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Abstract

Purpose –Diabetic retinopathy (DR) is a central root of blindness all over the world. Though DR is tough
to diagnose in starting stages, and the detection procedure might be time-consuming even for qualified
experts. Nowadays, intelligent disease detection techniques are extremely acceptable for progress
analysis and recognition of various diseases. Therefore, a computer-aided diagnosis scheme based on
intelligent learning approaches is intended to propose for diagnosing DR effectively using a benchmark
dataset.
Design/methodology/approach – The proposed DR diagnostic procedure involves four main steps: (1)
image pre-processing, (2) blood vessel segmentation, (3) feature extraction, and (4) classification.
Initially, the retinal fundus image is taken for pre-processing with the help of Contrast Limited Adaptive
Histogram Equalization (CLAHE) and average filter. In the next step, the blood vessel segmentation is
carried out using a segmentation process with optimized gray-level thresholding. Once the blood vessels
are extracted, feature extraction is done, using Local Binary Pattern (LBP), Texture Energy
Measurement (TEM based on Laws of Texture Energy), and two entropy computations – Shanon’s
entropy, and Kapur’s entropy. These collected features are subjected to a classifier called Neural
Network (NN) with an optimized training algorithm. Both the gray-level thresholding and NN is
enhanced by the Modified Levy Updated-Dragonfly Algorithm (MLU-DA), which operates to maximize
the segmentation accuracy and to reduce the error difference between the predicted and actual outcomes
of the NN. Finally, this classification error can correctly prove the efficiency of the proposed DR
detection model.
Findings –The overall accuracy of the proposedMLU-DAwas 16.6% superior to conventional classifiers, and
the precision of the developed MLU-DA was 22% better than LM-NN, 16.6% better than PSO-NN, GWO-NN,
and DA-NN. Finally, it is concluded that the implementedMLU-DA outperformed state-of-the-art algorithms in
detecting DR.
Originality/value – This paper adopts the latest optimization algorithm called MLU-DA-Neural Network
with optimal gray-level thresholding for detecting diabetic retinopathy disease. This is the first work utilizes
MLU-DA-based Neural Network for computer-aided Diabetic Retinopathy diagnosis.

Keywords Diabetic retinopathy detection, Gray-level thresholding, Optimal trained neural network, Dragon

fly algorithm, Levy update, Performance metrics

Paper type Research paper

Computer-
aided DR
diagnostic

model

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/1756-378X.htm

Received 11 November 2019
Revised 23 April 2020

16 May 2020
Accepted 20 May 2020

International Journal of Intelligent
Computing and Cybernetics

© Emerald Publishing Limited
1756-378X

DOI 10.1108/IJICC-11-2019-0119

https://doi.org/10.1108/IJICC-11-2019-0119


1. Introduction
In the present health care world, medical imaging has emerged as a fundamental tool for
storing the patent’s records in the way of visual documentation, which helps to extract
diverse information about various diseases. In general, diabetic retinopathy (DR), macular
degeneration, hemorrhages, hypertension, neovascularization, vein occlusion, and glaucoma
are a few kinds of retinal infections. In this criterion, the processing of optic disc as well as
retinal blood vessels is the major indicators for checking the harshness of the above-
mentioned retinal diseases (ElahehImani et al., 2015). Mostly, DR disease impacts the retinal
blood vessels of diabetic patients. All over the world, 347 million diabetic patients are
suffering from DR, as stated by WHO (Shanthi and Sabeenian, 2019). Especially in the USA,
more than 40% of 29.1 million diabetic patients are suffering from various phases of DR.

Since symptoms cannot build up until the disease turns into the stern, initial discovery
via regular screening of DR is essential. In the entire world, digital fundal photography-
based monitoring schemes are utilized to deal with the DR. Still, the cost-factor is screen
lighted in these monitoring phases for the large population (Faust et al., 2012). As the
screening practices are extremely dependent on manual detection, it consumes more time
for each case. To maintain the diagnosing process over a large population, the research
investigation has concentrated on recognizing the strategies to detect DR automatically
(Nazir et al., 2019).

A fast diagnosis is the fundamental task to reduce the severity of the disease, and thus
averting the occurrence of blindness. Many image analysis algorithms have been introduced
to reduce the workload of human efforts, streamline retinal pathology monitoring from the
last few decades (Quellec et al., 2017). For classification, and detection of DR, several
CAD-based techniques were utilized in the literature. The computer-based approaches notice
the differences in normal and affected eye images, and further, utilize the differences to frame
feature space. The collaboration of those features specifies the exact recognition of DR. This
motivates the researchers in selecting fundus image evaluation for DR detection (Salamat
et al., 2019; Niemeijer et al., 2009; Akram et al., 2013; Quellec et al., 2011). Various methods
based on mathematical morphology (Sopharak et al., 2008; Hassan et al., 2015), NN (Zhang
et al., 2019; Liu et al., 2019), pattern recognition (Galshetwar et al., 2017), region growing
approaches (Panda et al., 2016), fuzzy C-means clustering (Kar and Maity, 2016), Gabor filter
(Farokhian et al., 2017) banks are present in the literature. Moreover, this research area still
requires enhancement like complexity reduction of the method utilized and high accuracy
attainment in detection.

The major contributions of this paper are shown below:

(1) The proposed algorithm termed as MLU-DA helps to improve the segmentation as
well as the classification process, where the levels of thresholding are optimized by
MLU-DA. Moreover, the same algorithm is utilized for accomplishing the training in
NN. With this improvement, it is indented to maximize the segmentation accuracy,
and minimize the classification error.

(2) The developed MLU-DA model on both segmentation and classification is very
robust and reliable to improve the DR diagnostic system, which correctly assigning
the labels to retinal fundus images as normal and DR affected images with high
accuracy.

The arrangement of this paper is depicted as follows: Literature review and the features and
challenges of existing methods are shown in Section 2. Section 3 specifies the contribution of
the proposed DR detection model. Section 4 describes the steps utilized for the DR detection
system. Results and discussions are specified in Section 5. Finally, the conclusion of this
paper is described in Section 6.
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2. Literature review
2.1 Related works
Chakraborty et al. (2019) have implemented a supervised learning method byANN to acquire
high precise diagnoses outputs regarding DR detection. The extractions of features from
retinal images are given as inputs to a well-performing detection algorithm called ANN. By
guessing many entities of the conventional ANN, ANN architecture was personalized, which
were adopted to enhance the accuracy. In the proposed method, the back propagation-based
NN was used. From the results, the accuracy acquired by the introduced approach was
97.13%, which in turn confirmed that the suggested method was used to identify DR
efficiently in the future.

Sangeetha and Maheswari (2018) have suggested the retinal image segmentation and
blood vessels elimination via edge detection, thresholding, adaptive histogram equalization
andmorphological processing. From the fundus image, to find the automatic diagnosis of DR,
a network with the CNN was introduced for exactly categorizing its seriousness. Here, the
images gathered from Aravind Eye Hospital, and the widely accessible datasets like
DIARETDB0, DIARETDB1_v1, and DRIVE, were trained using High-end GPU. Hence, the
results obtained an accuracy of 96.9%, the specificity of 93%, and a sensitivity of 98% for the
database containing 854 images.

