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Chapter 26

Heavy Metals and Low-Oxygen 
Microenvironment—Its Impact  
on Liver Metabolism and Dietary 
Supplementation
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1.  INTRODUCTION

The term heavy metal refers to any metallic chemical element that has a relatively high density and is toxic or poison-

ous at low concentrations. The heavy metals constitute major fraction of the periodic table and are generally interpreted 

to include those metals from periodic table groups IIA through VIA. Examples of heavy metals are nickel, lead, mercury, 

cadmium, chromium, etc. Heavy metals cannot be degraded or destroyed. It enters in our bodies via food, drinking water, 

and air and primarily targets liver and other metabolically active tissues. As trace elements, some heavy metals (e.g., cop-

per, selenium, zinc) are essential to maintain the metabolism of the human body. However, at higher concentrations they 

can lead to poisoning. Heavy metal poisoning may occur through various ways such as drinking water through lead pipe or 

occupational exposure (lead–cadmium or nickel–cadmium batteries) or stainless steel industries (nickel-chromium), refin-

eries or petrochemicals (nickel, lead, cadmium), jewelry, etc.1 Hypoxia belongs to the most serious factors that can directly 

impair the function of metabolic pathways in the animal cell. The exposure of experimental animals to hypoxia has been 

widely used in many morphological and physiological studies. Physiological hypoxia induces cell signaling process for the 

formation of new blood vessels (angiogenesis) to regulate vascular tone during developmental stage.2 Physiological oxygen 

levels (PO2) in healthy body varies from −100 Torr in the alveoli to <10 Torr in medulla of kidney and retina.3 Tissue expo-

sure to low-oxygen tension is observed in several physiological and pathological conditions such as ischemia for shorter 

duration or in case of the high-altitude inhabitants or any other chronic diseases for longer duration of hypoxic exposure. 

In both cases, hypoxic cells are programmed to rapid adjustment to maintain O2 supply to most vital organs such as heart 

and brain. It is understood that atherosclerosis, stroke, or vascular occlusion leads to tissue ischemia followed by hypoxia. 

Tissue hypoxia also develops through immune cell infiltration in vascular dysfunction during chronic inflammation pro-

cess.3,4 It has been observed that hypoxia absurdly stimulates free radicals release from the mitochondria that control the 

transcriptional and posttranslational response to low-oxygen conditions.5 Hypoxia-induced generation of reactive oxygen 

species (ROS) has been a subject of theoretical and practical dispute as experimental designs able to quantitatively evalu-

ate ROS formation. Under normoxic conditions, ROS (constantly generated in erythrocytes) are mostly counteracted by 

their endogenous (superoxide dismutase, glutathione peroxidase, catalase or reduced glutathione) or exogenous (vitamin 

C, vitamin E, etc.) antioxidant defense systems. Studies also show that wild-type human hepatoma cells (Hep3B) increase 

ROS generation of metal-activated cell signaling pathways during hypoxia.5,6 Valko M et al.7 stated that “hypoxia-activated 

gene transcription via a mitochondria-dependent signaling process induces increased ROS.” The mechanisms by which 

mammalian cells adapt to acute and chronic alterations of oxygen tension are extremely important to understand the exact 

homeostasis regulation to counteract hypoxia-induced cell damage as a therapeutic strategy. Heavy metals are capable 

to induce expression of HIF-1 transcriptional factor and vascular endothelial growth factor (VEGF) genes through the 
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phosphatidylinositol 3-kinase or Akt pathway or ROS.8 Heavy metals–induced alteration of the hypoxia signaling system 

influenced by metal-induced oxidative stresses are responsible for progression of metastasis.9 This chapter gives a brief 

understanding of current state of knowledge of chronic hypoxia and its influence on generation of ROS by inducing oxida-

tive stress in the physiological system. The review will also provide recent update of heavy metal nickel toxicities on oxi-

dant and antioxidant balance and molecular interaction of chronic hypoxia and heavy metal nickel (Ni) in the physiological 

system in vivo. Cellular hypoxia causes an initiation of hypoxia-response genes responsible for angiogenesis, oxygen 

transport, and metabolism.10 Chronic hypoxia stimulates NF-κB gene expressions and it reduces KLF4, which further leads 

to an enhanced NOS2 expression (Fig. 26.1). Both hypoxia and heavy metal exposure induce generation of ROS and 

increase expression of p53, NF-kβ, AP-1, MAPK, and HIF-1α. The increase expression of all these transcription 

factors leads to either cellular adaptation or cell death.11 It is also to be mentioned that hypoxic injury due to metal 

assault or hypoxia exposure causes “cell death” by cells swelling, plasma and nuclear membrane disruption, cellular lysis in 

association with acute inflammation that may exacerbate the initial hypoxic injury response. However, the alternative mode 

of cell death, apoptosis, is also possible (Fig. 26.1). During apoptosis, the cells use their molecular machinery to shrink or 

expand into membrane-bound apoptotic bodies, with or without nuclear fragments that are easily phagocytosed by adjacent 

tissue cells or macrophages and minimize any acute inflammatory response.

Liver is an important metabolically active organ. It stores additional nutrients in the form of glycogen and lipids. During 

the need of the hour these nutrients yield energy and keep all the vital functions intact. Hepatocytes also synthesize plenty 

of proteins including albumin and clotting factors. Furthermore, it synthesizes cholesterol and triglycerides. Another impor-

tant function of liver is to produce bile salts which are essential for digestion and absorption of lipids. The hepatocytes also 

play an important role as the center of detoxification in the body, influencing drug metabolism and breakdown of hormones. 

This organ is an important source of storage of vitamins such as B12, A, D, K and folic acid, besides being an important 

source of iron. To make the liver a well-functioned organ, a considerable amount of oxygen is needed. Altered metabolic 

functions due to toxic insults or metabolic stress due to hypoxia or heavy metal toxicities disturb oxygen homeostasis in 

liver and lead to serious liver diseases. Most of the cases, malfunction of liver leads to fatty liver symptoms and the cell 

signaling pathways greatly affected is oxygen dependent, hence hypoxia may be considered as an important cause of 

liver malfunction.12 Interestingly, hypoxia and divalent heavy metals such as nickel (Ni) and lead (Pb) generate ROS and 

disturbed oxidant/antioxidant balance which is linked to the transcriptional factor HIF-1α. The results from the author’s 

laboratory showed both divalent cationic heavy metal (Ni and Pb) and chronic sustained hypoxia stimulate the production 

of HIF-1α transcription factor and VEGF gene expression in metabolically active tissues in similar molecular mechanism. 

