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Abstract 

Objective 

To study the venom neutralization ability and prophylactic effect of Calotropis gigantea 

methanolic root extract (CGMR) against Daboia russelii envenomation using in vitro, in 

silico, and in vivo methods. 

Background 

Snake venom is composite, that contains neurotoxins, disintegrins, hemotoxins, and proteases 

in complex with phospholipase A2 [PLA2] enzymes. Hence toxicity of venom is mainly 

attributed to PLA2 enzymes or their protein complexes per se.  Roots of the plant, Calotropis 

gigantea are used extensively as a phyto-antidote by tribal communities to treat snake bite 

victims. However the antivenom property of root has not been comprehensively studied so 

far.  This study scientifically reasserted the use of Calotropis Gigantea R.Br (root extract) in 

neutralization of D.russelii venom, alongside investigated the protection rendered by the 

extract. 

Materials and Methods 

Phytochemicals of Calotropis gigantea methanolic root (CGMR) extract were fractionated 

into hexane (non-polar fraction) and methanol (polar fraction) based on polarity. The in vitro 

PLA2 inhibitory action of crude extract and both fractions was determined using biochemical 

assay. Since significant PLA2 inhibition was observed in non-polar fraction, it was subjected 

to GC/MS analysis. The compounds obtained through GC/MS analysis were virtually docked 

to PLA2 macromolecule by protein-ligand binding simulation programs. The acute and sub-

acute toxicity of the extract was determined using guidelines 423 and 407 respectively in 

mice. The LD50 dose of Daboia russelii snake venom (DRSV) was determined using standard 

protocol. The in vivo neutralization ability and the in vitro neutralization (pre-incubated) 
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ability of the CGMR extract was determined using 24hr survivability of the animal as 

endpoint.  The group receiving antivenom was used as positive control. Animals pretreated 

with CGMR were used to study the prophylactic effect of the extract against venom insult. 

Results 

The total phenols and flavonoids were estimated to be higher in crude extract, when 

compared to non-polar and polar fraction. The non-polar fraction recorded the least in amount 

of total phenols and flavonoids. The methanolic crude extract (IC50=33.531±5.630 μg/ml), 

non-polar fraction (IC50=59.586±1.491 μg/ml) and polar fraction (IC50= 77.505±3.772 μg/ml) 

of the root extract effectively inhibited PLA2 activity in-vitro. Non-polar fraction inhibited 

PLA2 with more efficacy than polar fraction (P=.0037).  

The GC/MS profile of non-polar fraction of methanolic root extract indicated the presence of 

phytochemicals like n-Hexadecanoic acid, Oleic acid, 9, 12 Octadecadienoic acid and allyl 

octadecyl ester oxalic acid. n-Hexadecanoic acid (Ki=1.58 x 10-5) was found to be 

competitive inhibitor of PLA2. Docking studies revealed that n-Hexadecanoic acid (ligand) 

interacted with catalytically important residues (His48, Asp49, and Gly30) of PLA2 (PDBID-

3CBI, macromolecule). Interestingly, three other phyto-chemicals found in the extract, oleic 

acid, 9, 12 Octadecadienoic acid and allyl octadecyl ester oxalic acid showed similar type of 

chemical interactions with active site residues of PLA2. The in vitro and in silico experiments 

conducted in this study indicate the presence of potential PLA2 inhibitors in the extract.  

In toxicity assessment a significant increase in food intake, bodyweight, water consumption 

and anti-platelet activity was observed at higher dose (400 mg/kg b.wt). Histopathological 

analysis of organs indicates hepatotoxic and cardiotoxic property of the extract at higher 

dose.  
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LD50 of venom was determined to be 11µg/dose and the % survival of group receiving only 

venom was 50%. High dose of CGMR effectively neutralized LD50 dose of venom in both in 

vivo (%survival = 67.67%) and in vitro neutralization experiment (% survival =100%). 

Neutralization of venom was better in in vitro neutralization (pre-incubation). The 

histopathological analysis of organs necropsied from CGMR pre-treated animals 

demonstrated significant tolerance against venom.  

Conclusion  

Together these results indicate that CGMR has significant venom neutralizing potential as 

traditionally claimed. Further the extract showed significant venom neutralization ability and 

protection effects against venom insult. The high venom neutralization ability may be due to 

PLA2 inhibitors present in the extract.  

Keywords: Daboia russelii, Calotropis gigantea, docking, neutralization, Phospholipase A2 
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CHAPTER 1 

INTRODUCTION 
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Snakebite is a neglected global public health concern that impacts around 1.8 million people 

each year. Approximately 6.94% percent victims succumb to death, while surviving victims 

suffer from long term morbidities (Slagboom et al. 2017). The number of deaths recorded 

from India accounts for little more than half of all snakebite deaths worldwide. The Indian 

Russell's viper has been regarded a notorious snake, causing roughly 43% of bites.  

The provision of first aid, according to a WHO report on the control of neglected tropical 

diseases, is a critical factor in reducing the number of fatalities. Though many first aid 

strategies like use of constriction bands, tourniquets, electric shock therapy, ice therapy, 

incision and vacuum suction therapy exist for snakebite treatment, they are reported to be 

contraindicative (Blackman and Dillon 1992). The use of suction pumps for removing venom 

is avoided since other bloody fluids are removed instead (Gellert GA, 1992). In several 

snakebite instances plasmapheresis is recommended as an alternative (Yildirim et al. 2006). 

However the risk of developing cross reactivity is inevitable.  

Several studies have indicated that polyvalent antivenom administration results in adversities 

like serum sickness, severe pyrogenic reaction and anaphylaxis. On the other hand, 

monovalent antivenom have restricted neutralization ability due to lesser volume. 