Zhou et al. (2018) have recommended a MIL approach for DR detection, in which the
classifiers and featureswere learned together fromdata to attain an effective enhancement on
recognizing the lesions present inside. Specially, a pre-trained CNN was modified to
accomplish the patch-level DR evaluation, and further, the global aggregationwas considered
for the DR image categorization. For DR detection of images, the results have attained a
region under the ROC curve of 0.960 onMessidor and 0.925 on other datasets fromKaggle. To
identify the DR lesions, the sensitivity of 0.995, the precision of 0.863, and an F1-score of 0.924
on DIARETDB1 were attained by the linked component level proof.

Wan et al. (2018) have proposed CNNs-based DR detection to find an automated way to
categorize a known group of fundus images. The suggested method consisted of three main
complicated challenges like classification, segmentation, and detection. Here, VggNet,
GoogleNet, ResNet and AlexNet were taken to analyze the performance of the DR
classification by linking hyper-parameter tuning and transfer learning. Openly obtainable
Kaggle platform was utilized to train these models. Finally, the results have attained the best
classification accuracy of 95.68%, and the outputs have verified that the transfer learning
and CNN mechanisms were showing improved accuracy on DR image classification.

Hemanth et al. (2019) have employed a mechanism, which consists of service of image
processing by CLAHE, and the histogram equalization approaches. Later, the detection of DR
was implemented by the classification of CNN. The approach was evaluated on the Messidor
database that consists of 400 retinal fundus images, and from the experimental results, the
accuracy of 97%, was achieved. Moreover to those results, a common assessment of formerly
accomplished results has specified that the developed approach was effective and vigorous
for detecting DR from retinal fundus images. By making use of the significant deep learning
methods and image processing methods for detecting DR, the introduced technique and the
outcomes achieved were noted as beneficial contributions to the identified research.

Li et al. (2019) have offered a sequence of deep-learning-based algorithms for monitoring
DR automatically for attaining maximum specificity and sensitivity. Though, the deep
learningmethods did not execute well in clinical applications because of the restrictions of the
state-of-the-art openly existing fundus images datasets. For validating these approaches in
clinical circumstances, from 9,598 patients 13,673 fundus images were gathered and that
images were split by seven graders into six classes based on DR level and quality of the
image. In order to define four kinds of DR-related lesions, 757 DR images were preferred. At
last, existing deep learning algorithms on gathered images were evaluated, with three main
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detection procedures. Though the accuracy of 0.8284 was attained for DR recognition, these
methods execute the poor, thus concludes that lesion detection and segmentation are
complex. At last, a new dataset was provided named DDR for reviewing deep learning
methods in clinical applications, especially for lesion identification.

Zeng et al. (2019) have recommended a model named computer-aided diagnosis that is
depending on the deep learning algorithms for detecting RDR automatically by categorizing
color retinal images into two grades. A novel CNN by Siamese like structure was trained with
a mechanism known as transfer learning. The introduced models recognized the binocular
fundus images as inputs and study the relationship to assist in prediction when compared to
the earlier works. By using the binocular model, the AUC of 0.951 was achieved with the
training set of 28,104 images and a test set of 7,024 images, which was 0.11 better than the
conventional monocular approach. To check the efficiency of binocular design, five class DR
detection was trained and assessed on a 10% validation set. Hence, the result represents that
it attains a kappa score of 0.829, which was better when compared to the existing non-
ensemble approach. Hence, the result represents that it attains a kappa score of 0.829, which
was better when collated over the existing non-ensemble approach.

Ramos et al. (2018) have introduced an approach to decrease the noise of the RGB image
present in the green channel with Low-pass Radius Filter. Next, a Gaussian fractional
derivative and a 30-element Gabor filter were utilized for extremely improving the shape and
structure of the blood vessels. After that, a sequence of morphology-based regulations and
threshold was utilized to decrease the occurrence of false-positive pixels and segregate the
blood vessels. Also, the proposed approachwas for detecting and removing the optic disc from
the image. For DRIVE dataset, the suggested approach has attained a specificity of 0.7854, and
an accuracy of 0.9503. The performance validation was carried out over existing approaches
like the Adaptive threshold, multiple classes Otsu technique, and the threshold for a Frangi
filter. Next to the evaluation under computer simulations, it was accomplished that the
recommended approach was aggressive and consistent for the blood vessel segmentation.

Sun and Zhang (2019) have proposed Electronic Health Records (EHR) which gradually
become an effective measure to prevent DR disease. Themachine learningmodels are used to
diagnose the DR in patients with the EHR data and formed a set of treatment methods. It can
predict the patient samples. The data and features are used to determine the limit of machine
learning, models and algorithms. The most important characteristics are the influence of
binding the unsaturated iron, which was the index of protein synthesis in blood.

Hua et al. (2019) have introduced a bimodal learning approach using a Trilogy of
Skip-connection Deep Networks (Tri-SDN) for DR risk progression prediction. It is used for
acquiring DR-oriented knowledge through conventional machine learning techniques, which
require the most impactful risk factors. It lowers the necessity of constructing and training
the designated deep learning model with a large-scale dataset of fundus photography.

2.2 Review
Numerous researches have given attention to finding the alternative form of actions to
diagnose the DR in an automated manner, yet, there are various questions, and challenges
need to be resolute in the future. A few of the major pros and cons are represented in Table 1.
ANN (Chakraborty et al., 2019) is simplified, after learning from the early inputs and their
relationships, it can assume unseen relationships on hidden data as well, and can learn and
model nonlinear and complex relationships. Still, there are some conflicts like there are no
particular restrictions to determine the structure of ANN, appropriate network structure will
acquire through experience and trial and error, and canwork onlywith numerical data, before
establishing to ANN, the problems need to be translated into numerical values. CNN
(Sangeetha and Maheswari, 2018; Zeng et al., 2019) has high accuracy in recognizing image
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Authors
[Citations] Methodology Features Challenges

Chakraborty
et al. (2019)

ANN (1) Has the capacity to learn
and model non-linear and
complex relationships

(2) ANNs are simplified, after
learning from the early
inputs and their
relationships; it can assume
unseen relationships on
hidden data as well

(1) There are no particular
restrictions to determine the
structure of ANN, an
appropriate network
structure will acquire
through experience and trial
and error

(2) ANNs can work only with
numerical data. Before
establishing to ANN, the
problems need to be
translated into numerical
values

Sangeetha and
Maheswari
(2018)

CNN (1) High accuracy in
recognition of image
problems

(2) To extract significant data
at a low computational cost

(1) It requires a large dataset
(2) It is dependent on hardware

Zhou et al.
(2018)

MIL (1) It has high accuracy
(2) It provides more

information than learning
by single instance
representation

(1) Requires additional image
quality evaluation

Wan et al.(2018) Deep CNN (1) It has high accuracy
(2) It does not require feature

extraction

(1) They are slow to train if the
GPU was not good

Hemanth et al.
(2019)

Deep CNN (1) They are flexible and work
well on image-related data

(2) Features are not pre-trained

(1) It is still using the black box
technique

Li et al. (2019) Deep learning (1) Has the capacity to execute
feature learning by own