Heavy metals cause oxidative stress by inducing the generation of ROS; reducing the antioxidant defense system of cells 

via depleting glutathione; interfering with some essential metal; inhibiting sulfhydryl (SH), dependent enzyme, or antioxi-

dant enzymes activities; and/or increasing susceptibility of cells to oxidative attack by altering membrane integrity and fatty 

acid composition.13,14

Nutrients such as vitamin C or E are found to be the most effective circulatory antioxidant in human system.15 Ascorbic 

acid or vitamin C prevents lipid peroxidation, oxidation of low-density lipoproteins, and advanced oxidation protein prod-

ucts.16 Vitamin C may comprise the first line of defense system in RTLF against external pro-oxidative assaults.17 It has 

been reported that intracellular depletion of ascorbic acid aggravated some heavy metal (nickel, cobalt, etc.)-induced car-

cinogenicity and acute toxicity.18 The effect of simultaneously supplemented vitamin C on experimental nickel treatment 

FIGURE 26.1 Graphic representation showing heavy metals or 

hypoxia-induced common cellular abnormalities. NF- kB, nuclear 

factor-kappa B; NO, nitric oxide; NOS, nitric oxide synthase; 

ONOO−, peroxynitrate; HIF-1α, hypoxia inducible factor 1α; ROS, 

reactive oxygen species; VEGF, vascular endothelial growth factor.
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shows ascorbic acid is capable to reduce intestinal absorption of nickel. The mechanism involves that vitamin C is capable 

to reduce ferric iron to ferrous iron in the duodenum, thus availability of divalent ferrous ion increases which competes with 

nickel or lead also as divalent cation for intestinal absorption.19 Recent reports indicate the capability of ascorbic acid as a 

regulatory factor may influence gene expression, apoptosis, and other cellular functions of living system exposed to heavy 

metals.20 This chapter elaborately explains the role of dietary supplementation of nutrients such as vitamins and other nutri-

ents in heavy metals such as nickel and lead, which induces altered hepatic functions in low-oxygen microenvironments.

2.  HEAVY METALS AND ITS INTERACTIONS

Heavy metals interact with the biological system in a complex manner. Even elemental speciation of the metals also matters 

in its interactions with systems. The term heavy metal refers to any metallic chemical element that has a relatively high 

density and is toxic or poisonous at low concentrations. The heavy metals constitute major fraction of the periodic table and 

are generally interpreted to include those metals from periodic table groups IIA through VIA. Examples of heavy metals 

are nickel, lead, mercury, cadmium, chromium, etc.1

2.1  Heavy Metal Toxicities: Nickel and Lead

There are five priority substances which are selected by WHO for the nickel risk assessment. They are nickel powder, nickel 

sulfate, nickel chloride, nickel carbonate, and nickel nitrate. Nickel powder (T; R48-23) has been classified in chronic 

toxicity classification as per environmental risk assessment report on nickel. NiSO4, NiCl2, NiCO3, and NiNO3 are classi-

fied as carcinogen class I (by inhalation), reproductive toxicants class II (may cause harm to unborn children), and chronic 

toxicants (T; R48-23). If particle size of nickel powder found to be less than 0.1 mm, it is classified as T; R52-53 (harmful 

to the aquatic environment).21 Acute toxicity in humans, which results from absorption through the gastrointestinal tract 

or by inhalation through lungs, was first reported by Sunderman in 1954.22 Further studies showed that a single dose oral 

LD50 in rats for the less-soluble nickel oxide and subsulfide was >3600 mg Ni/kg bwt, whereas the oral LD50 for the more 

soluble nickel sulfate and nickel acetate ranged from 39 to 141 mg Ni kg−1 bwt in rats and mice.23 The metal is not only an 

allergen but also a potential immunomodulatory and immunotoxic agent in humans.19 Weischer et al.24 reported that oral 

administration of nickel as NiCl2 in male rats over a period of 28 days at concentration of 2.5, 5.0, and 10.0 µg/mL in drink-

ing water (0.38, 0.75, or 1.5 mg/kg day) resulted in significant dose-dependent hyperglycemia, decrease in serum urea, and 

significant increase in urine urea. At 0.75 mg/kg doses, increased leukocyte count was also observed. It was noticed that 

exposure of dietary nickel sulfate hexahydrate (100, 1000, or 2500 ppm) to dogs for 2 years failed to produce significant 

signs of compound-related toxicity.25 The toxicity of the different nickel compounds is related to its solubility, with soluble 

nickel sulfate being the most toxic and insoluble nickel oxide being the least toxic. The difference in the toxicity across 

compounds is probably due to the ability of water-soluble nickel compounds to cross the cell membrane and interact with 

cytoplasmic proteins.21

Lead poisoning can affect almost all parts of the body, but its effects are most pronounced on the central nervous sys-

tem and kidneys. Lead can impair cognitive development, which can lead to learning disabilities and behavioral problems. 

Acute lead exposure can cause encephalopathy, severe abdominal pain, vomiting, diarrhea, coma, seizures, and, in some 

cases, death. Chronic exposure can cause weakness, prolonged abdominal pain, anemia, nausea, weight loss, fatigue, head-

ache, and loss of cognitive function. Chronic, low-level lead exposure can be asymptomatic until kidney function starts to 

deteriorate.11 Lead has no known physiologically relevant role in the body, and its harmful effects are myriad. Lead and 

other heavy metals create reactive radicals, which damage cell structures including DNA and cell membranes. Lead also 

interferes with DNA transcription enzymes that help in the synthesis of vitamin D, and enzymes that maintain the integrity 

of the cell membrane. Anemia may result when the cell membranes of red blood cells become more fragile as the result of 

damage to their membranes. Lead interferes with metabolism of bones and teeth and alters the permeability of blood ves-

sels and collagen synthesis. Lead may also be harmful to the developing immune system, causing production of excessive 

inflammatory proteins; this mechanism may mean that lead exposure is a risk factor for asthma in children. Lead exposure 

has also been associated with a decrease in activity of immune cells such as polymorphonuclear leukocytes. Lead also inter-

feres with the normal metabolism of calcium in cells and causes it to build up within them. It is metabolized by CYP450 

to trimethyl lead (TML). Mechanisms of its toxicity include damage to membranes, disturbances in energy metabolism, 

and direct interference with neurotransmitter synthesis. Symptoms of its toxicity include nausea, vomiting, diarrhea asso-

ciated with nervous system problems such as irritability, headache, and restlessness. Chronic heavy sniffing of leaded 

gasoline results in signs of dementia and encephalopathy, with cerebellar and corticospinal symptoms. Lead primarily acts 

by competing with endogenous cations on protein-binding sites. In particular, lead can substitute both calcium and zinc in 
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numerous proteins. Among stress-response genes that were upregulated by lead treatment, GFAP, microsomal glutathione 

S-transferase, mitochondrial 10 KDa heat shock protein, and HSP70 are all involved in general cellular responses to stress. 

