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ABSTRACT 
 

Hypoxia is a pathological condition that can directly impair the metabolic pathways 

in the living cells. Interestingly, physiological hypoxia is an important micro-

environmental signal, in a range of processes including new blood vessel formation 

(angiogenesis) during development, wound healing, regulation of vascular tone and 

response to exercise. Its effects are usually mediated via the activation of hypoxia 

inducible factor 1 (HIF-1α), besides nitric oxide (NO) - an important key factor of 

hypoxia-induced responses. The low oxygen sensing at the cellular level exerts its 

defense through HIF-1α by increasing hypoxia adaptability but it cannot prevent the 

generation of free radicals through endothelial cellular oxidative stress which may lead to 

lysosomal, mitochondrial and microsomal damage, resulting in organelle dysfunction. 

Beside these actions, hypoxia induced oxidative stress greatly impairs cell signal 

transduction by altering gene expression in hypoxia sensitive tissues. It has also been 

found that cellular adaptation to low oxygen is compromised in the presence of 

hyperglycemia, culminating in increased cell death and tissue dysfunction. An excessive 

accumulation of reactive oxygen species can elevate antioxidant enzymes and then impair 
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beta cell functions. Recent observation reveals that chronic intermittent hypoxia (CIH) 

activates NADPH oxidase which is very important for HIF-1α expression and ROS 

production. NADPH oxidase hyperactivity also changes intracellular calcium 

homeostasis and stimulate further HIF-1α production, subsequently resulting in more 

ROS generation. High concentration of ROS excites carotid bodies that influences 

sympathetic adrenergic activities via chemoreflex, alters catecholamine and insulin 

secretary mechanisms. 

A link between hypoxia and glucose homeostasis has already been established. 

Present authors further ascertained that glucose homeostasis due to hypoxia can be 

modulated by supplementation of either vitamin C or L/N type calcium channel blocker, 

cilnidipine. 

This chapter provides understanding of the relationship between hypoxia induced 

increased sympathetic activation and consequent impaired glucose homeostasis. The 

chapter also highlights how hyperglycemia augments oxidative stress and induces the 

overproduction of ROS which modulates HIF-1α regulation and possible protective 

actions of antioxidant (vitamin c) and L/N type of Ca++ channel blocker (cilnidipine) 

against hypoxia induced altered pathophysiology in mammalian systems. 

 

 

INTRODUCTION 
 

The relationship between hypoxia and oxidative stress is really interesting in the domain 

of hypoxia research or free radical biology research. Various evidences suggest that hypoxia 

induced stress results in alterations in glucose homeostasis (Pi and Collins, 2010). Free 

radicals are reactive species which have unpaired solitary electron in its outer atomic orbital; 

these include the hydrogen atom (H•); the diatomic oxygen molecule O2, which possesses two 

unpaired electrons with the same spin in two separate orbitals; Nitric oxide (NO•), superoxide 

(O•−
2); hydroxyl radical (•OH); and transition metals, such as copper and iron. While O2 

qualifies as a radical by having two unpaired electrons, its reactivity with nonradical 

compounds is limited because the unpaired electrons in molecular oxygen have the same spin 

state. For molecular O2 to react with a non radical, one of the two electrons involved in its 

covalent bond need to undergo “spin inversion’; so that both the electrons exert an anti spin 

action on molecular oxygen in a slow reactive process. 

O2 does react readily with radicals, accepting one electron at a time to form the very 

reactive superoxide radical O•−
2, which has one unpaired electron (Poyton, 2009). It has been 

noticed that most reactive oxygen species (ROS) are generated in cells by the mitochondrial 

respiratory chain. Mitochondrial ROS production is regulated largely by the rate of electron 

flow through respiratory chain complexes. Recently, it has become clear that under hypoxic 

conditions, the mitochondrial respiratory chain also produces nitric oxide (NO), which can 

generate other reactive nitrogen species (RNS). Although excess ROS and RNS can lead to 

oxidative and nitrosative stress, moderate to low levels of both can modulate cellular 

signaling pathways. Especially important are the roles of these mitochondrially generated free 

radicals in hypoxic signaling pathways, which have important implications in cancer, 

inflammation and a variety of other diseases (Dugan and Choi, 1999). Hypoxia and free 

radicals like reactive oxygen and nitrogen species, can alter the functions of the transcription 

factor- hypoxia-inducible factor 1 (HIF1). It has also been found that free radicals generated 

by hypoxia, hypoxia–reoxygenation cycling and immune cell infiltration after cytotoxic 

therapy strongly influence HIF1 activity (Mark et al., 2008). Physiological hypoxia is found 
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to be an important cellular signal that modulates new blood vessel formation (angiogenesis) 

during wound healing, regulation of vascular tone and response to exercise (Ratcliffe, 1998). 