Furthermore, no evidence exists that its use is superior to polyvalent antivenom. (Ariaratnam 

et al. 1999) (H. A. de Silva, Ryan, and de Silva 2016). Snakebites are more common in 

isolated places and remote tribal areas with limited access to immediate first aid. As a result, 

traditional healers are still sought by the majority of victims today. Traditional healers use 

plant extracts for treating aliments and their folkloric knowledge and practices are 

appreciated even today. Some of the plant extracts used by traditional healers as antivenom 

has drawn the attention of researchers to study their ethanopharmacological properties 
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(Kumarapppan, Jaswanth, and Kumarasunderi 2011). Few of the plants like Aristolochia 

shimadai, Rouwalfia serpentina and Schumanniophyton magnificum have been thoroughly 

studied for their antivenom property (Martz 1992) (Sivaraman et al. 2020). Pharmaceutical 

researchers are focused on isolating the exact secondary metabolite responsible for antivenom 

property present in these plant extracts to develop active compounds. These plant based 

active compounds are known to possess lesser side effects, cheaper and socially accepted in 

many cultures, including India. Previously a number of plant based metabolites having 

antivenom properties have been isolated like sitosterol, rosmaric acid and beta-amyrin (P. 

Singh et al. 2017). However their clinical utility is limited due to lack of scientific evidence.  

Calotropis gigantea is a dry land shrub that is commonly found in wastelands. Traditionally 

the root of this plant are crushed and applied on to the snakebite site as antidote. Even today, 

Bagata tribes inhabiting parts of Orissa and Andhra Pradesh use it as a medication for 

snakebite(Jain et al. 2011) (Sri and Reddi 2011). The antivenom property of leaf and latex 

extract of the plant is documented previously (Chacko et al. 2012). However the root extract 

which the tribes specifically use to neutralize venom has been neglected and scientific studies 

are required to corroborate the traditional claim. Also many venom neutralization studies 

involving plant extract have failed to ascertain the possible role of phytochemicals 

responsible for producing desired biological activity. So in this study the neutralization 

ability of the extract and the prophylactic effect of the extract have been studied using in 

silico, in vitro and in vivo experiments. 
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2.1 Global statistics 

Snakebite is a neglected tropical disease world over and affects around 1.9 million people 

yearly. A current study estimates that approximately 6.94% percent snakebite victims 

succumb to death, while surviving victims suffer from long term morbidities (Slagboom et al. 

2017). The number of annual deaths in India due to snakebite is alarming, as it accounts for 

more than 50% of annual deaths worldwide (C. Arnold 2020). Snake bite fatalities in India 

are mostly linked to the following four species (Chauhan and Thakur 2016). King Cobra 

(Naja naja) envenomation results in severe local pain, edema, ecchymosis, decrease Spo2, 

confusion arrhythmia and CNS impairment. Edema, hypokalemia and glossopharyngeal 

discomfort are few common observations following Common krait (Bungarus caeruleus) 

bites. Russell’s viper (Daboia russelli) bites causes blisters and a bigger punctures compared 

to saw scaled vipers. The victim suffers from severe pain edema and ecchymosis.  Saw scaled 

viper (Echis carinatus) bites are discolored and easy to identify. The pathological features 

like anemia and cyanosis are evidently seen (Kumar, Maheshwari, and Verma 2006). Among 

these species, Russell's viper has been reported as the single most deadly species, causing 

death in roughly 43% of instances, followed by unknown species (21%), krait (18%) and 

cobra (12%). As a result, snakebite has become one of the most dangerous tropical diseases 

in India and the rest of the world. 

2.2 Biting problem 

In 2017, World health organization (WHO) has launched a global initiative to halve the 

number of snakebite deaths by 2030. India’s role in this regard is crucial, as it accounts for 

more than 50% of snakebite deaths. Adequate focus on managing, preventing and treating 

Russell’s viper envenomation (43%) alone may significantly lower the snakebite statistics for 

India and improve the global average. In a study significant association is made between the 
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snakebite deaths and Human development index (HDI), GDP per capita, quantum of labor 

force engaged in occupations like agriculture, and state expenditure on health. Another study 

found a link between snake bites and gender (males are more likely to be bitten), rural 

inhabitants, and people who work in jobs where they are not compelled to wear shoes. 

(Harrison et al. 2009). Also the quantity of venom injected and the site of bite affect the 

fatality rate (Alirol et al. 2010). 

2.3 Antivenom therapy 

Researchers, pharmaceutical enterprises, nongovernmental organizations and state sponsored 

bodies have been working towards better awareness of snakebite among public, adequate first 

aid care and better treatment strategies. But the number of snake bite episodes is less 

uncommon and the number of new complications and post treatment consequences are ever 

increasing (Gutiérrez et al. 2017). The only treatment available for snakebite is 

administration of antivenom that is polyvalent antibodies raised by hyper immunizing the 

animal. The drawbacks of using polyvalent antibodies are manifold. Firstly, the variation of 

venom is not addressed with polyvalent antivenom treatment. The snake responsible for the 

bite may have a different composition while the polyvalent antibodies may be specific to 

snake venom belonging to a different species. This results in cross reactivity, restricts the 

cross efficacy and para-specific (Chippaux and Goyffon 1991). The administered antivenom 

due to above reasons may not neutralize the venom completely leading to increased fatality 

(Isbister 2010). To circumvent this problem of non specific reaction and incompatibility the 

antibodies are raised against a cocktail of venoms, however in this case the antibodies 

specific to the venom are diluted and results in incomplete neutralization (I. S. Abubakar et 

al. 2010). For effective neutralization of venom sufficient quantities of venom specific 

antibodies are required and therefore it mandates more vials of antibodies which may 
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increase the treatment cost. In addition, entry of large quantities of high molecular weight 

foreign antibodies may increase the risk of hyper immune reactions (S. B. Abubakar et al. 

2010). In roughly 55% of instances, adverse reactions are reported, demonstrating the danger 

of not only snakebite but also snakebite therapy. (Deshpande et al. 2013). The preceding talks 

have brought to light the international health emergency that is snakebite, which requires 

immediate attention. A strategy to develop low cost, highly specific and effective antivenom 

mandated.  

2.4 Venom and its components 

Venoms are complex mixtures of toxic proteins. However the composition of venom varies 

between snakes of different families, genera and species. In fact, the venom composition of 

the same snake varies dramatically over the course of its life. This variation in venom 

composition and toxicity is mainly due to evolutionary changes that have occurred by 

different molecular processes like gene duplication, positive selection, recombination and 

alternative splicing (Slagboom et al. 2017). These many toxin components are ultimately 

responsible for the functional toxicity of venom as well as the underlying diseases. Snake 

venom, because of its diverse variation can The WHO has categorized venoms as 

haemotoxic, neurotoxic and cytotoxic. Snake venom can show cytotoxic haemotoxic 

neurotoxic or mytoxic properties, some venoms show a combination of these properties. 