Daphnia hemoglobin gene was greatly expressed following lead exposure.26

3.  HYPOXIA PATHOPHYSIOLOGY

Hypoxia is a pathological condition in which the body as a whole (generalized hypoxia) or a region of the body (tissue 

hypoxia) is deprived of adequate oxygen supply. Variations in arterial oxygen concentrations can be part of the normal 

physiology, for example, during strenuous physical exercise. In healthy humans, there is a range of physiological oxygen 

levels within the tissues of the body, ranging from PO2 values of −100 Torr in the alveoli of the lungs to less than 10 Torr in 

tissues such as the medulla of the kidney and the retina.27

3.1  Hypoxia Microenvironment

Physiological hypoxia is an important microenvironmental signal in a range of processes including new blood vessel forma-

tion (angiogenesis) during development and wound healing, the regulation of vascular tone, and the response to exercise. 

However, tissue hypoxia is also associated with a diverse and wide range of pathophysiological processes including (but 

not limited to) vascular disease, chronic inflammation, and cancer.2 In vascular diseases such as atherosclerosis and stroke, 

vascular occlusion leads to acute or chronic tissue ischemia with resultant hypoxia. In chronic inflammatory diseases, the 

greatly increased metabolism of inflamed tissue due to immune cell infiltration matched with vascular dysfunction leads to 

tissue hypoxia.27 Hypoxia results from conditions such as ischemia, hemorrhage, stroke, premature birth, and other cardio-

vascular difficulties. Among which hemorrhagic shock is the leading cause of death and complications in combat casualties 

and civilian settings. It has been shown to cause systemic inflammation response syndrome, multiple organ dysfunctions, 

and multiple organ failure.28 Hypoxia has been shown to lead to increases in intracellular free calcium concentration 

(Ca2+), 5-lipoxygenase, lipid peroxidation, cycloxygenase (COX), constitutive nitric oxide synthase (cNOS), leukotriene 

B4 (LTB4), prostaglandin E2 (PGE2), interlukins, tumor necrosis factor-α (TNF-α), caspases, complement activation, 

kruppel-like factor 6 (KLF6), inducible nitric oxide synthase (iNOS), heat shock protein 70 kDa (HSP-70), and hypoxia-

inducible factor-1α (HIF-1α). The sequence of their occurrence provides the useful information for studying the mecha-

nisms underlying the hypoxia-induced injury as well as therapeutic targets to prevent or ameliorate the injury.11 Hypoxia, 

or inadequate oxygenation, causes various responses within the body. Its effects are usually mediated via the activation of 

HIF-1. HIF-1 activation can lead to upregulation of various genes such as erythropoietin and growth factors that help tissues 

adjust to the decreasing oxygen availability. Semenza and Wang defined a binding site critical for the hypoxia-inducible 

function, which involves a transcription factor induced by hypoxia. Subsequently, they purified a DNA-binding complex 

bound to the HRE by affinity purification using oligonucleotide with the HRE sequence and thus identified the encoding 

cDNAs.29

3.2  Hypoxia and Heavy Metals (Nickel and Lead)

Over the recent years, induction of signaling pathways that regulate key cellular responses related to cancer growth and 

progression by metals has been the focus of many studies. The unraveling of these pathways and the deciphering of their 

interplay with metals should allow a better understanding of metal toxicity and hopefully will enable development of 

prophylactic strategies and therapeutic approaches. Authors’ laboratory and works of Leonard (2004) have shown the 

mechanisms of toxicities caused by heavy metals such as nickel and lead, emphasizing on the involvement of the hypoxia 

signaling pathway by metal-induced generation of ROS and oxidative stress generation.20,30 Hypoxia-induced factor HIF-1 

controls precise oxygen homeostasis by modulating expression of several cancer-related genes, including heme oxygenase 

1 and vascular endothelial growth factor. The carcinogenic metals such as nickel, lead (Pb), or chromium have been known 

to activate HIF-1.8,31 It has been observed that heavy metal–induced ROS generation during the exposure of cells to metals 

mimic hypoxia-like symptoms.32 The mechanisms of carcinogenesis caused by heavy metals such as nickel emphasizes 

on the involvement of the hypoxia signaling pathway by metal-induced generation of ROS and oxidative stress generation 

in cancer progression.9 One of the pathways by which heavy metals such as nickel and lead induce intracellular hypoxia 

is by reducing heme biosynthesis. Low level of heme reduces intracellular oxygen tension and simply intracellular low 

Fe2+ and low oxygen tension inhibit PHD2 (prolyl hydroxylases). Under normoxic conditions, HIF-1-prolyl hydroxylases 

(PHD) hydroxylate the prolyl residues at amino acids 402 and 564. These enzymes require dioxygen, Fe2+, ascorbate, and 

two oxoglutarates for activity. The hydroxylated peptides interact with an E3 ubiquitin-protein ligase complex composed of 
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pVHL (von Hippel–Lindau tumor suppressor protein), elongin B and C, and Cullin 2 (CUL2), and then poly-ubiquitinized, 

resulting in HIF-1α degradation by the 26S proteasome. Under hypoxic conditions, HIF-1α is not hydroxylated because the 

major substrate, dioxygen, is not available. The unmodified protein escapes the VHL-binding, ubiquitination, and degrada-

tion, and then dimerizes HIF-1α and stimulates the transcription of its target genes.33

4.  HEAVY METALS IN LIVER DISEASES

Heavy metals related to cardiovascular and pulmonary disorders are quite common and reported elsewhere, but currently, 

heavy metals and its impact on liver disease are considered as serious as before.34

4.1  Heavy Metals and Liver Pathophysiology (Nickel and Lead)

Fatty liver disease is considered as one of the important causes of chronic liver disease, and it is manifested by a complicated 

etiology. Heavy metal–induced changes in liver pathophysiology including fatty liver changes are under non–alcoholic fatty 

liver disease (NAFLD) category. Fatty liver induces a prolonged inflammatory response which leads to fat accumulation 

in the liver due to hepatocellular damages. One study showed that heavy metals caused NAFLD in men under 24 BMI. In 

case of overweight and obese, it becomes more serious. It was also observed that lead (Pb) causes more liver damage than 

nickel (Ni).35 Heavy metals such as nickel and lead cause hepatocellular hyperplasia, which may lead to even carcinoma 

of liver. Studies on nickel clearly showed elevation of liver aspartate aminotransferase (AST), alanine aminotransferase 