However, tissue hypoxia is also associated with a diverse and wide range of 

pathophysiological processes including (but not limited to) vascular diseases, chronic 

inflammation and cancer. In vascular diseases such as atherosclerosis and stroke, vascular 

occlusion leads to acute or chronic tissue ischemia with resultant hypoxia. In chronic 

inflammatory disease, the greatly increased metabolism of inflamed tissue due to immune cell 

infiltration matched with vascular dysfunction leads to tissue hypoxia (Taylor, 2008; Fraisl et 

al., 2009). A relation between increased sympathetic activation and hypoxia with consequent 

impaired glucose homeostasis provides possible counteraction with N-type calcium channel 

blockers, which are normally used to control hypertension or heart diseases (Peltonen, 2012). 

Studies further revealed that sympathetic over activities may be regulated by either direct 

influences of hypoxia via chemoreceptor or through increase in HIF-1α or through ROS (Das 

et al., 2016). 

 

 

HYPOXIA: AN OVERVIEW 
 

Low oxygen sensing limits prolyl hydroxylase activity and HIF-1 α ubiquitination 

process and activates HIF-1 transcription factors. However, the level of HIF-1 α also 

increases via an O2 –independent mechanism (Jiang et al., 2001). Expression of HIF-1 α 

induces several growth factors, such as epidermal growth factor, heregulin, insulin-like 

growth factors (IGFs) I and -II, and insulin induced expression of these protein under 

nonhypoxic conditions (Isaacs et al., 2002; Semenza, 2003). These factors bind to cognate 

receptor tyrosine kinases and activate the PI3K or mitogen-activated protein kinase (MAPK) 

pathway which in turn increases the rate of HIF-1 α protein synthesis itself. PI3K-Akt and 

MAPK have also been implicated in the stabilization of HIF-1 α induced by oncogenes, 

hypoxia and growth factors (Semenza, 2003). HIF-1 α also associates with the molecular 

chaperone heat shock protein 90 (Hsp90); pharmacologic disruption of this association 

promotes the ubiquitination and proteasome-mediated degradation of HIF-1 α, independent of 

oxygen and VHL (Isaacs et al., 2002), suggesting that inhibitors of HIF-1 α and Hsp90 could 

be used to regulate the expression of hypoxia- or IGF-I induced HIF-1 α protein. It has been 

found that hypoxia leads to increase in intracellular free calcium concentration ([Ca2+]i),  

5-lipoxygenase, lipid peroxidation, cycloxygenase (COX), constitutive nitric oxide synthase 

(cNOS), leukotriene B4 (LTB4), prostaglandin E2 (PGE2), interlukins, tumor necrosis factor-

α (TNF- α), caspases, complement activation, Kruppel-like factor 6 (KLF6), inducible nitric 

oxide synthase (iNOS), heat shock protein 70 kDa (HSP-70) and hypoxia-inducible factor-1α 

(HIF-1α) (Moore et al., 1994; Kiang, 2004). 
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Figure 1. Hypoxia-induced cellular malfunctions. KLF4: Kruppel-like factor 4 

HIF-1 α:Hypoxia-inducible factor-1 (HIF-1) is a heterodimer consisting of regulatory 

subunit HIF-1α and constitutive subunit HIF-1β (Wang et al., 1995). In oxygen deficiency, 

HIF-1 α expression is regulated by a post-translational protein stabilitymechanism mediated 

by a family of prolyl hydroxylases (PHDs). HIF-1 is also activated in normoxic condition by 

several physiological stimuli like growth factors, hormones, cytokines, transition metals and 

infectious agents (Richard and Berra, 2000; Salnikow et al., 2004). An interesting link 

between insulin regulatory several genes which are important for energy and iron homeostasis 

mediated by HIF-1 in hepatic and skeletal muscle cells was found (Treins et al., 2002). It was 

also noticed that HIF-1 α target genes are involved in the adaptive response facilitating 

oxygen delivery to oxygen-deprived tissues. This includes genes coding for erythropoietin, 

VEGF-A and inducible NOS (NOS2). The erythropoietin (EPO)gene, encoding a kidney 

hormone, was discovered as the first true hypoxia-inducible gene in 1992. EPO stimulates red 

blood cell production (erythropoiesis), thereby increasing oxygen delivery (Das and Saha, 

2014). 