Historically, viper venoms are considered to be predominately hemorrhagic while elapid 

venoms are neurotoxic. However several studies have reported vipers causing neuronal 

dysfunction and elapids causing haemostatic dysfunction (Tednes and Slesinger 2021).  
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Figure 2.1: Depicts the variations and toxin composition present in Daboia russelii snake 

venom sourced from three distinct geographical locations from India (Laxme et al. 2021). 

In Figure 2.1 the first inset shows composition of DRSV from eastern parts of India. A high 

concentration of Kunitz proteins is noted in this venom compared to south western India 

(inset 2) and central India (inset 3). On the other hand in south western India concentration of 

SVSP is predominant. PLA2 is the most abundant protein in all three snakes. Hemotoxic 

venom in general decreases the blood pressure by damaging the capillary basement 

membrane. Snake venom Metalloproteinase (SVMP) is mainly responsible for this damage 

which results in vascular permeability. Another toxin Snake venom serine protease (SVSP) 

functions like kallikrien and results in production of bradykinin peptides that potentiates 

vasodilatation. Hemorrhage is a typical clinical manifestation of snake bites, particularly 

viper bites. Bleeding from gums, gastrointestinal tract and the urinary tract are commonly 

presented within few hours of envenomation. In addition if hemorrhages occur in the brain 

the lethal effects are exaggerated. In the instance of viper envenomation, however, shock 

causes systemic hypertension, which might lead to mortality. 
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Envenomation by viper causes modulation in the activity of blood clotting factors that result 

in venom induced consumption coagulopathy it is similar to disseminated intravascular 

coagulation (DIC) like syndrome. Due to the deficiency of coagulation factors the blood is 

unable to clot and becomes incoagulable. In case of VLCC induced by viper bite deficiency 

of clotting factors such as factor II, and factor X are observed along with fibrinogenolytic 

activity. In addition Factor V and factor VIII deficiency is seen. Consequently, assessments 

of the bleeding time and the clotting time have become diagnostically important. A 20 minute 

whole blood clotting test is performed to detect the extent of envenomation. In case of VICC, 

prolonged prothrombin time increased partial thromboplastin time are detected. Few venom 

toxins act on platelets they either induce aggregation of platelets via von willebrand factor or 

they may inhibit aggregation of platelets by arresting the integrin receptors found on platelets. 

In venom induced consumptive coagulopathy thrombocytopenia is observed along with 

hemorrhages and bleeding clotting disorders.  

SVMPs (snake venom metalloproteases) are a key component of viper venom(Markland and 

Swenson 2013). Venom containing multiple SVMPs is present in a single snake species. The 

composition and variety exhibited in SVMPs is primarily due to gene duplication. SVMPs are 

classified as P1, P2 and P3 types. SVMPS are implicated in pathological conditions such as 

haemorrhages, platelet aggregation inhibition, and prothrombin activation. P3 is the most 

hemorrhagic of the three, and P2 has higher hemorrhagic activity than P1. They mainly affect 

the endothelial cell lining of the basement membrane of capillaries and cause vascular leaks 

leading to extravasation. Further studies have shown that the SVMPs act on collagen type IV 

to destabilize the capillary basement membrane(Swenson and Markland 2005). P1 is shown 

to posses fibrinogenolytic activity resulting in defibrination induces coagulopathy and other 

bleeding disorders. 
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By inducing a conformational change in factor X, RVV activates it to Xa, which inturn 

activates factor V to Va. Factor Xa and Va form the prothrombinase complex, that is required 

for activating prothrombin to thrombin. Phospholipases and Ca2+ are required as cofactors for 

the functioning of prothrombinase complex. Thrombin acts on fibrinogen resulting in 

formation of fibrin clots. Some SVMPs directly act on prothrombin, some SVMP require 

Ca2+ for their activity and some function devoid of calcium (Slagboom et al. 2017). Ecarin, a 

SVMP for instance doesn’t require Ca2+ for its activity while Carinactivase-1 requires Ca2+ 

for its activity. Through this mechanism the clotting factors are used up resulting a 

deficiency, this form the pathological bases for venom induced consumptive coagulopathy. 

Disintegrins are key component of viper venom that mainly functions as integrin receptor 

blockers. They are cysteine rich peptides that are either obtained from SVMP cleavage or by 

direct synthesis from disintegrins gene (Juárez et al. 2008). Few of these integrin receptors 

blocked by disintegrins are having immense pharmacological value and are well researched 

in recent times. Researchers are interested in a2b3 integrin, which is associated in coronary 

disease, and a9b1, which is involved in inflammatory diseases. In viper envenomation in 

particular disintegrins bind a2Bb3 integrin, which inhibits platelet aggregation and restricts 

fibrinogen association with platelets (Calvete et al. 2005). Snake venom serine proteases 

(SVSP) are important component of viper venom showing fibrinogenolytic activity similar to 

thrombin. They act on fibrinogen, which results in aggregation of fibrin monomer. But unlike 

thrombin action SVSP do not stimulate Factor XIII which results in formation clots that are 

not intact (Latinović et al. 2020). 

2.5 Phospholipase A2 

PLA2 (E.C- 3.1.1.4) catalytically hydrolyzes the Sn-2 acyl bond of phospholipids to release 

arachidonic acid and lysophospholipids. Oxidation of arachidonic acid  by cyclooxygenases 

https://en.wikipedia.org/wiki/Arachidonic_acid
https://en.wikipedia.org/wiki/Cyclooxygenase
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generates active inflammatory mediators called eicosanoids- prostaglandins (PG), 

thromboxanes (TX) and leukotrienes (LT) (Sales et al. 2017). Phospholipase A2 [PLA2] is 

present in mammalian tissues, snake venom, bee venom and frog venom (Shukla et al. 2015). 

The toxicity of venom is mainly attributed to PLA2 enzymes and their integral protein 

complexes (Manjunatha Kini 2003). Pre-synaptic neurotoxins, for instance exist as 

complexes of PLA2 (Xiao et al. 2017). Multiple sequence alignment of PLA2 sequences 

from different species has reported a conserved active domain spanning the catalytic residue 

HIS 48. Though PLA2 enzymes posses diverse biological activities they share high degree of 

identity in amino acid sequence which suggestive of similar 3D structures and foldings (Hiu 

and Yap 2020). The focus of this study is to screen for potential PLA2 antagonists from 

C.gigantea roots, which are traditionally used to neutralize snake venom. Since the toxicity of 

venom is mainly attributed to PLA2, we hypothesize that strong inhibitors of PLA2 may be 

present in C.gigantea root extract. 