(ALT), and gamma-glutamyltranspeptidase.6,36 Furthermore, it has been found that at advanced stages of hepatic cirrhosis, 

there was a significant increase of hepatic levels of nickel.37 Another study also showed lower serum nickel concentration 

in liver cirrhosis patients which attributes a possible reduction of hepatic synthesis of nickel transport protein, i.e., nickelo-

plasmin and albumin.38 Similarly, study also showed that lead and mercury are linked with NAFLD.39 Furthermore, it was 

observed that lead (Pb) become conjugated in liver and stored there in highest concentration. Lead exposure on experimen-

tal animal showed an elevation of AST, ALT, and alkaline phsophatase, which clearly indicate a possible liver failure.40 The 

most common pathways for metal-induced hepatotoxicity is through free radicals due to oxidative stress. The free radicals 

which are generated due to heavy metal exposure damage cell membrane lipid bilayers, nucleic acids, and enzymes. These 

in turn causes functional impairment of cell integrity and disturbs cytoprotective systems. Furthermore, it imparts oxidant 

and antioxidant imbalances and leads to cellular injuries. The mechanisms of hepatotoxicities are through affecting hepatic 

mitochondrial respiratory systems by reducing cytochrome c oxidase activity. Excessive accumulation of heavy metals also 

disturb hepatic calcium regulatory system by damaging microsomal calcium sequestration and damaging hepatocellular 

DNA, which further leads to carcinoma of liver.41

4.1.1  Nickel and Hepatotoxicities

A transient increase in serum bilirubin was observed in 3 out of 10 workers who were hospitalized after drinking water from 

a water fountain, contaminated with nickel sulfate.41 In rats, decreased liver weight was observed following exposure for 

28 days to 2 year to 0.97–75 mg/kg day of nickel chloride or nickel sulfate.42 Recent studies on rats by Das et al.43 revealed 

a nickel sulfate–induced degenerative effect on hepatic tissue They have observed that after the intraperitoneal injection of 

nickel sulfate, normal hepatic architecture was greatly altered, along with appearance of vacuolated cytoplasm (fatty liver), 

eccentric nuclei, and Kupffer cell hypertrophy. One report described decreased hepatic and renal transaminase activities 

after nickel treatment in rats, which was found more deleterious in a protein-restricted dietary regimen.44 Nickel sulfate also 

decreases the liver ascorbic acid and cholesterol levels in rats.6 Misra and coworkers showed that a single intraperitoneal 

injection of nickel (II) acetate increased lipid peroxidation and glutathione-S-transferase activity in rat liver and kidney 

while concomitantly decreasing the glutathione concentration and glutathione reductase activity.45 The same group found 

that the nickel-induced hepatic lipid peroxidation in different strains of mice was concurrent with nickel’s effect on antioxi-

dant defense systems in liver and kidney.46 The magnitude of nickel-induced lipid peroxidation showed a reverse correla-

tion with the extent and direction of its effect on glutathione and glutathione peroxidase glutathione reductase but not on 

CAT, SOD, or glutathione-S-transferase.46 Das et al.47 showed, after the nickel treatment of rats, a significant rise in hepatic 

lipid peroxides and a decrease in antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathi-

one peroxidase (GSH-Px) activities and in the hepatic glutathione concentration. The alteration of oxidant and antioxidant 

balance due to hepatic lipid peroxidation indicates an elevation of enzyme phospholipase activities while peroxidic disinte-

gration of various subcellular organelles and membrane lipid layers with nickel exposure. Furthermore, it may be postulated 

that nickel causes Kupffer cell hyperactivity through inflammatory cytotoxic mediators along with fatty liver changes and 
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eccentric nuclei in hepatocellular architecture. Nickel-induced changes of hepatic SOD, CAT, and GSH-Px reveal possible 

interaction of free radicals and hepatic enzymes and damaging SH protective mechanism against lipid peroxidation.47 

Study also revealed that nickel or some other heavy metals cause alteration in hepatic HMG-CoA reductase activities and 

disturb LDL-receptor gene expression. It ultimately changes the lipid profile of physiological system.48,49 Another study 

showed that nickel induced severe liver damage as indicated by rise of SGOT, SGPT, and ascorbate-cholesterol metabolism 

in experimental rats. The study also showed that nickel sulfate causes decrease in absolute liver weight without altering 

hepatosomatic index which is indicative of hepatic degenerative changes.50 Increased activity of SGOT and SGOT after 

nickel exposure reflects possible leakage of hepatic enzymes from liver cytosol in circulatory system due to nickel-induced 

cellular damages.51 Another observation on nickel-induced hyperglycemia in experimental animals indicates a marked 

reduction in hepatic fructose-2-6-bisphosphate, which is an indicator of gluconeogenic and glycolytic pathways suggestive 

of increase of liver gluconeogenesis.52

In histopathological studies in the author’s laboratory, the liver showed congestion of central veins and sinusoids 

and some hepatocytes suffered from vacuolar degeneration, fatty changes, etc. (Fig. 26.2A and B). Mathur et al. also 

observed the same in nickel sulfate–treated rats.53 Results from the author’s laboratory are in agreement with those 

obtained by El-Saeed and Mekawy54, Ptashynski and Klaverkamp,55 and Sobecka56. Nickel intoxication causes a vacu-

olization of the cytoplasm, the increase in numbers of pyknotic nuclei, and the decrease in glycogen content in hepato-

cytes.57 The hydropic degeneration of hepatocytes may be due to the irritation of toxic metabolites and impairment of 

potassium sodium pump that disturbs the ion exchange through the cell wall. The increased oxidative stress, the forma-

tion of ROS as well as depletion of cellular antioxidant level may be resulted in histopathological changes of liver. Heavy 

metal–induced interstitial fibrosis, increased numbers of pyknotic nuclei, as well as necrosis in hepatocytes have also 

been reported earlier.58

4.1.2  Lead and Hepatotoxicities

Like nickel, lead too raises serum LDL-cholesterol, VLDL-cholesterol, total cholesterol and triglycerides, and decreases 

serum HDL-cholesterol and HDL/LDL ratio. It may be due to changes of the gene expression of hepatic enzymes and 

LDL receptor synthesis. Defects in the LDL-receptor interfere with cholesterol uptake from the bloodstream, which in 

turn causes excess cholesterol synthesis in the liver and high levels of serum total cholesterol and LDL-cholesterol.48 The 

improvement of serum lipid profile also reflects normalization of liver P450 enzyme system function by α-tocopherol.59 

Lead generates long-lived ROS. These might cause oxidative stress that results in oxidative deterioration of biological 

macromolecules leading to oxidative damage to the hepatic cells.60 In an experimental study, lead acetate induced increase 

plasma MDA with decreased hepatic SOD, CAR, and GSH-Px were noticed which are indicative of hepatic oxidative 

stress.61 During hepatotoxicity, these enzymes are structurally and functionally impaired by free radicals, resulting in liver 

damage. Glutathione comprises up to 90% of the nonprotein thiol content of mammalian cells and performs a pivotal role 

in maintaining their metabolic and transport functions. It acts as a nucleophilitic “scavenger” of many compounds and their 

metabolites via enzymatic and chemical mechanisms, converting electrophilic centers to ether bonds. Glutathione depletion 

to about 20%–30% of total glutathione levels can impair cell defenses against toxic actions, which may lead to cell injury 

FIGURE 26.2 Normal (A) and nickel sulfate (B)–treated rat liver histopathology (45×).