HIF-1 α and ROS:ROS mediated NF-kB activation has so far been reported to regulate 

HIF-1a transcription (Bonello et al., 2007). ROS is either added as H2O2, generated by NOX 

activator thrombin or by over-expression of subunit NOX4 which in turn induces NF-kB to 

promote HIF-1a transcription (Gorlach et al., 2001). Interestingly, basal expression of HIF-1a 

is controlled by NF-kB and MAPK in vivo. The mechanisms of ROS generation in hypoxia 

through HIF-1α by different agonists play the role of critical determinants of adopting 

specific cellular signaling pathway that lead to specific set of gene regulations (Singh et al., 

2005; Tapryal et al., 2010). Whether a similar pathway is involved in different mechanisms of 

HIF-1 activation by different cellular sources of ROS need to be investigated further. 

Although ROS found to have some regulatory functional control on HIF-1, but it is still 

debatable whether hypoxia elevated or reduced ROS levels. Contradictory results may occur 

due to differences in cell type, mode of generating hypoxia, oxygen levels and assays used to 
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measure ROS (Das and Saha, 2014). Recent findings suggest that the primary sensor of 

hypoxia for the development of pulmonary vasoconstriction is the PASMC (pulmonary artery 

smooth muscle cell) mitochondria, which increases the production of ROS at low pressure of 

O2, probably in the complex III of the electron transport chain. It is possible that there are 

secondary sensing mechanisms that contribute to this effect, which increase the production of 

ROS during hypoxia such as sarcolemmal NADPH oxidase from pulmonary vasculature. 

Researchers have demonstrated an increase in the mitochondrial ROS generation in various 

tissues in response to hypoxia, including PASMC (Das and Saha, 2014; Wang et al., 2007). 

Besides ROS, excessive nitrite as nitric oxide, is also produced due to hyper activities of 

NOS2 gene through HIF-1α. It causes cytotoxicity due to pathological manifestation of 

altered normal cell metabolism. 

Usually high concentration of intracellular NO also induces a negative feedback 

mechanism to control HIF-1α transcriptional factor gene (Das, 2009). 

 

 

Figure 2. Hypoxia signaling through ROS. 

 

HYPOXIA AND OXIDATIVE STRESS – MOLECULAR INTERACTIONS 
 

Oxygen free radicals produced during stress are unstable and potentially interact with 

other cellular components or molecules. ROS signals generated during hypoxia; activate 

protective responses, including HIF activation (Mungai, 2011). It is well established that 

hypoxia, mainly mediated through the hypoxia-inducible factors (HIFs), enhances the 

“Warburg effect” by up-regulating glycolytic genes such as hexokinases, LDH-A, and GLUT 

(Dang, 2007). These findings reveal close and complex interaction between cell metabolism 

and its microenvironments. ROS is also believed to play a role in the HIF-1 signaling 

pathway during hypoxia. Cells with non-functional mitochondria, therefore, reduced ROS 

levels, were unable to stabilize HIF-1α in response to hypoxia (Chandel et al., 2000; 

Mansfield, 2005). Oxidative stress which increased HIF-1α levels, enhanced HIF-1 DNA 

binding and increased activation of HIF-1 regulated gene promoters. This results in increased 

levels of hypoxia regulated proteins such as VEGF and cyclooxygenase-2 (COX-2) (Jones  

et al., Csiki et al., 2006). 

Hypoxia and cell signaling mechanisms: Yuan and co-workers found that increase in 

HIF-1 through ROS may induce a Ca++ dependent pathways. They demonstrated the 

involvement of calcium-calmodium dependent kinase II (CaMK II) under chronic hypoxia. 