2.6 Calotropis gigantea  

Calotropis gigantea (L.) R.BR (Apocynaceae) is a dry land weed found in Asia and Africa 

(Singh 2012). The plant belongs to Calotropis genus and is commonly called as milky weed 

or crown flower. Traditionally the plant leaves, latex and roots are attributed to possess 

immense medicinal value. The root extract, in particular possesses wound healing activity, 

rheumatoid arthritis, insomnia, pregnancy interception, skin cancers, anxiolytic, sedative, 

analgesic, and anticonvulsant properties. The antioxidant property of C. gigantea leaf, flower, 

and latex extracts are reported in previous studies (Rathod et al. 2009). The traditional 

practice has been well substantiated by several in vivo studies. Calotropis gigantea root 

extract, in particular is traditionally used for inducing abortions and healing wounds 

(Srivastava et al. 2007) (Deshmukh et al. 2009). It has been shown that, single oral dose of 

https://en.wikipedia.org/wiki/Eicosanoid
https://en.wikipedia.org/wiki/Prostaglandin
https://en.wikipedia.org/wiki/Leukotriene
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C.gigantea root extract (100mg/kg), administered on first day of post coitum completely 

intercepted pregnancy in rats. While dose administered post implantation resulted in 

resorption of implants. Further a decrease in body weight in treated rats was noted, compared 

to increased body weight in vehicle control group. In another study, C.gigantea root bark 

extract was known to increase wound healing ability in excision and incision types of 

wounds. In vivo studies have investigated analgesic, anticonvulsant, anxiolytic, and sedative 

properties of the extract (Argal and Pathak 2006) (I. N. Khan, Sarker, and Ajrin 2014). An in 

vivo experiment, using writhing techniques and hot plate method has ascertained analgesic 

and anxiolytic effect of extract. In the same study anticonvulsant and sedative effects of the 

extract have been established. The extract has been shown to inhibit chronic myelogenous 

leukemia K562 cell. The methanolic bark extract of C.gigantea showed insecticidal activity 

against several inster of larvae and adult of Tribolium castaneum. In Ayurveda, the powdered 

roots are used in asthma and bronchitis treatment (Warrier, Nambiar, and Ramankutty 1993). 

The list here may not be exhaustive owing to the diverse pharmaceutical properties present in 

the extract. These studies have scientifically substantiated the traditional practice of using 

C.gigantea root extract for curing several ailments, apart from investigating new 

pharmacological properties endowed in the extract. However, there are not enough studies 

that provide comprehensive knowledge for elucidation of specific phytochemical constituents 

in C.gigantea root. Analyzing the phyto-chemical profile of C.gigantea root extract may 

provide insights for identification of specific bioactive compounds, which may be responsible 

and may contribute to diverse pharmacological properties exhibited by this extract. 

2.7 Plant based medicines 

Over the decades, the public interest and social acceptance of plant based medicines are 

rapidly increasing in both developed and developing countries(Ekor 2014). The WHO global 
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report on Traditional and Complementary medicine (TCM), 2019, indicates that at least 80% 

of surveyed member states (170) recognize and use TCM, including indigenous medicine 

(World Health Organization 2019). The increasing patronage and inclination towards herbal 

medicines is mainly due to easy availability, low cost, and effectiveness of treatment (Vaidya 

and Devasagayam 2007). Also herbal medicines are generally considered safe and less toxic 

compared to allopathic drugs. Contrary to this view, recent studies have acknowledged the 

adverse effects of few commonly used medicinal plants, and have commented critically on 

their spurious and unsafe use (Mensah et al. 2019). For example, Ginger (Zingiber 

officinale Roscoe, Zingiberacae) is generally considered as safe herbal medicine and is 

traditionally used to treat wide array of ailments such as arthritis, ulcers and cancers. 

However, at a higher dose (600mg/kg b.wt), ginger is known to increase serum testosterone 

levels and cause androgenic activity in Wistar male rats(Rong et al. 2009). In addition, there 

exists inadequate knowledge about mechanism of their action, dosage, specificity and cross 

reactivity. On the other hand medicinal plants and herbal medicines cannot be neglected in 

toto, as they contribute significantly to human health worldwide, particularly in developing 

countries(Ekor 2014). So, regulatory authorities across the world are striving to evolve a 

structured control model to ensure licensing, manufacturing, trading and safety of TCM 

medications. According to WHO global report on Traditional and Complementary medicine 

(TCM), 2019, about 99 out of 133 member states cited limited research data on safe usage of 

TCM as a top challenge for regulation and registration of herbal medicines (World Health 

Organization 2019). Plant based products such as phytonutrients and nutraceuticals are 

widely used across the world. The past decade has witnessed a tremendous surge in herbal 

medicinal products. This change in trend may be dangerous, because it can lead to self-

medication without understanding the associated risks that follow its use. In addition, 

toxicological studies of herbal products are limited, as opposed to synthetic drugs (Karimi, 
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Majlesi, and Rafieian-Kopaei 2015). Therefore, there exists an imperative need to evaluate 

the toxicity associated with herbal drugs. 

2.8 Toxicity of plant extracts 

Few studies have demonstrated that traditionally used plant extracts have potential to cause 

toxicity when used at higher dose. For instance, medicinal plants such as Callilepsis 

laureola DC and Larrea tridentata DC that are traditionally used to ameliorate GI tract 

anomalies have been reported to cause hepatotoxicity at high dose (Steenkamp, Stewart, and 

Zuckerman 1999) (Arteaga, Andrade-Cetto, and Cárdenas 2005) (Pelkonen et al. 2017). In 

general, milkweed plants (Asclepias spp.) such as Calotropis gigantea, Asclepias syriaca, 

and Calotropis procera produce up to 200  structurally unique cardenolides that are 

conventionally used as cardiotonic steroids (Züst et al. 2019). Hence using milkweed plants 

in herbal medications poses a high risk. On account of these reasons toxicity assessment of 

traditionally used therapeutic plants has become a necessity. And determining toxicity of a 

widely used milkweed plant such as Calotropis gigantea has become a priority. 