Dietary Supplementation in Heavy Metals and Hypoxia-Induced Liver Pathophysiology Chapter | 26 321

and death.21 Furthermore, glutathione is considered a crucial factor in maintaining the structural integrity of cell mem-

branes, largely through reactions that protect the membrane against free radical formation.62 Lead interacts with negatively 

charged phospholipids in membranes and through the induction of changes in membrane physical properties could facili-

tate the propagation of lipid oxidation in liver. Lead affects membrane-related processes such as the activity of membrane 

enzymes, endo- and exocytosis, transport of solutes across the bilayer, and signal transduction processes in hepatocytes 

by causing lateral phase separation.30,61 Lead-induced oxidative stress in liver caused increase of rate of production of 

hydroxyl radicals which may lead to lysosomal and mitochondrial damages. Besides these direct hepatocellular damaging 

by lead-induced ROS and reactive nitrogen species (RNS), it may also interfere cell signal transduction by reversible oxida-

tion and nitrosation of protein SHs in the hepatic sinusoid.63

Histopathological studies of lead-treated rat liver from the author’s laboratory indicated little swollen hepato-

cytes with ill-defined cell borders with variation in cellular size and shape. The nuclei are large, more vesicular with 

variable size and shape, and contain multiple three to four prominent nucleoli. The cytoplasm is vacuolated and 

microvesicular. There are foci of fatty change and ballooning degeneration and necrosis of hepatocytes in zone 3 

(centrilobular) areas.

The portal area appears mildly enlarged with mild proliferation fibrous tissue with infiltration of mixed acute and 

chronic inflammatory cells. The sinusoidal spaces are variably widened with increase in number of Kupffer cells. Central 

vein shows features of dilatation and congestion (Fig. 26.3B). Results clearly indicate hepatocellular damage by lead 

exposure.

4.2  Possible Mechanism of Altered Hepatocellular Architecture by Heavy Metals

It was found that most of the divalent heavy metals such as nickel, lead, and cadmium enter into systemic circulation from 

intestine through metal transporter proteins (MTP 1). Through circulation these metals enter first to liver via portal circula-

tion where it is absorbed through sinusoidal capillaries. In hepatocytes, these heavy metals are penetrated through specific 

membrane transporters such as DMT1, ZIP8, and ZIP14t.64,65

Heavy metals such as nickel or lead accumulate in liver and resulting hepatocellular damages induce infiltration of poly-

morphonuclear neutrophils. This in turn causes activation of Kupffer cells followed by necrosis. Usually heavy metal–acti-

vated Kupffer cells secretes several inflammatory cytokines and causes secondary liver damage.66 The exact mechanism of 

hepatocellular damages by Kupffer cells is yet to be cleared, but a possible role of free radicals, nitric oxide, tumor necrosis 

factor α (TNF-α) cannot be ruled out67 (Fig. 26.4). Studies on nickel showed hepatic apoptosis due to overexpressions of 

caspase-3, caspase-9, and PARP mRNA.68

5.  HYPOXIA AND LIVER DISEASES

Liver pathophysiology is oxygen dependent. As it is an important organ for metabolism, it is always in demand for 

oxygen. Hepatic artery, portal veins, and central veins play the pivotal role to maintain liver oxygen homeostasis.69 

It was found that liver always make oxygen microenvironment differentially than other organs. The important change 

FIGURE 26.3 Normal (A) and lead acetate– (B) treated rat liver histopathology (45×).
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in hypoxia-induced hepatocellular architecture is the formation of plasma membrane protrusion. This formation has 

numerous cytosol and endoplasmic reticulum. It ultimately causes swelling of mitochondria and near 30%–50% increase 

of cell volume. These changes can be reversed if reoxygenation to hepatocytes occurs. The hepatocytes may be perma-

nently injured if hypoxia sustains, and it will lead to complete damage of plasma membrane transport system which will 

cause release of intracellular ingredients of hepatocytes.70 Oxygen tension in periportal and perivenous part of liver is 

60–75 mmHg and 30–35 mmHg, respectively, which clearly indicates a persistent hypoxia in liver due to high metabolic 

functions.69 Study reveals that hypoxia is linked to several types of liver diseases. The mechanism by which hypoxia is 

able to change liver pathophysiology is mainly through HIF-1 and NOS2 expressions. Both these factors are involved 

in hepatocytes, Kupffer cells, and immune cells. Hypoxia in liver increases the level of TNF-α, IL-1 from hepatocytes 

which further promote ROS. These ROS in liver are found to have decreased glutathione levels and elevated oxidized 

glutathione.71 Although a direct hypoxia response to liver was not found in healthy individuals, in the case of viral 

hepatitis, metabolic diseases, steatohepatitis, and cancer, an elevation of HIFs is noticed. It has been observed that HIFs 

induce pathogenesis of hepatocellular carcinoma, and both HIF-1 α and VEGF levels were increased in hepatocellular 

carcinoma.72 Many chronic liver diseases due to vital infection, metabolic disorders, or alcoholism are found to be con-

nected with HIFs.73 Actually HIFs act as protective agents from liver injuries due to hypoxia. HIFs induce generation 

of VEGF, adenosine, nitric oxide, and Akt signaling pathways to prevent hepatocellular injuries from hypoxia.74,75 It 

is observed that Dec1 expression increases in alcoholic liver which indicates HIF-1α regulatory gene involvements to 

protect liver of alcohol toxicities. Hypoxia region of liver shows alteration of parenchymal vasculature, which leads to 

fibrosis.76 HIF-1α expression stimulates hepatic stellate cells (HSCs) and fibroblasts. Another study on NAFLD pheno-

type showed hypoxia accelerated the NAFLD phenotype with higher level of lipogenesis and inflammation.77 Another 

important phenomenon of hypoxia-induced liver injury is through ATP depletion during hepatic ischemia which also 

leads to necrotic cell death. Hypoxic liver enhances glycolytic metabolism and prevents its best against hypoxia injuries. 

In case of low glycogen in liver, hypoxia leads to rapid cellular ATP depletion and necrosis.78 Hypoxia-exposed liver 

also shows alteration of pH microenvironment. Hypoxia leads to acidosis in liver, which prevents necrotic cell death in 

liver in spite of low ATP levels.79

5.1  Hypoxia—Liver Histopathology

In histopathological studies in the author’s laboratory, the subchronic hypoxia–exposed rat liver showed endothelial cells 

surrounded by a ring of collagen fibers in the central vein. The sinusoids are lined by both endothelial cells and Kupffer 

cells both of which have inconspicuous flattened nuclei and ill-defined cytoplasmic margins. The hepatocytes are polygonal 

in shape with well-defined borders and appear to be little swollen with mild narrowing of the sinusoidal spaces. The nucleus 

is single, is round, and has a fine chromatin pattern with one to two clearly defined amphophilic prominent nucleoli. More 

or less it reflects normal architecture with insignificant changes in hypoxia-exposed rat liver (Fig. 26.5B).