(2) It is highly efficient at
delivering good quality
results

(1) It is highly expensive to train
because of the complex data

(2) It requires a large amount of
processing power

Zeng et al. (2019) CNN (1) It provides a fast diagnosis
(2) It automatically detects the

main features without any
human guidance

(1) It is computationally high
cost

Ramos et al.
(2018)

Thresholding
Classification

(1) It does not require prior
information about the
image

(2) It is fast and easy to
implement

(1) Specificity and sensitivity
need to be improved

Sun and Zhang
(2019)

EHR (1) It can transform a large
number of unstructured

(2) irregular and noisy feature
data

(1) It temporarily loses the
productivity associated with
privacy and security
concerns

Hua et al. (2019) Tri-SDN (1) It can reduce the
dependence to determine
strong effects on the
progression of DR

(1) Fundus images need to be
improved

Table 1.
Features and
challenges of

conventional diabetic
retinopathy detection

models
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problems to extract significant data at low computational cost, as well as it provides fast
diagnosis, and automatically detects the main features without any human guidance. But,
there are some challenges such as it requires large dataset, computationally high cost, and it
is dependent on hardware. MIL (Zhou et al., 2018) has high accuracy, provides more
information than learning by single instance representation. Though, it requires additional
image quality evaluation. Deep CNN (Wan et al., 2018; Hemanth et al., 2019) has high
accuracy; moreover, it does not require feature extraction, they are flexible and work well on
image-related data, and features do not require pre-training. Yet, there are some
disadvantages like they are slow to train if the GPU was not good, and it is still using the
black-box approach. Deep learning (Li et al., 2019) can execute feature learning on their own,
and it is highly efficient at delivering good quality results. But, it is highly expensive to train
because of the complex data, and it requires a large amount of processing power. Threshold
classification (Aguirre-Ramos et al., 2018) does not require prior information of the image, and
it is fast and easy to implement. However, it is having few defects like specificity and
sensitivity need to be improved. Therefore, some challenges need to be determined in the
future by considering the above-mentioned constraints. Therefore, above-revealed
challenges are extremely encouraged to enhance future researches.

3. Contribution of proposed diabetic retinopathy detection model
3.1 Archetype of proposed model
The proposed architecture of DR detection is given by Figure 1. This model introduces an
automatic DR detection system capable of differentiating the normal and abnormal (DR affected)
images of different retinal fundus images, which are commonly utilized for detecting the eye-
related diseases via image processing technology. The proposed model involves four main
phases: (1) image pre-processing, (2) blood vessel segmentation, (3) feature extraction, and (4)
classification. In the pre-processing phase, the retinal fundus images are subjected to two
processes like CLAHEand average filtering. Here, theCLAHE technique is applied for enhancing
the local contrast of the image, and the average filtering is applied later to remove the noise from
the image, which in turn helps to preserve the sharp features. After pre-processing, the blood
vessel segmentation is done based on a few steps. At first, the contrast-enhanced images, and the
filtered images are thresholded using gray-level thresholding. Further, SIFT is used to extract the
key pointsK1 andK2 of the contrast-enhanced images and the filtered images, respectively. The
two images with key points K1 and K2 are subtracted and further applied for gray-level
thresholding. Both the enhanced and the keypoints extracted images are added, and the final
blood vessel segmented image is obtained. Once the blood vessels are segmented, the feature
extraction procedure is done to extract the features. Here, three types of features are intended to
extract namely, (1) LBP, (2) TEM, and (3) Entropy. LBP is performed to strengthen the
performance effectively, TEM is used to find the energy present in the region filters, and entropy
is calculated by twometrics known as Shannon and Kapur. All these features are combined and
applied to the NN-based classifier for classifying either normal or abnormal images.

The novelty of the architectural model relies on two phases:

(1) Segmentation: For the gray-level-based segmentation process, the levels of
thresholding are optimized using the proposed MLU-DA to maximize the accuracy
among the ground truth and segmented images.

(2) Classification: The training algorithm LM is replaced by proposed MLU-DA, which
updates the weights of NN for reducing the classifier error.

Let S be the input image considered for DR detection, SCLAHE be the CLAHE-based contrast-
enhanced image, Sfilt be the average filtered image, Sseg be the blood vessel segmented image,
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and FEe be the entire features extracted from the segmented blood vessels, where
e ¼ 1; 2; � � �NF , and NF be the number of features.

3.2 Objective model
The objective model of the current DR detection model is focused on two areas. One is
segmentation, and the other is classification.

(1) Maximizing the accuracy of segmentation: The initial objective function is the
maximization of accuracy between the segmented blood vessels and the ground truth
image. The initial objective function in the segmentation phase is shown in Eq. (1),
where A refers to accuracy.

The formulation for computing the accuracy is given in Eq. (2), where PAT denotes true
positive of the elements, PAF denotes true negative, FAT indicates false positive, and FAF

indicates the false negative.

Obj1 ¼ MaxðAÞ (1)

A ¼ PAT þ PAF

PAT þ PAF þ FAT þ FAF
(2)

Input Image Image Pre - processing

Feature Extraction

Local Binary Pattern

Texture Energy 

Measurement

Entropy

CLAHE

Average 

filtering

Blood vessel segmentation

A procedure 

with optimal 

Grey level 

thresholding

Shannon Kapur

Classification

Neural Network - based 

classification

Normal

Abnormal

Proposed MLU - DA

Figure 1.
Architectural

representation of
proposed diabetic

retinopathy
detection model
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(2) Minimizing the detection error: The second objective considers the minimization of
error difference between the detected and actual outcomes. The objective function of
the NN is denoted in Eq. (3), where ME is the error function specified in Eq. (32).

Obj2 ¼ MinðMEÞ (3)

3.3 Solution encoding
The solution encoding of the segmentation and classification by the proposed MLU-DA is
shown in Figure 2. In gray-level thresholding-based segmentation, the levels of thresholding
are optimized by proposed MLU-DA, where L is the level, in which the maximum and the
minimum bounding limit is in the range [�20, 20]. In the classification phase, the weights are
updated in the NN by the same proposed MLU-DA, where NB denotes the total number of
weights in different layers of NN.

3.4 Conventional dragonfly optimization algorithm
The segmentation and classification phases of the proposedDRdetectionmodel is improved by
the modified DA. The main inspiration of DA (Jafari and Chaleshtari, 2017) is based on the
behavior of swarms, which is either static or dynamic. The entities of a swarm must strive for
the food and divert the enemies. Based on Jafari and Chaleshtari (2017), there are five key
factors to be considered for updating the location of the individuals in swarms. “Cohesion,
alignment, separation, attraction and distraction” are the main factors of the behaviors of the
dragonflies. The separation of cth dragonfly, Sec build its neighbors as shown in Eq. (4), where
X be the location of the present individual,Xd denotes the location ofdthneighboring individual
and N be the count of neighboring individuals. Next, alignment is computed using Eq. (5),
where Ved be the velocity of dth neighboring individual. Similarly, control cohesion is
determined as represented in Eq. (6). Later, the attraction in the direction of food is evaluated as
shown in Eq. (7), where Food refers to the location of the source of food. Finally, the distraction
towards the enemy is computed as per Eq. (8), where Enemyspecifies the position of the enemy.