On the other hand, folkloric knowledge and few medico-legal investigations suggest that the 

root extract, in particular was extremely harmful. Serious clinical implications like vomiting, 

irritation, arrhythmias, and lethal consequences including death, following its ingestion have 

been recorded as experiential evidence from the past(Chandra et al. 2015). Despite its 

adverse effects, the toxicity of the extract has not been comprehensively studied so far and is 

still recommended for asthma, bronchitis, dyspepsia and wound healing treatment, making its 

use controversial.  
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2.9 Plant based snake venom antidotes 

The usefulness of plant-based herbal remedies as efficient antidotes against snake venom has 

been highlighted in several ethanopharmacological research (Okot et al. 2020). Snakebite, 

which is frequent in tribal and hilly locations, is not an exception. Since ancient times, tribes 

have used specialized plant extracts to treat snakebite victims. Few of these plant extracts 

have been researched for their antivenom property and proven to be beneficial with a 

significantly high rate of venom neutralization. Aristolochia indica plant for instance is 

traditionally used to treat snake bites has been shown to posses significant antivenom 

potential (Bhattacharjee and Bhattacharyya 2013). Tamarindus indica a traditionally used 

plant to treat snakebite has been demonstrated for its venom neutralization 

property(Ushanandini et al. 2006).  Vitis vinifera seed extract has been shown to inhibit 

necrotic and procoagulant activity of venom(Mahadeswaraswamy et al. 2008). Though 

polyvalent anti-snake venom is widely used for treatment, indigenous tribes apply C.gigantea 

root paste locally on bite sites (Sri and Reddi 2011). Traditionally, leaves, roots and latex of 

C. gigantea plant are used as phyto-antidote to treat snake bite (Jain et al. 2011). However 

the roots, in particular are extensively used by Indian tribes. The traditional practice has been 

well substantiated by in vivo neutralization study wherein 400 mg/Kg b.wt of C.gigantea leaf 

extract administered to Balb/c mice, substantially neutralized 2LD50 and 3LD50 dose of Viper 

russelli venom (Chacko et al. 2012). But, the anti-venom property of C.gigantea root has not 

been comprehensively studied, so far. Hence in this study an attempt is been made to 

investigate the antivenom potential of C.gigantea root extract. 
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3.1 Aim of the study 

Aims of the present study include 

1. Phytochemical screening of C.gigantea methanolic root extract. 

2. Screening of phytochemical responsible for PLA2 inhibition using in vitro and In 

silico tools. 

3. Safety evaluation of C.gigantea root extract in mice. 

4. Investigate anti-venom property of C.gigantea root extract against D.russelii 

envenomation in mice. 

5. Assess the protection rendered by C.gigantea extract in circumventing these 

biochemical changes. 

 

 

3.2 Objectives of the study 

Objectives of the present study includes 

1. Identification, isolation, authentication, extraction and fractionation of CGMR 

2. Phytochemical screening of C.gigantea root extract. 

3. GC/MS and LC/MS analysis of CGMR. 

4. Molecular docking study to identify phyto-chemicals responsible for PLA2 inhibition. 

5. Determination of in vitro PLA2 enzyme inhibition 

6. Evaluation of oral acute toxicity and sub acute toxicity of extract in mice 

7. Determination of LD50 of venom  

8. Evaluation of neutralization of D.russelii venom by C.gigantea methanolic root 

extract. 
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9. Evaluation of protection rendered by C.gigantea aqueous root extract in D.russelii 

envenomation. 
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Figure 4.1- Overview of methods and techniques used for the study 
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4.1 Plant collection 

C.gigantea plant was identified and its roots were collected from medicinal garden located 

within Amala Medical College campus, Trichur. The co-ordinates of sampling site were 

10033′44.8′′N and 76009′56.4′′E Southern India. The average elevation is 6 m and 19.7 feet 

above sea level. A herbarium specimen of the plant (voucher no- KFRI/17703) was deposited 

at Kerala Forest Research Institute [KFRI], Trichur and the authenticated proof is kept in 

Annexure II. 

4.2 Extract preparation 

Fresh roots of C.gigantea were obtained after thorough washing with tap water followed by 

distilled water wash. The roots were shade dried and powdered using mechanical grinder. 

The powdered root was extracted in methanol. Root powder (10 g) was soaked in 100ml 

methanol and allowed to stir overnight at a speed of 120 rpm for 24 hrs at room temperature. 

The mixture was centrifuged at 2000 rpm for 15 min to get a clear supernatant. This 

procedure was repeated till maximum yield was obtained; supernatant was collected, pooled 

and evaporated to dryness. The dried extract was collected, weighed and reconstituted in 

adequate volume of methanol  (A. R. Abubakar and Haque 2020). 
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Figure 4.2: (A) Identification, (B) authentication, (C) isolation, (D) extraction and (D) 

fractionation of C.gigantea root extract. 

4.3 Extraction of polar and non-polar compounds 

C. gigantea root extract (20 mg) was dissolved in a solvent mixture containing hexane: water: 

methanol in (2:1:2) ratio. The mixture was vigorously mixed to ensure uniform distribution of 

constituents. Later the mixture was allowed to stand for 10 min to allow separation of polar 

and non polar constituents into polar and non –polar phases. Two immiscible solvent phases 

were separated and labeled as polar and non-polar extract respectively (Zhang, Lin, and Ye 

2018). 

4.4 Phytochemical Screening 

The methanolic root extract of C.gigantea roots were screened for the presence of specific 

constituents according to standard procedure. 

A

. 

B. C. D. 

E. 
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4.4.1 Tests for alkaloids 

About 0.5 g of the extract was mixed and stirred continuously with 5 ml of 1% aqueous HCl 

on a water bath. The contents were filtered and the obtained filtrate was divided into 3 

portions. To the first portion, a few drops of Dragendorffs reagent (Part A: 0.85 g of bismuth 

subnitrate, 40 ml water, and 10 ml glacial acetic acid, Part B: 8 g KI in 20 ml water) was 

added and observed for the formation of brownish precipitate. Mayer’s reagent (prepared by 

mixing mercuric chloride (1.36 g) and KI (5 g) in 100 ml water) was added to the second 

potion and observed for the formation of white precipitate. To the third portion a drop of 

Wagners reagent (2.5 g iodine dissolved in 12.5 g of potassium iodide in 250 ml water) was 

added and observed for the formation of brown precipitate (Harborne and Williams 2000). 