FIGURE 26.4 Heavy metal–induced liver malfunctions.
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5.2  Hypoxia and Heavy Metals (Nickel and Lead)—Liver Histopathology

There is evidence of fatty change and ballooning degeneration and necrosis of hepatocytes. The portal area appears enlarged 

with severe proliferation fibrous tissue with infiltration of mixed acute and chronic inflammatory cells in nickel sulfate–

treated subchronic hypoxia-exposed rats (Fig. 26.6A). In the case of subchronic hypoxia–exposed lead acetate–treated rats, 

distorted “lobular” architecture of liver parenchyma is noticed. Hepatocytes appear to be little swollen and cytoplasm is 

vacuolated, microvesicular, and eosinophilic (Fig. 26.6B). It also shows increase in number of mitotic figures along with 

foci of fatty change and ballooning degeneration and necrosis of hepatocytes in zone 3 (centrilobular) areas. Moderate 

proliferation of a portal area with fibrous tissue with infiltration of mixed acute and chronic inflammatory cells and vari-

able widening of sinusoidal spaces along with Kupffer cell hyperplasia, dilatation, and congestion of central vein are also 

observed.

6.  HEAVY METALS (NICKEL AND LEAD), HYPOXIA, AND LIVER FUNCTIONS—ROLE OF 
DIETARY SUPPLEMENTATIONS

Dietary supplementation of protein and other antioxidants including chelators are found to be effective against metal-induced 

hepatotoxicities. It has been found that metal ions interact with protein in a coordinated manner and chelate. These protein 

chelator compounds change the toxic characteristics of heavy metals by degrading it. The mode of hepatotoxicities by toxic 

metals such as nickel and lead are similar with hypoxia exposure. The cell signal pathways of nickel or lead and hypoxia 

FIGURE 26.5 Normal (A) and chronic hypoxia- (B) exposed rat liver histopathology (45×).

FIGURE 26.6 Hypoxia exposed with nickel sulfate– (A) and lead acetate– (B) treated rat liver histopathology (45×).
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usually take place through HIF-1α expressions and further manifestation of expression of hepatic VEGF and NOS2. Both 

nickel or lead and hypoxia exposure induce ROS and inflammatory cytokines and damages hepatocytes, and interestingly, 

dietary supplementation of antioxidants such as vitamins C or E and high proteins combat the toxicities from these exposures.

6.1  Heavy Metals, Liver Functions, and Dietary Supplementation

The most common therapeutic way to combat heavy metal toxicity is chelation therapy which leads to metal excretion, but 

chelators themselves have many contraindications. Chelators such as EDTA and meso-2,3-dimercaptosuccinic acid (DMSA) 

are routinely used against Pb poisoning, but no such chelators are found to detoxify nickel poisoning so far. Hence alterna-

tive therapy, especially dietary supplementation, is now gaining momentum against heavy metal poisoning. As per WHO and 

the US Dietary Supplements Health and Education Act (DSHEA) of 1994, vitamins, minerals, herbs, amino acids, or other 

food substances additionally supplemented in diets are considered as dietary supplementation.80 Most of the cases these 

dietary supplementations are found to be safe for health.81 Some studies showed that Zn or Se are protective against Pb and 

Ni toxicity in liver, kidney, and brain. These micronutrients facilitate antioxidant defense mechanisms of metabolically active 

tissues including liver by acting as cofactor for synthesis of glutathione peroxidase (GSH-Px).82 One interesting observation 

is the beneficial role of iron supplementation in metal exposure. In presence of dietary supplemented iron, it competes with 

other divalent cations derived from metals such as Ni, Cd, or lead at the level of its transporter proteins such as divalent metal 

transporter-1 (DMT1) and metal transporter protein 1 (MTP1) in the intestine and reduced uptake of these heavy metals.83 

Dietary supplementations of some elements such as calcium or magnesium are also found to be effective against Pb or Ni 

toxicity. The elements usually decreases heavy metal absorption from intestine or competitively binds with active sites of 

intracellular metal-binding protein in hepatic tissues and prevent heavy metals such as nickel, cadmium, and lead to exert 

hepatic tissue damages.84,85 Some dietary supplementations such as Allium sativum Linn (garlic) were found to be hepato-

protective against heavy metals such as nickel and chromium VI.86 Garlic has been found to be effective against heavy metal 

toxicities in liver through a number of mechanisms, such as scavenging radicals, increasing glutathione levels, increasing the 

activities of enzymes such as glutathione S-transferase and catalase, and inhibiting cytochrome p4502E1. Studies of Vimal 

and Devaki87 showed that allicin (diallyl thiosulfinate) which is the main biological active compound derived from crushed 

garlic is highly protective against Cr VI– or lead-induced hepatic lipid peroxidation. Garlic also contains a number of amino 

acids that are required for the formation of an enzymatic antidote to free radical pathology, which is created by various pol-

lutants including heavy metals. Cysteine, glutamine, isoleucine, and methionine found in garlic help to protect the liver cells 

from such free radical damage.88,89 Raw garlic extract can effectively protect the body from metal toxicity. Garlic contains 

the highest level of the antioxidant selenium, which affords excellent hepatocellular protection.89 Vitamin supplementations 

in diet are extremely popular against heavy metal toxicities as low concentration of vitamins C, B1 and B6 are found to 

have increased sensitivity toward Cd, Ni, and Pb toxicity in hepatic tissues.90 It is further observed that vitamins C and E 

are natural exogenous nonenzymatic antioxidants which prevent liver from oxidative stress by preventing hepatic lipid per-

oxidation.47 Besides antioxidant actions, vitamin C also acts as a chelating agent like EDTA against Pb toxicities in hepatic 

tissues.91 Experimental study in rats has shown a beneficial effect of vitamin E pretreatment against heavy metals induced an 

alteration in liver antioxidant defense mechanisms.20,92 Supplementation of vitamins B1 and B6 were found to be effective 

in decreasing Pb concentration in liver by reversing ALAD activity. Vitamin B1 facilitates Pb excretion and reduces the Pb 

toxicity.93 Other good hepatoprotective agents against heavy metal toxicity are black tea or green tea, grapes, and tomatoes. 