Sec ¼ −
XN
d¼1

ðX � XdÞ (4)

Alc ¼
PN
d¼1

Ved

N
(5)

Coc ¼
PN
d¼1

Xd

N
� X (6)

AFc ¼ Food� X (7)

DEc ¼ Enemyþ X (8)

L
1

~B LL BNB
~

Gray level 

thresholding

in 

segmentation

Weight update in NN

2

~B

Figure 2.
Solution encoding of
segmentation and
classification
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The terms like step ðΔXÞ and position ðXÞ are the two vectors need to be considered for
updating the positions of dragonflies. DA has introduced based on the inspiration flowed in
the PSO algorithm (Pedersen and Chipperfield, 2010). Moreover, each dragonflies’ act of
moving is determined by step vector, which is computed based on Eq. (9), where it specifies
the current iteration, se represents the separation weight, Sec denotes the separation of cth
individual, al indicates the alignmentweight,Alc is the alignment of cth individual, cospecifies
the weight of cohesion, Coc indicates the cohesion of cth individual, af be the food factor, AFc

denotes the food source of cth dragonfly, debe the enemy factor, DEc indicates the location of
an enemy of the cth individual, and δbe the weight of inertia. The position vector is computed
as shown in Eq. (10).

ΔXitþ1 ¼ ðseSec þ alAlc þ coCoc þ afAFc þ deDEcÞ þ δ•ΔXit (9)

Xitþ1 ¼ Xit þ ΔXitþ1 (10)

If there is no neighboring solution, the dragonfly has to fly around the search space via a
random walk by rising the randomness, and stochastic characteristics and exploration. At
this point, the dragonflies are updated as shown in Eq. (11), Eq. (12), Eq. (13), and Eq. (14)
where dpv is the position vector, rn1 and rn2 are the random numbers ranging between [0, 1],
and ξ is the constant.

Xitþ1 ¼ Xit þ LevyðdpvÞ3Xit (11)

LevyðdpvÞ ¼ 0:013
rn13f

jrn2j
1
dpv

(12)

f ¼
 
Γð1þ ξÞ3sin

�Πξ
2

�
Γ
�
1þξ
2

�
3ξ32ðξ�1

2 Þ

!1
ξ

(13)

ΓðwÞ ¼ ðw� 1Þ! (14)

Moreover, Eq. (9) defines the step vector, and Eq. (10) defines the updated position of the
dragonfly. The neighborhood of an individual dragonfly is established by computing
the Euclidean distance among all the dragonflies, and further updates X and ΔX. The
algorithmic representation of conventional DA is shown in Algorithm 1.
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3.5 Proposed MLU-DA
Rather than the beneficial part of conventional DA, it still faces some critical drawbacks like
premature convergence, and unbalanced exploration, and exploitation. To improve the
performance of existing DA to a particular extent, and develop an effective method to
improve the segmentation and classification for DR detection, the modified algorithm called
MLU-DA is implemented here. The advantages of MLU-DA include, high accuracy,
remarkable stability, increasing population diversity, accelerating the convergence, strong
robustness, powerful optimizing ability, and higher precision. As a modification, the
levy-based update in Eq. (11) will be replaced by a new formula, which is given in Eq. (15).

Xitþ1 ¼ we3Xit þ af ðFood� Xitþ1Þ (15)

Here,we refers to theweight function. This new update helps to provide better convergence to
the proposed MLU-DA. The pseudo-code of the proposed MLU-DA is shown in Algorithm 2.

4. Steps utilized for diabetic retinopathy detection system
4.1 Image pre-processing
Here, image pre-processing of retinal fundus image is done using (1) CLAHE and (2) gray-
level thresholding.

(1) CLAHE: It provides the optimal equalization regarding maximum entropy and
restricts the brightness of the image. This approach is used for enhancing the contrast
of the images. Implementation of CLAHE is as follows: (1) Split every input image into
non-overlapping contextual regions of the same size containing 8 3 8 blocks, each
correlates to the neighborhood of 64 pixels. (2) The intensity histogram of every
contextual region is to be computed. (3) Set the clip limits for clipping the histograms. It
is the threshold parameter to adapt the brightness of the image efficiently. It needs to be
set to the minimum optimal value. (4) By choosing the transformation functions, each
histogram is changed. (5) Every histogram is modified using the limit of the fixed clip
limit. The numerical representation is given in Eq. (16), where a denotes the calculated
pixel value, amax be the maximum pixel value, amin be the minimum pixel value, and
CPðbÞ denotes the cumulative probability distribution. For exponential distribution,
the gray level is modified as Eq. (17), where α indicates the clip parameter.
CLAHE technique works on small portions of the image known as “tiles” instead of the
whole image. The brightness of every tile is improved so that the output region of
the histogram roughmatches the histogrammentioned by the distribution type. (6) The
neighboring tiles are united by bilinear interpolation, and the grayscale values of
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the image are changed corresponding to the improved histograms.
a ¼ ½amax � amin�*CPðbÞ þ amin (16)

a ¼ amin �
�
1

α

�
*ln½1� CPðbÞ� (17)

After applying CLAHE, the image SCLAHE is obtained, which is further given for filtering
using the average filter.

(2) Average filtering: It is used to improve the template on the target pixel, and further
takes the average of entire pixel values. The feature of the image helps to observe the size
and shape of the image. Let the size of the template be ms 3 mt, where m is odd. The
representation of average filtering for the image SCLAHE is based on Eq. (18).

Sfilt ¼ 1

M

X
SCLAHEði; jÞ (18)

4.2 Procedure for blood vessel segmentation
Once the pre-processing is completed, the image is moved forward to the blood vessel
segmentation process. The current blood vessel segmentation procedure is depending on the
following steps.

(1) Take two pre-processed images SCLAHE and Sfilt. Apply SIFT operation (Sreedharan
et al., 2018) to both SCLAHE and Sfilt obtain two imageswith its key points. Further, find
the difference between the images with two sets of keypoints followed by optimized
gray-level thresholding and apply a morphological operation called area opening to
eliminate the small pixels.

(2) Directly apply subtraction operation on SCLAHE and Sfilt, followed by optimized gray-
level thresholding and morphological operation.

(3) Sum the two images for obtaining the final segmented image.

Gray-level thresholding: It is based on the global thresholding that is depending on the belief
that the image has a bimodal histogram. Hence, an easy procedure can be exploited for
extracting the object from the background. While performing this operation, the level of
threshold L is used, this divides the modes. The thresholded image is given in Eq. (19) that
results in a binary image, whereas the pixels with intensity value 1 is equivalent to objects
and 0 is equivalent to the background.

Sthresh ¼
�
1 if Sðx; yÞ > L

0 if Sðx; yÞ≤L
(19)

The novelty of the proposed segmentation procedure is to optimize the threshold levelLusing
MLU-DA, which results in attaining high segmentation accuracy. Hence, the segmented
image Sseg is obtained.

4.3 Feature extraction
The feature extraction for the segmented blood vessels uses three approaches (1) LBP, (2)
LTE and (3) Entropy.