CaMK II phosphorylates p300, a co-activator required for the transcriptional activity of HIF-

1, thereby increasing the HIF-1 transactivation (Yuan G et al., 2005). In contrast, under acute 

hypoxia, HIF-1 transcriptional activity is increased as a result of a decrease in the O2 

dependent asparaginyl hydroxylation in the CAD region of HIF-1α, assisting in the 

recruitment of co-activators (Lando D et al., 2002). Another very interesting contrast 

observation on HIF-1 is to notice a positively targets BCL2/adenovirus E1B 19 kd-interacting 
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protein 3 (BNIP3) expression under hypoxic stress (Zhang, 2008). This leads to a reduction in 

mitochondrial activity and prevents reactive oxygen species (ROS) generation that is 

produced from oxidative phosphorylation. ROS production from complex III of the electron 

transport chain in the mitochondria has been shown to stabilize and thereby promote HIF-1 

activity. This is most likely by the oxidation of Fe2+ to Fe3+ and inactivating PHD activity for 

the hydroxylation of the ODDD on HIF-1 (Guzy et al., 2005). The hypoxic cell usually takes 

anaerobic glycolytic pathways to generate ATP, whereas its residual low oxygen supply 

supports some level of oxidative production of ATP through the tricarboxylic acid cycle and 

electron transport chain (ETC). Electrons leaking from the mitochondrial ETC actually 

generate an excess of reactive oxygen species (ROS) in normal hypoxic cell. Reoxygenation 

or high oxygen levels following severe hypoxia further exaggerate ROS generation (Kulkarni 

et al., 2007). Hypoxia is found to be closely related to oxidative stress. Activation of HIF-1α 

reduces, whereas its inhibition increases ROS generation (Kim et al., 2006). Concurrently, 

oxidative stress exacerbates the status of hypoxia. In vitro studies in rat proximal tubular cells 

or in vivo studies in streptozotocin-induced diabetic rats show that high glucose depresses the 

activation of HIF, an effect fully reversed by treatment with antioxidants, such as α-

tocopherol or tempol (Rosenberger et al., 2008). Beside these, NADPH oxidase activation 

also stimulates hypoxia (Yang et al., 2003). Hence, it may be clearly stated that hypoxia and 

oxidative stress are closely linked. It has been estimated that, under normoxic physiological 

conditions, 1–2% of electron flow through the mitochondrial respiratory chain gives rise to 

ROS(Turrens, 1997). It might be expected that hypoxia would decrease ROS production, due 

to the low level of O2 and might diminish mitochondrial respiration, but ROS level is actually 

increased (Papandreou et al., 2006). Chandel et al., (1998) provided good evidence that 

mitochondrial reactive oxygen species triggers hypoxia-induced transcription and also 

showed that ROS generated at Complex III of the mitochondrial respiratory chain stabilize 

HIF-1α during hypoxia. Although others have proposed mechanisms indicating a key role of 

mitochondria in HIF-1α regulation during hypoxia (Rosca et al., 2008) but many scientists 

contradicted the role of mitochondria on HIF-1 regulation (Bell et al., 2008). During hypoxia 

mitochondrial electron transport system slows down and that causes augmentation of 

reducing equivalents resulting in production of superoxide at low oxygen concentration. It is 

also to be noted that hypoxia induces epigenetic repression of the PKC gene through a 

NADPH oxidase-independent ROS-mediated pathways (Patterson et al., 2010). Studies also 

demonstrated that prolonged hypoxia, in the presence of low or high glucose, significantly 

decreased PKC protein abundance in cultured H9c2 cells (Kim et al., 2004).  

Hypoxia and glucose homeostasis: The relationship between hypoxia and glucose 

homeostasis always generates interest. Recent observation reveals that hypoxia activates 

NADPH oxidase which is very important for HIF-1 expression and ROS production. NADPH 

oxidase hyperactivity also changes intracellular calcium homeostasis and further stimulates 

HIF 1 production subsequently generatemore ROS. High concentration of ROS excites 

carotid bodies and adrenal medulla that influences adrenergic activities via chemoreflex and 

alters catecholamine status (Nanduri et al., 2015). Relation between increased sympathetic 

activation and hypoxia with consequent impaired glucose homeostasis provides a possible 

protective counteraction with N-type calcium channel blockers which are normally used to 

control hypertension or heart diseases (Peltonen, 2012). Study revealed that fasting glycemia 

gets corrected after withdrawal of two weeks hypoxia exposure but insulin resistance and beta 

cell abnormalities remain unchanged (Polak et al., 2013). The observation on high altitude 
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hypoxia revealed that increase in concentrations of glucose and insulin occur due to 