4.4.2 Tests for flavonoids  

4.4.2.1 Sodium hydroxide test 

Plant extract (2 ml) was dissolved in 10% aqueous NaOH solution and filtered to give yellow 

color solution. Diluted HCl was added in drops until the solution turns colorless, indicating 

the presence of flavonoids. 

4.2.2.2 Ferric chloride test 

Extract (1 mg/ml) was boiled in water and filtered. 2 drops of freshly prepared Fecl3 solution 

was added to the filtrate and observed for greenish blue color formation. 

4.2.2.3 Sulphuric acid test 

The extract was dissolved in concentrated sulphuric acid and was observed for the formation 

of yellow color. 
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4.4.3 Tests for phenols  

4.4.3.1 Ferric chloride test  

1 ml of the extract was diluted in 1 ml of water and 1 ml of Fecl3 and was observed for the 

formation of blue color. 

4.4.3.2 Ammonium hydroxide test 

1 ml of the extract was mixed with 1% gelatin solution containing 10% NaOH and observed 

for the formation of white precipitate. 

4.4.3.3 Lead acetate test 

10% lead acetate solution was added to the extract and was observed for the formation of 

white precipitate. 

4.4.4 Tests for tannins  

4.4.4.1 Potassium hydroxide method 

About 4 ml of freshly prepared 10% KOH solution was added to 4 ml of 5% concentrated 

extract and was observed for the formation of white precipitate. 

4.4.4.2 Lead acetate method 

To 2 ml of the extract, few drops of 1% lead acetate was added and observed for yellow 

precipitate. 

4.4.4.3 Ferric chloride method 

1ml of the extract was diluted with 1ml of water and heated on water bath. The solution was 

filtered and 4 ml of 5%ferric chloride was added to the filtrate. The solution was mixed 

gently and was observed for the formation of green precipitate. 
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4.4.5 Test for phlobatannins  

2 ml of the extract was diluted with 2 ml of distilled water and filtered. The filtrate was 

boiled with 2% HCl and was observed for the formation of red precipitate. 

4.4.6 Test for anthraquinones 

About 10 ml benzene was added to 2 ml of extract and mixed vigorously. The solution was 

filtered and 5 ml of 10% ammonia solution was added to the filtrate and was observed for the 

formation of pink color in the lower ammoniacal layer. 

4.4.7 Test for resins  

The extract (0.5g) was diluted with 10ml distilled water and shaken vigorously for 3 min. The 

solution was kept aside for 1 min and was observed for the formation of turbid solution. 

4.4.8 Test for coumarins  

About 3 ml of 10% NaOH was added to 2 ml of extract and was observed for the formation 

of yellow color. 

4.4.9 Test for emodins  

The extract (2 ml) was mixed with a mixture of 2 ml of NH4OH, 3 ml of benzene and 

observed for the appearance of red color. 

4.4.10 Test for saponins  

0.2 g of extract was diluted in 5 ml of distilled water and heated to boil. The tubes were 

observed for the appearance of frothing. 
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4.4.11 Test for leucoanthocyanins  

About 5 ml of extract was mixed with 5 ml of isoamyl alcohol. The upper layer of the 

solution was observed for the appearance of red color. 

4.4.12 Test for glycosides  

Extract was hydrolyzed with dilute HCl for few hours on water bath and the hydrolysate was 

subjected to the following tests. 

4.4.12.1 Legals test 

To the hydrolysate 1ml of pyridine and few drops of sodium nitroprusside was added and 

then made alkaline with sodium hydroxide solution. The solution was observed for color 

change from pink to red color. 

4.4.12.2 Borntragers test 

To the hydrolysate, chloroform was added and chloroform layer was separated. To this equal 

volume of dilute ammonia was added and the ammoniacal layer was observed keenly for the 

development of pink color. 

4.4.13 Test for carbohydrates  

4.4.13.1 Molischs test 

About 2-3 drops of 1% alcoholic α-naphthol was added to the extract and mixed well. To 

this, 2ml of conc. H2SO4 was added along the sides of the tube. The tube was carefully 

observed for the appearance of brown ring at the junction of two liquids. 
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4.4.13.2 Benedicts test 

To the extract, Benedict’s reagent is added and the tube was observed for color change from 

blue to brick red color. 

14.4.13.3 Fehlings test 

To the extract, Fehlings A and Fehling B was added and heated on water bath. The tube was 

observed for the appearance of red precipitate. 

4.4.14 Test for proteins and free amino acids (Sofowora, 1993) 

4.4.14.1 Millons test 

To the extract millons reagent was added and the tube was observed for the appearance of red 

color. 

4.4.14.2 Biuret test 

To the extract equal volume of 5% NaOH and 1% CuSO4 is added. The tube was observed 

for the appearance of blue color. 

14.4.14.3 Ninhydrin test 

To the extract ninhydrin reagent is added and the tube was observed for appearance of purple 

color. 

4.4.15 Test for terpenoids  

4.4.15.1 Salkowskis test 

Acetic anhydride and concentrated H2SO4 was added to 2 ml of extract. The tubes were 

observed for the formation of blue green ring.  
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14.4.15.2 Sulphuric acid test 

Added 5 drops of conc. H2SO4 to 1 ml of extract and lower layer was observed for the 

appearance of yellow color. 

4.4.16 Tests for steroids  

4.4.16.1 Liebermann Buchard test 

About 1 ml acetic anhydride was added to 1 ml chloroform and cooled to 00C. Then one drop 

of conc. H2SO4 was added to the cooled mixture followed by the extract. The solution was 

observed for blue, green, red color that changes with time. 

4.4.16.2 Salkowskis test 

Acetic anhydride and conc. H2SO4 was added to 2ml of extract formation of red color 

indicates the presence of steroids. 