(1) LBP: LBP is introduced as a strong and effective texture descriptor. Principally, it can
be applicable to a broad range of various applications from texture segmentation to
detection (Liao et al., 2009). LBP operator labels the pixels of an image by thresholding
the neighborhood of each pixel with the middle value, and the output of this
thresholding is obtained in the form of the binary number. The histogram of the
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labeled image Ssegðx; yÞ is utilized as a descriptor and is defined in Eq. (20), where n
denotes the number of labels given by LBP operator and IðAÞ ¼ 1whenA is true,A is
false when IðAÞ ¼ 0.

Hgim ¼
X
x;y

IðSsegðx; yÞ ¼ imÞ; im ¼ 0; � � � ; n� 1 (20)

To acquire a rotation-invariant uniform pattern using finger angular quantization, a
uniformity measure ðUMÞ is determined based on Eq. (21) by considering LBPPB;RB as a
PB-bit binary number ðrPB−1; rPB−2; � � � ; r1r0Þ. The rotation invariant uniform pattern with
UMvalue less than or equal to 2 is described in Eq. (21), where the term gpv denotes the gray
value of the center pixel, gcv denotes the gray value of PB points, and p ¼ 0; � � � ;PB− 1.

UMðLBPPB;RBÞ ¼ jrPB−1 � r0j þ
XPB−1
PB¼1

jrPB � rPB−1j (21)

LBPPB;RB ¼
(XPB−1

p¼0

S
�
gpv � gcv

�
if UMðLBPPB;RBÞ≤ 2 (22)

With the help of LBP, by selecting circles with different radii around the center pixels, amulti-
scale examination is performed and then creating a separate LBP image for every scale.
Entropy and energy of the LBP image is built over the various count of pixels
(PB ¼ 8; 16; and 24, and RB ¼ 1; 2 and 3 respectively) are utilized as feature descriptors.

(2). LTE: Law’s mask (Gupta and Undrill, 1995) is considered as a well-performing texture
descriptor, which has beenutilized in different applications. It is based on the texture energy
changes appealed to the image for evaluating the energy present in the pass region of filters
[48]. Entire masks are obtained from the one-dimensional vector of five-pixel lengths
L5;E5; S5;R5;W5, which referred to level, spot, edge, ripple, and wave, respectively.

Initially, the image is convoluted with a 2D mask for extracting the texture data from the
segmentedSseg image.The obtained texture image is based onEq. (23), if the filterL5E5 is used.

TexL5E5 ¼ Ssegði; jÞ⊗L5E5 (23)

Based on laws, to filter L5E5 image Iði; jÞ is represented in Eq. (19). All the two dimensional
masks had zero mean except L5L5. Hence, the texture image TexL5L5 is utilized to normalize
the contrast of the remaining texture images Texði; jÞ, which is shown in Eq. (24). The outputs
are transferred to TEM filters that include moving nonlinear window average of absolute
values as described in Eq. (25). By merging 25 TEM descriptors, an invariant TEM (TR) is
obtained and is shown in Eq. (26).

Normalize
�
Texði;jÞÞ ¼ Texði;jÞ

Texði;jÞL5L5
(24)

TEMði;jÞ ¼
X7
p¼−7

X7
q¼−7

��TexðiþpjþqÞ
�� (25)

TRE5L5 ¼ TEME5L5 þ TEML5E5

2
(26)

(3) Entropy computation: Entropy in general “defined as the uncertainty associated with
the randomness. Here, two types of entropy measures are taken into consideration,
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Shannon and Kapur entropy. Let Ssegðx; yÞbe the segmented input image withNdi distinct
gray value, whereas ði ¼ 0; 1; 2; � � � ;LA− 1Þ. For a specified region of interest of size
ðme3neÞ, the normalized histogram is expressed based on Eq. (27).

Endi ¼ Ndi

me3ne
(27)

Moreover, the computational formula for Shannon entropy is shown in Eq. (28). On the other
hand, Kapur entropy has a more dynamic range than Shannon entropy over a range of
broadcasting conditions, and it is used in evaluating regularity and scatter density. Kapur’s
entropy is described in Eq. (25), where α and β are the coefficients, and α≠ β.

Sh ¼ −
XLA−1
di¼0

Endilog2ðEndiÞ (28)

Kα;β ¼ 1

β � α
log2

PLA−1
di¼0

EnαdiPL−1
di¼0

Enβdi

(29)

Hence, the combination of three features sets LBP, TEM, and entropy is represented as FEe,
where e ¼ 1; 2; � � �NF , and NF is the number of features.

4.4 Diabetic retinopathy detection
The feature sets FEe is subjected to NN for categorizing the normal and abnormal images. NN
(Fern�andez-Navarro et al., 2017) is called a well-known scheme for classification in many
applications owing to its flexibility. The advantages of Neural Network include, fast
evaluation, easy to add and modify detection, can solve any machine learning problem, and
can handle large number of features.

An improvement in training of NN is adopted here, which is diagrammatically shown in
Figure 3.

Here, the input feature set is represented as FEe, m is the input neuron, h is the hidden
neuron, and on is the output neuron. In the NN architecture, the output of the hidden layer is
computed based on Eq. (30), and the overall output of the network is represented in Eq. (31).
Here, INðCÞ signifies the count of input neurons, OPðCÞ refers to the count of hidden neurons,
~B
ðHÞ
ðbWhÞ describes the bias weight to hthhidden neurons,

~B
ðOÞ
ðbWonÞ denotes the bias weight to onth

output neuron, ~B
ðHÞ
ðmhÞ shows the weight from mth input to hth hidden neurons, and ~B

ðOÞ
ðhonÞ

shows theweight from the hthhidden neuron to the onthoutput neuron. The termACdenotes

the activation function, and the network output bOon refers to the classified output.

H
ðHÞ ¼ AC

 
~B
ðHÞ
ðbWhÞ þ

XINðCÞ
m¼1

~B
ðHÞ
ðmhÞFEe

!
(30)

bOon ¼ AC

 
~B
ðOÞ
ðbWnÞ þ

XOPðCÞ
h¼1

~B
ðOÞ
ðhonÞH

ðHÞ
!

(31)

To provide better training to the NN, weight Bz ¼ f~BðHÞ
ðbWhÞ;

~B
ðOÞ
ðbWonÞ;

~B
ðHÞ
ðmhÞ; ~B

ðOÞ
ðhonÞg is optimally

selected by focusing on the objective function (minimum) as shown in Eq. (15), which is the
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measured error.
ME ¼

argminn
~B
ðHÞ
ðbWhÞ;

~B
ðOÞ
ðbWonÞ;

~B
ðHÞ
ðmhÞ;

~B
ðOÞ
ðhonÞ
o XOðCÞ

on¼1

���Oon � bOon

��� (32)

The error difference between the predicted amount bOon and the actual amountOon is given in
Eq. (32), which should be minimized by optimizing the weight Bz using the proposed
MLU-DA.

5. Results and discussions
5.1 Experimental setup
The developed DR diagnosis system was performed in MATLAB 2018a, and the simulation
results was achieved. In this context, the evaluated standard dataset was taken from (https://
www5.cs.fau.de/research/data/fundus-images/: Access date-2019-09-05-High Resolution
Fundus (HRF) image datasets). For the experiment, the population size was considered as
50, and the count of iterationwas fixed as 100. For segmentation analysis, the proposedMLU-
DA-based gray-level thresholding was compared over PSO (Pedersen and Chipperfield,
2010) , GWO (Mirjalili et al., 2014), WOA (Mirjalili and Lewis, 2016), and DA (Jafari and
Chaleshtari, 2017)-based gray-level thresholding. On the other hand, the classification
performance was analyzed with combined features (LBPþTEMþ Entropy), and individual
features aswell. In addition, the performance of the optimally trainedNNwas contrastedwith
standard LM-NN (Fern�andez-Navarro et al., 2017).