consequence of a transient peripheral insulin resistance (Larsen et al., 1997). It is also noticed 

that circulatory glucagon level is also modulated by hypoxia. Some studies show that acute 

hypoxia or intermittent hypoxia increases plasma glucose and insulin levels in the early 

phase, indicating that hypoxia induces glucose intolerance in humans (Oltmanns et al., 2004) 

and increases insulin resistance in genetically obese mice (Polotsky et al., 2003). Based on 

several studies it may be postulated that exposure to hypoxia would increase whole-body 

insulin resistance, induce beta cell dysfunction and augment hepatic glucose output, which 

collectively would lead to fasting and postprandial hyperglycemia (Polak et al., 2013). The 

signal transduction for hypoxia and glucose homeostasis also highlight insulin sensitivity 

through HIF-2α, which then increases Irs2 transcription and insulin-stimulated Akt activation. 

HIF-2αand Irs2 are, both necessary for the improved insulin sensitivity, as knocked down of 

either molecule disturb the glucose tolerance and insulin-stimulated Akt phosphorylation 

(Cullen, 2013). 

 

 

HYPOXIA, OXIDATIVE STRESS, ANTIOXIDANTS 
 

The exposure of experimental animals to hypoxia has been widely used in many 

morphological and physiological studies. These studies dealt mostly with changes in the 

structure of pulmonary vessels (Davies et al., 1985).The decrease in tissue oxygenation 

induced by hypoxia alters many physiological and psychological processes in an elevation 

and duration-dependent fashion. The exposure of an organism to transient hypoxic stress 

activates respiratory and circulatory systems and adrenal glands and affects neurotransmitter 

release and action in the central nervous system. Kumar et al., (1989) have found the short 

exposure (5 days) to an altitude of 7576 m caused increased plasma lipid peroxidation level in 

rats. This result was confirmed by the same experimental protocol adding vitamin E 

supplemented groups (Ilavazhagan et al., 2001). Elucidating the mechanisms by which 

mammalian cells and organisms adapt to acute and chronic perturbations in ambient oxygen 

tension is critical for the understanding homeostasis maintenance and consequently the 

development of therapeutic strategies to counteract hypoxia-induced cell damage. HIF1  

which plays a major role in mediating hypoxia -induced toxicity in mouse embryonic 

fibroblasts, is constitutively expressed in all cells but is almost immediately dissociates in the 

presence of oxygen. However, under conditions of hypoxia, it accumulates within cells and 

induces transcription of its target genes. Recently, vitamin C has been found to be an essential 

cofactor in the HIF-1α degradation pathway. HIF-1α is a transcriptional activator that 

regulates the expression of a number of hypoxia-responsive genes such as erythropoietin, 

heme oxygenase, and vascular endothelial growth factor (Botusan et al., 2008).Under 

normoxic conditions, reactive oxygen species (constantly generated in erythrocytes) are 

mostly neutralized by their intrinsic antioxidant enzymatic and non-enzymatic defense 

mechanism such as superoxide dismutase, glutathione peroxidase, catalase or reduced 

glutathione (Kurata et al., 1993). However, under the conditions of hypoxia, autooxidation of 

hemoglobin is facilitated and an increased flux of superoxide radicals occurs (Rifkind et 

al.1991; Das, 2010). 
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Hypoxia inducible factor-1α (HIF-1α) transcription factor expressed in chronic sustained 

hypoxia provides capabilities against hypoxia injuries by increase in expression of VEGF 

gene or NOS2 gene in all the metabolically active tissues. It was found that VEGF over 

expression due to chronic hypoxia exposure in rats actually causes a protective measure 

against hypoxia induced cellular hypoxia. Role of antioxidant vitamins supplementation 

found to be interesting. It counteracts excessive HIF-1α transcription factor expression, 

followed by VEGF gene expression. The role of antioxidant vitamins is mainly to decrease 

ROS production due to hypoxia exposure and enhancing intracellular heme biosynthesis and 

reduction of nitrite levels (Das et al., 2015). 