4.5 Total Phenolic Content 

Total phenolic content was analyzed using Folin-Ciocalteu colorimetric method with some 

modifications (Singleton and Rossi 1965) . An aliquot of 0.3 ml of CGMR was mixed with 

Folin-Ciocalteu phenol reagent (2.25 ml). After 5min, 6% sodium carbonate (2.25 ml) was 

added and the mixture was allowed to stand at room temperature for 90 min. The absorbance 

of the mixture was measured at 725 nm in a spectrophotometer (Systronics 119, Madras, 

India). A Calibration curve for gallic acid in the range 20-80 μg/ml was prepared in the same 

manner. Results were expressed as mg Gallic Acid Equivalent (GAE) per gram extract. 
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4.6 Total Flavonoid Content 

Total flavonoid content was determined using the aluminium chloride colorimetric method 

with some modifications (Chang et al. 2002). A calibration curve for quercitin in the range 

20-80 μg/ml was prepared. CGMR (0.5 ml) and standard (0.5 ml) were placed in separate 

tubes and 10% aluminium chloride (0.1 ml), 1M potassium acetate (0.1 ml), 80% methanol 

(1.5 ml) and distilled water (2.8 ml) added and mixed. A blank was prepared in the same 

manner but 0.5 ml of distilled water was used instead of sample or standard. All the tubes 

were incubated at room temperature for 30 min and the absorbance was read at 415 nm. The 

concentration of flavonoid was expressed as mg Quercetin Equivalent (QE) per gram extract. 

4.7 In vitro PLA2 inhibition assay 

Standard lecithin curve – The protocol for standardization of lecithin was obtained from 

Sigma Aldrich (Bengaluru). Briefly, 2.5 ml mixture consisting of Lecithin or Phosphatidyl 

choline (PC), 5mM Tris Hcl (pH=8.5), 10mM CaCl2 (0.05 ml), 1.5 percent triton 100x 

(0.7ml) was prepared to obtain final lecithin concentration of (0.24, 0.37, 0.617, 0.864, 1.11 

and 1.48 μmol) respectively. The mixtures were incubated for 5 min at 37οC. Exactly 20 μl of 

lecithin was pipetted from each aliquot and mixed with 25% ether in isopropyl alcohol, 14% 

NaOH and 2M hydroxylamine and incubated at 25οC for 20 min. To this incubated mixture 

3N Hcl and 10% Fecl3 added and mixed. The OD was recorded at 570 nm against a blank. 

Enzyme assay- Phosphatidyl choline (Lecithin) and Phospholipase A2 (1 mg/ml in deionized 

water) were procured from Sigma Aldrich, Bengaluru. Lecithin was equilibrated with 0.5 

mM Tris Hcl; pH 8.5, 1.5% TritonX 100, and 10 mM CaCl2, at 37oC for 5 min. Equal volume 

of mixture was taken into two tubes labeled Test (T) and Blank (B). Exactly, 50 μl of PLA2 

enzyme was added to T while 50 μl of CaCl2 was added to B. The mixtures were incubated at 

37oC for 5 min. Sample was collected at 1 min intervals. Reaction was stopped by addition of 
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1.5 ml ethanol-ether mixture. Then, 2 M hydroxyl amine and 14% w/v NaOH were added 

simultaneously for the formation of hydroximic acid derivatives. Mixture was incubated at 

room temperature for 20 min. FeCl3 (10%w /v) and HCl (3N) were mixed with the incubated 

reaction mixtures, and the optical density (OD) was measured at 570 nm. The OD was 

proportional to the hydroxamic acid derivative formed. The enzyme activity was determined 

by estimating the amount of product formed in 1 min (Aparna et al. 2012). 

4.8 GC/MS analysis 

GC-MS analysis of the methanol extract of C. gigantea root was performed at SAIF, IITB 

facility, using Thermo Scientific Triple Quadrupole GC-MS (Trace 1300 GC, Tsq 8000 triple 

quadrupole MS) equipped with TG 5 MS (30 m X 0.25 mm, 0.25 µm) column. Helium was 

used as the carrier gas at a flow rate of 1ml/min. using an injection volume of 1.0 µL. Injector 

temperature was kept at 250oC and ion source temperature was 230oC. The oven temperature 

was maintained at 50oC isothermal at 280oC (Safaei-Ghomi et al. 2009) . 

4.9 LC/MS analysis 

LC-MS analysis of the methanol extract of C. gigantea root was performed at SAIF, IITB 

facility, using Hewlett-Packard 1100 chromatograph (Agilent Technologies, Santa Clara, CA) 

equipped with a quaternary pump and a diode array detector (DAD). The column was 

coupled with an MSD Ion Trap XCT mass spectrometer (Agilent Technologies, Santa Clara, 

CA) equipped with an electrospray ionization interface (ESI). Fractions were injected onto a 

C-18 column (Agilent, 4.6 × 25 cm, 5 μm) at a constant flow rate of 200 μl/min (I. Khan et al. 

2017). 
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4.10 Active site prediction 

The active site of the macromolecule was predicted using metapocket (v2.0) online server 

(Huang 2009). It utilized a multi computational consensus approach by employing 8 different 

algorithms for active site prediction viz. LIGSITE, PASS, QsiteFinder, SURFNET, Fpocket, 

GHECOM, ConCavity and POCASA. Based on z-score, the top three pocket sites in each 

predictor are obtained and clustered based on spatial similarity. 

4.11 Preparation of macromolecule and ligands 

The crystal structure of PLA2 enzyme of snake venom (Daboia russelii- PDBID-3CBI) 

structure was downloaded from the Protein Data Bank. Heteroatoms were removed in Argus 

lab tool and energy minimization was done using Swiss PDB Viewer. The phytochemical 

structures of ligands, naturally occurring in Calotropis gigantea root, were downloaded from 

the PubChem database in SDF format. The structures were checked for torsion count, amide 

bonds if present were considered non rotatable, non-polar hydrogen were merged, and energy 

minimization was done using the mmff94 force field (Sastry et al. 2013). 

4.12 Molecular docking 

The 3D structures of ligands (compounds obtained from GC/MS and LC/MS) were docked 

with Daboia russelii snake venom Phospholipase A2 (PDB ID-3CBI) using molecular 

docking software-Autodock Vina version 4.1, to obtain 9 different binding modes of the 

ligand with CAII (Ramírez and Caballero 2018). The predicted binding affinity was obtained 

for each ligand (Lagarde et al. 2019). The docked pose having RMSD<2 and least binding 

affinity (more negative) was included for analyzing intermolecular interaction using PyMOL, 

Molecular Graphics System, (Version 1.8) Schrödinger, LLC and Protein Ligand Interaction 

Profiler (PLIP) server (Fährrolfes et al. 2017). 
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4.13 In vivo study 

4.13.1 Study design: Animal study 

4.13.2 Inclusion criteria: Female Swiss albino mice (7-8 weeks old) weighing around 25-30 

g were included in all animal experiments pertaining to this study. 