5.2 Performance metrics
Here, ten performance metrics are considered for analyzing the performance. They are as
follows:

Neural Network

1
FE

2
FE

NF
FE

onÔ

Optimized 

Classification

Weight Updating

LM

MLU-DA

Error

Error

Minimized 
Error

Figure 3.
Weight updating
procedure of NN by
proposed MLU-DA
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(1) Accuracy: It is a “ratio of the observation of exactly predicted to the whole
observations.” The formula for accuracy is shown in Eq. (2).

(2) Sensitivity: It measures “the number of true positives, which are recognized
exactly.” It is mathematically represented in Eq. (33):

Sensitivity ¼ PAT

PAT þ FAF
(33)

(3) Specificity: It measures “the number of true negatives, which are determined
precisely.” The specificity is formulated as Eq. (34):

Specificity ¼ PAF

FAT
(34)

(4) Precision: It is “the ratio of positive observations that are predicted exactly to the
total number of observations that are positively predicted.” It is shown in Eq. (35):

Precision ¼ PAT

PAT þ FAT
(35)

(5) FPR: It is computed as “the ratio of the count of false-positive predictions to the
entire count of negative predictions.” FPR is numerically represented in Eq. (36):

FPR ¼ FAT

FAT þ PAF
(36)

(6) FNR: It is “the proportion of positives which yield negative test outcomes with the
test.” It is numerically denoted in Eq. (37):

FNR ¼ FAF

FAF þ PAT
(37)

(7) NPV: It is the “probability that subjects with a negative screening test truly do not
have the disease.” It is represented in Eq. (38):

NPV ¼ FAF

FAF þ PAF
(38)

(8) FDR: It is “the number of false positives in all of the rejected hypotheses.” The
formula for FDR is shown in Eq. (39):

FDR ¼ FAT

FAT þ PAT
(39)

(9) F1 score: It is defined as the “harmonic mean between precision and recall. It is used
as a statistical measure to rate performance.” It is numerically shown in Eq. (40):

F1 score ¼ Sensitivity•Precision

Precisionþ Sensitivity
(40)
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(10) MCC: It is a “correlation coefficient computed by four values” as denoted in Eq. (41):

MCC ¼ PAT3PAF � FAT3FAFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPAT þ FATÞðPAT þ FAFÞðPAF þ FATÞðPAF þ PAFÞ

q (41)

5.3 Analysis on segmentation
This section mainly concentrates on the segmentation analysis that is enhanced using gray-
level thresholding. The developed MLU-DA-based gray-level thresholding was contrasted
with existing PSO, GWO, WOA, and DA-based thresholding to evaluate the performance of
the optimized segmentation. The outputs of the segmented images by the introduced MLU-
DA based gray-level thresholding with the conventional PSO, GWO, WOA, and DA-based
gray-level thresholding are shown in Figure 4, and the corresponding segmentation analysis
is shown in Table 2. From Table 2, the accuracy of the proposed MLU-DA is 0.178% better
than conventional gray-level thresholding, 0.183% better than PSO, 0.193% better than
GWO andWOA, and 0.19% better than DA-based gray-level thresholding. The sensitivity of
the developed MLU-DA algorithm is 13.9% superior to existing gray-level thresholding,
14.2% superior to PSO, 15% superior to GWO and WOA, and 14.6% superior to DA-based
gray-level thresholding. Moreover, the precision of the implemented MLU-DA is 1.22%
improved than state-of-the-art gray-level thresholding, 1.21% improved than PSO, 1.27%
improved than GWO, and WOA, and 1.22% improved than DA-based gray-level
thresholding. Similarly, the proposed segmentation shows the best performance for other
performance metrics, which validates the effect of optimized thresholding on blood vessel
segmentation. Therefore, it is confirmed that blood vessel segmentation performance by the
implemented MLU-DA model is effective.

5.4 Texture feature analysis
This section specifies the analysis of texture features, which is the combination of LBP and
TEM. The performance of the combined feature with MLUDA-NN is compared with the
individual texture features as T-LM-NN, T-PSO-NN, T-GWO-NN, T-WOA-NN, T-DA-NN
and MLUDA-NN. The performance analysis is graphically denoted in Figure 5, and the
overall performance analysis of the texture features are shown in Table 3. From Figure 5 (a),
the accuracy of the performance of the combined-MLUDA-NN is showing the best accuracy
for exactly classifying the labels at the considered learning percentages as mentioned
above. At a learning percentage of 90%, the implemented combined-MLUDA-NN system is
53.8% better than the T-DA-NN, 100% better than T-PSO-NN, and 62% better than T-
MLUDA-NN. The sensitivity of Figure 5 (b) is showing its best performance overall
learning percentages. Now, 50% learning percentage is considered and the performance of
the developed combined-MLUDA-NN model is 8.88% improved than T-MLUDA-NN, and
15.2% improved than T-GWO-NN. In Figure 5 (c), the performance of specificity by the
proposed combined-MLUDA-NN is better to precisely recognizing the true negative. It is
11.1% superior to T-MLUDA-NN, and 42.8% superior to T-PSO-NN when the learning
percentage is taken as 70%. From Figure 5 (d), the precisions of all learning percentages are
determined exactly with the positive observations. At a learning percentage of 90%, the
precision of the combined-MLUDA-NN method is 66.6% enhanced than T-DA-NN, 100%
enhanced than T-PSO-NN and T-MLUDA-NN, and 65% enhanced than T-GWO-NN.
Similarly, the FPR and FDR of the developed combined-MLUDA-NN are seemed to be
minimum at all learning percentages. At a learning percentage, 20%, the FNR of the
suggested combined-MLUDA-NN model is 50% better than the T-MLUDA-NN and 66.6%

IJICC



better than T-GWO-NN, which is shown in Figure 5 (f). NPV of the proposed model is high
as specified above when seen in all learning percentages. For now, at 90% learning
percentage, the NPV of the recommended combined-MLUDA-NN is 33.3% improved than
T-MLUDA-NN, 100% improved than T-DA-NN, and 75% improved than T-PSO-NN that is
denoted in Figure 5 (g).

On considering the overall performance from Table 3, the accuracy of the implemented
combined-MLUDA-NN method is 3.70% better than T-LM-NN, 12% better than T-PSO-NN,
and T-GWO-NN, and 7.69% better than T-DA-NN, and 16.6% better than T-MLUDA-NN.
Moreover, the precision of the developed combined-MLUDA-NN system is 6.67% enhanced

Figure 4.
Segmentation results
using proposed and

conventional
optimization algorithm

when gray-level
thresholding is taken

into consideration
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than T-LM-NN, 8.88% enhanced than T-PSO-NN, and T-GWO-NN, 7.69% enhanced than
T-DA-NN, and 16.6% enhanced than T-MLUDA-NN. By considering all the measures, the
performance of the suggested combined-MLUDA-NN is efficient when compared with other
individual texture features. Hence, it can be proved from both a graphical representation and
tabular format, that the performance of the proposed combined-MLUDA-NN model is best
when compared with other methods.