Hypoxia and Vitamin C: Antioxidants are intimately involved in the prevention of 

cellular damage by interacting with free radicals and by terminating the chain reaction, 

thereby curtailing free radical activity. L-Ascorbic acid (Vitamin C) is a dietary antioxidant 

that inactivates oxygen free radicals. Some studies have shown that vitamin C works in 

concert with vitamin E to prevent the free radical chain oxidation of lipids. Numerous reports 

have shown the positive effect of vitamin C as an antioxidant and scavenger of free radicals 

(Bulger et al., 1998). Ascorbic acid not only scavenges ROS but also reactive nitrogen species 

and prevent oxidative damages to macromulecules like lipids, proteins and DNA and protects 

individual from cardiovascular disease, stroke, cancer, neurodegenerative diseases and 

cataractogenesis (Halliwell and Gutteridge, 1986). Reports suggest that L-ascorbic acid can 

enter in to cell mitochondria in its oxidized form via GLUT-1 and protects mitochondria from 

oxidative injury. Mitochondria are found to generate intracellular ROS significantly. 

Intracellular protection on mitochondrial genome from vitamin C and surface membrane may 

be beneficial through vitamin C supplementation (Sagun et al., 2005). It has been noted that 

cellular respiratory tract lining fluid (RTLF) contains a variety of antioxidant enzymes like 

superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. Vitamin C 

constitutes the first line defense system in RTLF against oxidants (Kasprzak et al., 2011). 

Various studies reveal that ascorbic acid can influence gene expression, apoptosis and 

protects cell death due to oxidative stress assaults (Wu et al., 2002).Rats exposed to chronic 

sustained hypoxia showed significant increase in serum i-NOS, serum nitrite, serum HIF-1α 

and serum VEGF concentration but significant beneficial changes are also noticed in serum i-

NOS, serum nitrite, serum HIF-1α and serum VEGF concentration when hypoxic rats were 

supplemented with L-ascorbic acid (Das et al., 2016). 

A possible counteracting mechanism by vitamin C through HIF-1α transcription factor 

expression either directly or through regulating/inhibiting ROS formation and indirectly 

controlling over production of reactive nitrogen species may be postulated (Das et al., 2015). 

Influence of vitamin C supplementation was found to be effective to counteract excessive 

HIF-1α transcription factor expression and subsequently VEGF gene expression. Vitamin C 

also improves intracellular hypoxic status by loading cells with extra vitamin C and resulted 

in resistance to hypoxia- and hypoxia / reoxygenation-induced cell death associated with the 

quenching of reactive oxygen species. It is also observed that vitamin C can down-regulate 

VEGF production via the modulation of COX-2 expression and that p42/44 MAPK acts as an 

important signaling mediator in this process (Guaiquil et al., 2004; Kim et al., 2011). 

Hypoxia, glucose homeostasis and calcium channel blocker: Studies revealed that 

hypoxia causes hyperglycemia, glucose intolerance and insulin resistance in rats. These 

changes are related to elevated levels of HIF-1α concentration. Simultaneous treatment with 

antioxidant (vitamin C) and N-type calcium channel blocker (cilnidipine) were found to 
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ameliorate overall insulin sensitivities. The report from various studies stated that chronic and 

acute hypoxia can increase gluconeogenesis, increase hepatic glucose output probably 

through increased sympathetic drives, increased circulating steroids and enhanced HIF-1α 

concentration. HIF-1αconcentration in turn influence transcription of multiple enzymes 

required for gluconeogenesis (Polak et al., 2013). Although the link between hypoxia and 

altered glucose metabolism is well defined but exact mechanism of impaired glucose 

tolerance during hypoxia exposure is yet to be established. Studies based on calcium channel 

blockers, especially L- and N-type calcium channel blocker like cilnidipine, further explained 

the role of sympathetic nervous system during hypoxia and its regulatory actions to inhibit 

sympathetic overdrive and reduction of norepinephrine release from adrenergic nerve endings 

(Das et al.,2016). It may be postulated that increase in sympathetic activation due to hypoxia 

leads to increase insulin resistance by altering insulin signaling pathways or ROS generation 

(Peltonen et al., 2012). Treatment with L-N Type calcium channel blocker is able to control 

glucose homeostasis, perhaps, through either suppressing ROS productions via adrenergic 

system or lowering GLUT 4 expression (Tan et al., 2014). 

 

 

CONCLUSION 
 

Hypoxia generates ROS which influences sympathetic adrenergic activities via 

chemoreflex, HIF-1 α and glucose homeostasis. Antioxidants like vitamin C or L- N type 

calcium channel blocker can reduce hypoxia or low oxygen sensing mediated cell signaling 

pathways especially glucose regulatory pathways. 
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