The bioactive constituent of these edibles are mainly catechins, flavonoids, and polyphenols. These compounds are antioxi-

dants by nature and act as chelators against Pb-, Ni-, or Cd-induced hepatotoxicity.94–96 Some other plants such as liquorice 

(Glycyrrhizae radix) and ginseng (Panax ginseng Meyer) are also found to be effective against Cd-, nickel-, and Pb-induced 

hepatotoxicities. These plants are routinely used in diet by Chinese, Malaysians, and Africans.97,98 Currently, some probiotics 

such as Lactobacillus rhamnosus, L. plantarum, and Bifidobacterium longum are found to be effectively neutralizing heavy 

metals in vitro. Besides this, these probiotics also act as antioxidants. Probiotic such as L. plantarum CCFM8610 is capable 

to reduce intestinal absorption of heavy metals and reduces metals deposition in liver and reversing hepatocellular damages 

due to heavy metal toxicities.99,100 Another dietary option against heavy metal–induced hepatotoxicity is use of algae as it 

contains good amount of vitamin C, vitamin E, carotene, etc. which help to reduce heavy metal–induced oxidative stress.101 

High dietary supplementation of protein was also found to be effective in liver metabolism against nickel-induced toxicities.6

6.2  Hypoxia, Liver Function, and Dietary Supplementation

It has been found that supplementation of vitamins C and E on hypoxic rats improves hepatic glutathione level as compared 

with only hypoxia-exposed rats. It may be due to antioxidant vitamins C and E protect thiol status in the liver from hypoxia 
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injuries.20 Antioxidant vitamins such as vitamins C and E also protect hepatocellular reduction of GSH-Px due to hypoxia 

exposure by decreasing phospholipid hydroperoxides in the cell membrane and prevent further lipid peroxidation.20 These 

two antioxidant vitamins usually conjugate with GSH-Px and are able to decrease phospholipid hydroperoxide in liver 

to inhibit lipid peroxidation.102 Results show that vitamin C and vitamin E are oxidized by ROS and RNS generated by 

hypoxia exposure in liver tissues. During combating with these TOS and RNS, tissue produce superoxide, hydroxyl, per-

oxyl, and nitroxide radicals, as well as nonradical reactive species such as singlet oxygen, peroxynitrite, and hypochlorate. 

These scavenging actions truly prevent lipid peroxidation, DNA and protein damage in liver. These antioxidants further 

enter into mitochondria and guard it from oxidative stress–induced damages. It must be noted that mitochondria of living 

cells including hepatocytes generate lots of intracellular ROS, and vitamins C and E supplementation defend mitochondrial 

genome.103 Study shows that hypoxia exposure leads to decrease of hepatic concentration of vitamin C which may be due 

to overutilization of vitamin C by the liver tissues to counteract altered oxygen microenvironment in liver.11 It was noticed 

that supplementation of vitamin E modifies altered oxygen-sensitive VEGF protein expression in hepatic tissues of hypoxic 

rats which may be through NOS2. In addition to direct cellular oxidant injury by hypoxia exposure, ROS and RNS may 

constitute signals regulating by either protein function through reversible oxidation and/or nitrosation of protein SHs or 

gene expression, in the hepatic sinusoid. Normally nitric oxide (NO) is synthesized by NOS2 gene expression and produced 

RNS in liver due to hypoxia-exposed low-oxygen microenvironment. Such low-oxygen microenvironment in hepatocytes, 

Kupffer cells, and endothelial cells generate redox-sensitive transcription factor NF-Kβ.104 Study also revealed that the 

hepatoprotective effect of vitamins C and E under conditions of hypoxia appears to be due to its influence on the functional 

activity of adrenal glands. It was reported that these antioxidant vitamins enhanced noradrenaline-mediated activity in 

hypoxia through an iodoacetic acid–sensitive pathway.105

6.3  Heavy Metals, Hypoxia, and Liver Functions—Dietary Supplementation

Heavy metals such as nickel or lead and hypoxia exposure in liver tissues damage its integrity and develop hepatic 

malfunctions through ROS and RNS regulatory system. Interestingly, the toxic manifestation for both heavy met-

als and hypoxia in hepatic tissues are common by nature, i.e. increasing production of ROS and RNS subsequently 

increase expression of HIF-1 α. It was found that HIF-1α which expresses in tissue exposed to hypoxia as adaptive 

mechanism is important to regulate metabolism in liver and kidney.106 Furthermore, it is noticed that HIF-1 plays an 

important role to develop fatty liver and hepatic fibrosis. It is also noticed that hypoxic area in fibrotic liver due to heavy 

metals or chronic hypoxia exposure localized with VEGF expression in hepatocytes and HSCs.107

The possible mechanism by which vitamins C and E counteract HIF-1α transcription factor expression may 

be through regulating/inhibiting ROS formation and indirectly controlling over production of RNS. Hypoxia- and 

heavy metal treatment–induced HIF-1α gene transcription actually facilitate VEGF gene expression in hepatocytes 

to improve adaptability against chronic sustained hypoxia and metal-induced cellular hypoxia in physiological sys-

tem.108 Reports suggested existence of a feedback mechanism between ROS production and HIF-1 α in metabolically 

active tissues, although this link is a complex phenomenon which involves oxidative phosphorelation in response to 

hypoxia or heavy metals.109 Furthermore, it is noticed that oxidative phsophorylation in metabolic tissues modulate not 

only ROS but also oxygen redistribution and consumption by interfering HIF-1α degradation pathways and over expression 

of endogenous antioxidant enzymes.110

6.3.1  Heavy Metals, Hypoxia, Vitamin C and E Supplementation—Liver Histopathology

The author’s laboratory shows histopathological changes in nickel- and lead-treated rat liver with or without supplementa-

tion of vitamin C and E (Fig. 26.7A–G).

Fig. 26.7C and D shows the effect of vitamins C and E supplementation on nickel-treated rat liver histopathology. It 

shows that the hepatic parenchymal tissue architecture is maintained normal, which is composed of numerous hexagonal 

to pyramidal “lobules.” Each lobule consists of a central vein from which the hepatic plates radiate outward toward the 

portal areas; three to five portal triads are located at the periphery of the lobule containing branches of bile duct, portal vein, 

and hepatic artery; and occasional mononuclear cells. Cords of hepatocytes and blood-containing sinusoids radiate from 

central vein to the peripheral portal triads. The hepatocytes are large having well-defined cell borders with mild variation 

in cellular size and shape. The nuclei are round, regular, and vesicular with one to two prominent nucleoli. The cytoplasm 

is eosinophilic and hypergranular. The portal area appears mildly enlarged with mild proliferation fibrous tissue. The sinu-

soidal space appears normal with moderate number of Kupffer cells. Central vein shows features of mild dilatation and 

congestion. No foci of fatty change/hyaline change/degeneration/necrosis/inflammatory reaction are found in vitamins 
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C and E supplemented nickel-exposed rats. Results clearly indicate an improvement of hepatic architecture in nickel- or 

lead-exposed rats supplemented with either vitamin C or vitamin E. Fig. 26.7F shows hepatic parenchymal tissue with mild 

distortion of “lobular” architecture which is consisting of a central vein, hepatic plates, and portal areas containing branches 

of bile duct, portal vein, and hepatic artery in vitamin C–supplemented lead treated rat. The hepatocytes are large having 

ill-defined cell borders with mild variation in cellular size and shape. The nuclei are round, regular, and vesicular with one 

to two prominent nucleoli. The cytoplasm is vacuolated to clear type with decreasing eosinophilia containing micro/macro 

vesiculations. There are mild foci of fatty change and ballooning degeneration and necrosis of hepatocytes in zone 3 (cen-

trilobular) areas. The portal area appears mildly enlarged with mild proliferation fibrous tissue with infiltration of mixed 

acute and chronic inflammatory cells. The sinusoidal spaces are variably widened with pronounced increase in number of 

Kupffer cells. Central vein shows features of dilatation and congestion. Fig. 26.7G shows near normal architecture of liver 

parenchyma. Hepatocytes appear normal with sinusoidal spaces that appear normal with moderate number of Kupffer cells. 