5.5 Entropy feature analysis
In this context, the performance of the entropy features is compared with the
combined-MLUDA-NN model, as shown in Figure 6, and Table 4. Here, the performance of
the combined-MLUDA-NN model is compared over the existing E-LM-NN, E-PSO-NN,
E-GWO-NN, E-DA-NN and E-MLUDA-NN. In Figure 6 (a), the accuracy of the proposed
combined-MLUDA-NN is best for identifying the exact observations at all learning
percentages. On considering the learning percentage as 20%, the accuracy of the suggested
combined-MLUDA is 2.08% superior to E-DA-NN, 5.37% superior to E-PSO-NN, 8.88%
superior to E-GWO-NN, and 11.3% superior to E-MLUDA-NN. Also, the precision of the
recommended combined-MLUDA-NN is performing well in recognizing the true positives in
the whole learning percentages. It is 21.9% enhanced than E-MLUDA-NN, 28.2% enhanced
than E-PSO-NN, and 38.8% enhanced than E-DA-NN at learning percentage 65% based on
Figure 6 (d). By evaluating the whole performance from Table 4, the accuracy of the
implemented combined-MLUDA-NN is 3.79% better than E-LM-NN and E-GWO-NN, 12%
better than E-PSO-NN andE-MLUDA-NN, and 7.69%better than E-DA-NN.Additionally, the
specificity of the developed combined-MLUDA-NN system is 6.66% superior to E-LM-NN
and E-GWO-NN, 7.69% superior to E-PSO-NN and E-DA-NN, and 16.6% superior to
E-MLUDA-NN. Therefore, it is confirmed from Figure 6, and Table 4, that the performance of
the proposed combined-MLUDA-NN outperforms othermethods with individual feature sets.

5.6 Overall performance analysis variants of NN
Here, the overall performance of the developed MLUDA-NN is evaluated, over other
conventionally trained NN. The entire performance is graphically shown in Figure 7 with the
variation of learning percentage and the mean performance is tabulated in Table 5. The
performance of the implemented MLUDA-NN model is contrasted over LM-NN, PSO-NN,

Performance
measures

T-LM-NN
(Fern�andez-
Navarro

et al., 2017)

T-PSO-NN
(Pedersen and
Chipperfield,

2010)

T-GWO-
NN

(Mirjalili
et al.,
2014)

T-DA-NN
(Jafari and
Chaleshtari,

2017)
T-MLUDA-

NN

Combined-
MLUDA-

NN

Accuracy 0.9 0.83333 0.83333 0.86667 0.8 0.93333
Sensitivity 0.8 0.8 0.8 0.86667 0.8 0.93333
Specificity 1 0.86667 0.86667 0.86667 0.8 0.93333
Precision 1 0.85714 0.85714 0.86667 0.8 0.93333
FPR 0 0.13333 0.13333 0.13333 0.2 0.066667
FNR 0.2 0.2 0.2 0.13333 0.2 0.066667
NPV 1 0.86667 0.86667 0.86667 0.8 0.93333
FDR 0 0.14286 0.14286 0.13333 0.2 0.066667
F1-Score 0.88889 0.82759 0.82759 0.86667 0.8 0.93333
MCC 0.8165 0.66815 0.66815 0.73333 0.6 0.86667

Table 3.
Overall performance
analysis on proposed
diabetic retinopathy
detection with
conventional models
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GWO-NN and DA-NN. From Figure 7 (a), the accuracy of the suggested MLUDA-NN is
recognized in a precise manner overall learning percentages. It is 7.95% better than LM-NN,
11.7% better than DA-NN, and 18.75% better than GWO-NN at learning percentage 50%.
The sensitivity of the developed MLUDA-NN model is best in identifying the true negatives
at all learning percentages. Now, taking the learning percentage as 85%, the sensitivity of the
implementedMLUDA-NN approach is 33.3%better than the GWO-NN and 100%better than
the DA-NN as shown in Figure 7 (b). Similarly, the precision of the proposed MLUDA-NN
from Figure 7 (d) exhibits the true positives overall learning percentages. At a learning
percentage of 30%, the precision of the developed MLUDA-NN method is 5.26% improved
than GWO-NN, 11.1% improved than LM-NN, and 17.6% improved than DA-NN. In addition,
from Table 5, the overall performance is calculated for the modified MLUDA-NN algorithm
with existing algorithms. The accuracy of the proposedMLUDA-NN is 16.6% enhanced than
LM-NN, PSO-NN, GWO-NN and DA-NN. Moreover, the specificity of the developed
MLUDA-NN is 6.66% superior to LM-NN, 16.6% superior to PSO-NN, GWO-NN, and DA-NN.
In addition, NPV of the introduced MLUDA-NN is 27.2% improved than LM-NN, 16.6%
improved than PSO-NN, GWO-NN, and DA-NN. Hence, it is verified from the defined
outcomes that the implemented MLUDA-NN approach is efficient for DR detection.

5.7 Analysis based on Messidor datasets
The analysis based on Messidor dataset (Decenciere et al., 2014) is shown in Table 6. The
accuracy of the proposed MLUDA-NN is 13.04% better than LM-NN, 19.56% better than
PSO-NN, 17.39% better than GWO-NN, and 10.86% better than DA-NN. The Sensitivity of
the proposed MLUDA-NN is 14.28% advanced than LM-NN, PSO-NN, GWO-NN, and DA-
NN. The Specificity of the proposed MLUDA-NN is 12.82% progressed than LM-NN,
20.51% progressed than PSO-NN, 17.94% progressed than GWO-NN, and 10.25%
progressed than DA-NN. The Precision of the proposed MLUDA-NN is 38.77% upgraded
than LM-NN, 49.58% upgraded than PSO-NN, 46.42% upgraded than GWO-NN, and
34.06%upgraded than DA-NN. The FPR of the proposedMLUDA-NN is 62.50% superior to
LM-NN, 72.72% superior to PSO-NN, 70% superior to GWO-NN and 57.14% superior to
DA-NN.

