoV-2
from the neurological side effects of COVID-19 therap-
ies is necessary to advance clinical care.
Several co-morbidities associated with neurological dys-

function, including obesity, high body mass index, diabetes,
and hypertension correlate with increased rates of infection
and worse COVID-19 patient outcomes [152–155]. There-
fore, a unique challenge of managing SARS-CoV-2 will be
managing the detrimental consequences of co-morbidities
with the treatment of COVID-19. Administration of anti-
coagulants and statins may encounter drug interactions
with the lopinavir/ritonavir combination used for COVID-
19 management [150]. Myasthenia gravis or Lambert-Eaton
myasthenic syndrome patients receiving immunosuppres-
sive therapy may display a more severe COVID-19 illness
and require alternative treatments to avoid myasthenic cri-
sis [156]. In such patients, the administration of IVIG may
improve outcomes whereas hydroxychloroquine could
worsen the myasthenic crisis [157]. A case report study of a
relapsing-remitting multiple sclerosis (MS) patient with
SARS-CoV2 infection reported a worsening of neurological
symptoms at initial presentation [158]. While the current
consensus is to continue disease-modifying treatments,
SARS-CoV-2 infected MS patients may benefit from. inter-
feron therapy, suggesting some alterations in the MS treat-
ment regimen may enhance outcomes [159, 160].
Finally, there is a growing appreciation for the psy-

chiatric effects of COVID-19. A comprehensive meta-
analysis study of SARS or MERS cases revealed that
infected patients exhibited confusion (27.9% of cases),
depression (32.6%), anxiety (35.7%), impaired memory
(34.1%), and insomnia (41.9%) in the acute phase
while post-traumatic stress (32.2%), depression
(10.5%), insomnia (12.1%), anxiety (12.3%), irritability
(12.8%), and memory impairment (18.9%) chronically
persisted after recovery [161]. In line with these find-
ings, COVID-19 patients under intensive care showed
signs of delirium with confusion (65%), agitations
(69%), and altered consciousness (21%), while 33%
showed dysexecutive syndrome at discharge [161].
Therefore, a psychiatric evaluation of patients may be
necessary during and beyond hospitalization, including
into the chronic term as a possible neurological se-
quela of COVID-19.
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Conclusions
The COVID-19 pandemic, caused by the novel SARS-
CoV-2 virus, is associated with a broad pathophysiology
that has resulted in worldwide mortality and morbidity.
While primarily regarded as a respiratory virus, SARS-
CoV-2 produces wide-ranging and often unpredictable
neurological symptoms, ranging from anosmia to en-
cephalitis to increased stroke risk (Fig. 1), that compli-
cate clinical management. Improved development,
validation, and implementation of rapid imaging tech-
niques, such as MRI, may aid in early diagnosis and pro-
active intervention to limit long-term neurological
consequences. Future research defining whether SARS-
CoV-2 exhibits neurotropism and/or initiates peripheral
immune activation and hypercoagulation to affect brain
function will be paramount for the development of effi-
cacious therapies to mitigate the deleterious neurological
consequences of COVID-19, including potential benefits
in the management of acute respiratory failure. Finally,
the incorporation of “-omics approaches” will be useful
to identify patient populations at the highest risk for de-
veloping neurological symptoms. Undoubtedly, bio-
logical variables, including sex, age, comorbid conditions
(e.g., hypertension, diabetes, stress), pre-existing neuro-
logical diseases, and other yet undefined genetic poly-
morphisms dictate the clinical course of SARS-CoV-2
infection. These unbiased, population-wide investiga-
tions will provide valuable information to guide clinical
practice in the management of COVID-19, as well as to
aid in the management of future pandemics.
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