Cytoplasm is eosinophilic and central vein appears normal. Results indicate vitamin E is a better protector than vitamin C 

against lead-induced hepatotoxicities.

The study on experimental rats in the author’s laboratory shows the liver histopathology in hypoxia-exposed and vita-

mins C and E–supplemented hypoxia-exposed rats (Fig. 26.8A–D).

FIGURE 26.7 Normal (A), nickel sulfate– (B), nickel sulfate with vitamin C– (C), nickel sulfate with vitamin E– (D), lead acetate– (E), lead acetate 

with vitamin C– (F), and lead acetate with vitamin E– (G) treated rat liver histopathology (45×).
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Fig. 26.8B shows hypoxic liver architecture. The central veins are lined by endothelial cells surrounded by a ring of col-

lagen fibers. The sinusoids are lined by both endothelial cells and Kupffer cells both of which have inconspicuous flattened 

nuclei and ill-defined cytoplasmic margins. The hepatocytes are polygonal in shape with well-defined borders and appear to be 

little swollen with mild narrowing of the sinusoidal spaces. Microscopic profile shows normal architecture of liver parenchyma 

maintained with mild narrowing of the sinusoidal spaces. Cytoplasm is more eosinophilic and hypergranular. Fig. 26.8C 

showed vitamin C shows normal architecture of liver parenchyma is maintained. Mild narrowing of the sinusoidal spaces with 

portal triad shows mild proliferation with mild thickening of basement membrane of the blood vessels. No obvious significant 

changes are noticed. In the case of vitamin E–supplemented hypoxic rat liver, normal architecture of liver parenchyma is main-

tained but hepatocytes appear to be little swollen with mild narrowing of the sinusoidal spaces. The nucleus is single, is round, 

and has a fine chromatin pattern with zone 1 to 2 clearly defined amphophilic-prominent nucleoli (Fig. 26.8D). Fig. 26.9A 

shows effect of vitamin C supplementation on hypoxia-exposed nickel (Ni)-treated rat liver. The experimental studies from 

the author’s laboratory on histopathology of liver clearly indicate near normal architecture of liver parenchyma. Hepatocytes 

appear normal, and sinusoidal spaces appear also normal with moderate number of Kupffer cells. Cytoplasm is appeared to 

be eosinophilic. Histopathology also indicates normal central vein with normal portal triad. Results show beneficial effect of 

vitamin C on nickel-treated hypoxic rat liver as compared with rats without vitamin C supplementation (Fig. 26.6A). In case 

of vitamin E supplementation on nickel-treated hypoxic rats, mild distortion of “lobular” architecture of liver parenchyma and 

large hepatocytes with mild variation in cellular size and shape are observed (Fig. 26.9B). Furthermore, liver histopathology 

reveals that cytoplasm is vacuolated to clear type with decreasing eosinophilia containing micro- and macrovesiculations. 

There are foci of fatty change and ballooning degeneration and necrosis of hepatocytes in zone 3 (centrilobular) areas and 

mild proliferation of portal area with fibrous tissue with infiltration of mixed acute and chronic inflammatory cells. Variable 

widening of sinusoidal spaces are also seen (Fig. 26.9B). Although results indicate a relative beneficial effect of vitamin E 

supplementation on nickel-treated hypoxic rat liver when compared with nickel-exposed hypoxic rats (Fig. 26.6A), it looked 

relatively less beneficial when compared with vitamin C–supplemented nickel-treated hypoxic rats (Fig. 26.9A).

FIGURE 26.8 Normal (A), hypoxia exposed (B), hypoxia exposed with vitamin C– (C), and hypoxia exposed with vitamin E–supplemented rat liver 

histopathology (45×).
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In authors’ laboratory, liver histopathology of lead (Pb)-treated hypoxic rats supplemented with vitamins C and E 

was also done. Results show a normal architecture of liver parenchyma with mild swollen hepatocytes. Mild narrow-

ing of the sinusoidal spaces was also observed. Portal triad shows mild proliferation with mild thickening of basement 

membrane of the blood vessels. There were no foci of fatty change or necrosis or inflammatory reaction in histopathol-

ogy of liver observed (Fig. 26.9C). Fig. 26.9D shows the liver histopathology of Pb-treated hypoxic rats supplemented 

with vitamin E. Mild distortion of “lobular” architecture of liver parenchyma and vacuolated cytoplasm with decreasing 

eosinophilia containing micro-and macrovesiculations is noticed. Furthermore, mild proliferation of portal area with 

fibrous tissue with infiltration of mixed acute and chronic inflammatory cells is also found. Central vein shows features 

of dilatation and congestion. Results definitely indicate a relative beneficial role of vitamin E supplementation on liver 

histopathology in lead (Pb)-treated hypoxic rats as compared with lead-treated hypoxic rats without vitamin E supple-

mentation (Fig. 26.6B).

7.  CONCLUSION

It may be postulated that heavy metals such as nickel (Ni) or lead (Pb) cause serious cellular damages including hepatocel-

lular damages. Interestingly, chronic sustained hypoxia also induces hepatotoxicities. The molecular mechanisms involved 

in both the cases are similar by nature.

Heavy metals such as nickel or lead induce hypoxia over expressions of HIF-1α in hepatocellular environment 

which will be followed by generation of ROS and further expression of VEGF and NOS2 gene in liver. This over-

expression of HIF-1α also alters hepatic glycolytic pathways by changing Glut1, LDH, and PFR genes. All these 

changes lead to hepatocellular damages (Fig. 26.10). Dietary supplements, especially antioxidants such as vitamins 

C and E are found to be beneficial as they suppress either metal- or hypoxia-induced hypoxia gene expressions in 

hepatocytes.

FIGURE 26.9 Nickel and hypoxia exposed vitamin C– (A) and vitamin E– (B) supplemented; lead and hypoxia exposed vitamin C– (C) and vitamin 

E– (D) supplemented rat liver histopathology (45×).
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