5.8 Comparative analysis based on DNN
The analysis based on DNN (Zhang et al., 2019) for two datasets is shown in Tables 7 and 8.
Table 7 shows the overall performance analysis of proposed detection with DNN for HRF

Performance
measures

E-LM-NN
(Fern�andez-
Navarro et al.,

2017)

E-PSO-NN
(Pedersen and
Chipperfield,

2010)

E-GWO-
NN

(Mirjalili
et al., 2014)

E-DA-NN
(Jafari and
Chaleshtari,

2017)

E-
MLUDA-

NN

Combined-
MLUDA-

NN

Accuracy 0.9 0.83333 0.9 0.86667 0.83333 0.93333
Sensitivity 0.8 0.8 0.8 0.86667 0.86667 0.93333
Specificity 1 0.86667 1 0.86667 0.8 0.93333
Precision 1 0.85714 1 0.86667 0.8125 0.93333
FPR 0 0.13333 0 0.13333 0.2 0.066667
FNR 0.2 0.2 0.2 0.13333 0.13333 0.066667
NPV 1 0.86667 1 0.86667 0.8 0.93333
FDR 0 0.14286 0 0.13333 0.1875 0.066667
F1-Score 0.88889 0.82759 0.88889 0.86667 0.83871 0.93333
MCC 0.8165 0.66815 0.8165 0.73333 0.66815 0.86667

Table 4.
Overall entropy feature
analysis over
combined featureswith
optimal trained neural
network
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image dataset. FromTable 7 the accuracy of the proposedMLU-DA-NN is 17.33%better than
SVM, 7.69% better than NN, 3.70% better than DNN. The Sensitivity of the proposed MLU-
DA-NN is 57.94% progressed than SVM, 0.001% progressed than NN, and 6.66% progressed
than DNN. The FPR of the proposed MLU-DA-NN is 51.10% superior to SVM, 66.66%
superior to NN, and DNN. The F1-Score of the proposed MLU-DA-NN is 57.94%, 6.66%,

Performance
measures

LM-NN
(Fern�andez-
Navarro et al.,

2017)

PSO-NN (Pedersen
and Chipperfield,

2010)

GWO-NN
(Mirjalili

et al., 2014)

DA-NN (Jafari
and Chaleshtari,

2017)
MLUDA-

NN

Accuracy 0.8 0.8 0.8 0.8 0.93333
Sensitivity 0.86667 0.8 0.8 0.8 0.93333
Specificity 0.73333 0.8 0.8 0.8 0.93333
Precision 0.76471 0.8 0.8 0.8 0.93333
FPR 0.26667 0.2 0.2 0.2 0.066667
FNR 0.13333 0.2 0.2 0.2 0.066667
NPV 0.73333 0.8 0.8 0.8 0.93333
FDR 0.23529 0.2 0.2 0.2 0.066667
F1-Score 0.8125 0.8 0.8 0.8 0.93333
MCC 0.60541 0.6 0.6 0.6 0.86667

Performance
measures

LM-NN
(Fern�andez-
Navarro et al.,

2017)

PSO-NN (Pedersen
and Chipperfield,

2010)

GWO-NN
(Mirjalili

et al., 2014)

DA-NN (Jafari
and Chaleshtari,

2017) MLUDA-NN

Accuracy 0.8 0.74 0.76 0.82 0.92
Sensitivity 0.75 0.75 0.75 0.75 0.875
Specificity 0.80952 0.7381 0.7619 0.83333 0.92857
Precision 0.42857 0.35294 0.375 0.46154 0.7
FPR 0.19048 0.2619 0.2381 0.16667 0.071429
FNR 0.25 0.25 0.25 0.25 0.125
NPV 0.80952 0.7381 0.7619 0.83333 0.92857
FDR 0.57143 0.64706 0.625 0.53846 0.3
F1-Score 0.54545 0.48 0.5 0.57143 0.77778
MCC 0.45685 0.37774 0.40231 0.48754 0.73649

Performance measures SVM NN DNN MLU-DA-NN

Accuracy 0.79545 0.86667 0.9 0.93333
Sensitivity 0.59091 0.93333 1 0.93333
Specificity 0.86364 0.8 0.8 0.93333
Precision 0.59091 0.82353 0.83333 0.93333
FPR 0.13636 0.2 0.2 0.066667
FNR 0.40909 0.066667 0 0.066667
NPV 0.86364 0.8 0.8 0.93333
FDR 0.40909 0.17647 0.16667 0.066667
F1-Score 0.59091 0.875 0.90909 0.93333
MCC 0.45455 0.73994 0.8165 0.86667

Table 5.
Overall performance
analysis on proposed
diabetic retinopathy
detection with
conventional models

Table 6.
Analysis based on
Messidor datasets

Table 7.
Comparative analysis
with DNN for HRF
datasets
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2.66% improved than SVM, NN, and DNN. TheMCC of the proposed MLU-DA-NN is 90.66%
upgraded than SVM, 17.12% upgraded than NN, and 6.14 upgraded than DNN. Table 8
shows the comparative analysis of Messidor dataset. From Table 8 the specificity of the
proposed MLU-DA -NN is 21.42% advanced than SVM, 40.70% advanced than NN, 5.40%
advanced than DNN. The precision of the proposed MLU-DA-NN is 10% progressed than
SVM, 63.33% progressed than NN, and 13.75% progressed than DNN. The FPR of the
proposedMLU-DA-NN is 69.64% superior to SVM, 62.50% superior to NN, and 40% superior
to DNN. The NPV of the proposed MLU-DA-NN is 21.42%, 14.70%, 5.40% improved than
SVM, NN, and DNN. The F1-Score of the proposed MLU-DA-NN is 5.55% better than SVM,
42.59% better than NN, and 2.08% better than DNN. The MCC of the proposed MLU-DA-NN
is 22.51% upgraded than SVM, 61.21% upgraded than NN, and 0.02% upgraded than DNN.

6. Conclusion
This paper has presented a novel implementation for the early detection of DR diagnosis. It
has mainly undergone four phases such as image pre-processing, segmentation, feature
extraction and classification. The retinal fundus image was considered as input for pre-
processing. Here, the image was enhanced by CLAHE, and average filter. Later, the enhanced
image was forwarded for blood vessel segmentation using the optimized gray-level
thresholding. In addition, in the feature extraction phase, the features from the blood vessels
were extracted by LBP, TEM, and entropy. Further, the gathered features were given to a
classifier named NN using an optimized training algorithm. Here, the proposed MLU-DA
algorithm was used for generating the optimal level of threshold in the gray-level
thresholding and training algorithm in NN. To the next of performance comparison over
conventional methods, the overall accuracy of the proposed MLU-DA was 16.6% superior to
conventional classifiers, and the precision of the developed MLU-DA was 22% better than
LM-NN, 16.6% better than PSO-NN, GWO-NN and DA-NN. Finally, it is concluded that the
implementedMLU-DA outperformed state-of-the-art algorithms in detecting DR. Finally, it is
concluded that the implemented MLU-DA outperformed state-of-the-art algorithms in
detecting DR. Even though the optimally trained NN has been providing effective results in
DR diagnosis, the upcoming researchers have mammoth emerging areas like deep learning
but with minimal training time, finding best features through optimal feature selection and
robust classifiers to attain the highest accuracy. Besides detecting DR through blood vessels
analysis, the researchers can focus on other retinal abnormalities like microaneurysms,
hemorrhages, hard exudates and cotton wool spots as they are playing fundamental roles in
providing initial signs for DR.

Performance measures SVM NN DNN MLU-DA-NN

Accuracy 0.8 0.8 0.9 0.92
Sensitivity 0.875 0.75 1 0.875
Specificity 0.76471 0.80952 0.88095 0.92857
Precision 0.63636 0.42857 0.61538 0.7
FPR 0.23529 0.19048 0.11905 0.071429
FNR 0.125 0.25 0 0.125
NPV 0.76471 0.80952 0.88095 0.92857
FDR 0.36364 0.57143 0.38462 0.3
F1-Score 0.73684 0.54545 0.7619 0.77778
MCC 0.60116 0.45685 0.73629 0.73649

Table 8.
Comparative analysis

with DNN for Messidor
datasets

Computer-
aided DR
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