4.13.3 Exclusion criteria: Diseased, old age, pregnant and new born mice were excluded 

from the study. 

4.13.4 Ethical approval : All the animal experiments were carried out with prior permission 

from Institutional Animals Ethics Committee (Ref: IAEC/ ACRC/ 18(2)-P7) and strictly 

conducted according to the guidelines of Committee for the Purpose of Control and 

Supervision of Experiments on Animals (CPCSEA) constituted by animal welfare division, 

Government of India.  

4.13.5 Source of Data: Laboratory bred Swiss albino mice (25-30 g) were purchased from 

Small Animal Breeding Station, College of Kerala Veterinary and Animal Science, Thrissur, 

Kerala. The animals were housed in well ventilated polypropylene cages under standardized 

conditions (25-30οC temperature, 60-80% relative humidity and 12 hrs of light/dark cycle) 

and fed with standard feed (Sai Durga Feeds and Foods, Bangalore, India) and water ad 

libitum. The animals were allowed to acclimatize to laboratory condition for a period of 7 

days before the onset of experimental study. 

4.14 Procurement of Venom 

Daboia russelii venom (200 mg) was procured from Irula Co-operative Society, (Madras 

Crocodile Bank), Guindy, Chennai. The venom sample was diluted appropriately (25 mg/ml) 

with 0.9 % NaCl and stored in vacutainer tubes at -20o C for future use.  
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4.15 Acute toxicity study 

The acute toxicity studies on Swiss albino mice were carried out according to guidelines 423 

of the Organization for Economic Co-operation and Development (OECD) with a few minor 

modifications (Yang et al. 2019).  Twelve female Swiss albino mice, were randomly assigned 

to control and treatment groups (n=6/ group). Feed was removed 4 hrs prior to drug 

administration and replaced after 2 hr of administration, but water supply was kept unlimited. 

Following the period of 4 hr fasting, animals were weighed and test material was 

administered orally in a single dose using an oral gavage. The treatment group mice received 

a single oral dose of 2000 mg/kg bodyweight of CGMR dissolved in 200 μl of 1% propylene 

glycol v/v (vehicle). The control group mice received 200 μl of 1% propylene glycol (v/v) as 

vehicle. Following the administration of CGMR, animals were individually observed for any 

indication of mortality, morbidity or other abnormal changes during the first 30 min, 

repeatedly for 24 hours, with special attention given during first 4hrs. Animals were then 

observed twice daily for a 14 day period to assess the toxic impact of the extract like changes 

in body weight, food intake, water consumption, skin, hair, eye color changes, drowsiness, 

sedation, diarrhea, tremors, salivation, respiration, and any abnormal behavior. The main 

purpose of acute toxicity study was to evaluate the short-term toxicity associated with single 

exposure of test material and help in selection of dosages for sub-acute toxicity study. 

4.15.1 Study protocol  

Table 4.1 : Acute toxicity study- Experimental groups (n=6 per group) 

SL NO GROUP NAME TREATMENT (single dose on first day of study) 

1 Control 200 μl of 1% propylene glycol (v/v) as vehicle 

2 Treated 2000 mg/kg bodyweight of CGMR dissolved in 200 μl of 1% 

propylene glycol v/v (vehicle). 
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4.16 Sub acute toxicity 

Sub-acute oral toxicity of CGMR was evaluated in accordance with Organization of 

Economic Cooperation and Development (OECD) guideline 407 (Yang et al. 2019). Twenty-

four female Swiss albino mice (8 weeks old) weighing 25 to 30 g were randomly assigned 

into four groups of six animals each (n=6). The animals were grouped such that the average 

body weight variation of each group was within ± 20% of the mean body weight. Group I 

received 1% propylene glycol (v/v) in distilled water as vehicle. Groups II, III and IV were 

administered 100, 200, and 400 mg/ kg body weight of CGMR (dissolved in 1% propylene 

glycol v/v) respectively. All doses were administered orally through gavage in a constant 

volume (200 μl) by varying the extract concentration in 1% propylene glycol (vehicle), once 

daily for 28 days. During experimental period food intake, water consumption, and changes 

in body weight were recorded every week. All animals were individually observed twice 

daily for mortality and morbidity. One week prior to scheduled necropsy (week 4), animals 

were observed for signs of toxicity such as changes in skin color, eye color, pupil size, 

salivation, grooming pattern, abnormal gait, posture, repetitive circling. After 28 days 

surviving animals were fasted overnight, and sacrificed on the next day. Blood was collected 

directly from heart puncture in both heparin-coated and non-heparin vials for the estimation 

of hematological parameters and biochemical assays respectively. Different organs (liver, 

kidney, heart, brain, ovaries) were collected for histolopathological analysis. 

 

 

 

 

 



34 

 

4.16.1 Study protocol 

Table 4.2: Sub-acute toxicity- Experimental groups (n=6 per group) 

4.16.2 Food intake and water consumption 

Sufficient quantities of weighed food pellets were kept in each cage to avoid scarcity. The 

leftover food pellets were collected from each cage on every fourth day, and weighed. Water 

level in feeder bottles (300 ml) was measured on every fourth day and refilled to maximum 

level to provide ad libitum water supply. The food intake and water consumed for each week 

was calculated (Schweisthal, Cole, and Mercer 1982). 

4.16.3 Body and organ weight 

The weight of each mouse was recorded on the first day and in weekly interval throughout 

the experimental period and average body weight was calculated (Schweisthal, Cole, and 

Mercer 1982). Major organs like liver, kidney, heart, brain, and ovary were dissected out and 

washed thoroughly in ice-cold saline (0.9%) to remove blood contaminants. The weights of 

the organs were taken and relative organ weight in relation to bodyweight was calculated for 

each organ. 

GROUP 

No 

GROUP NAME TREATMENTS (Daily dose) 

1 Control 1% propylene glycol (v/v) in distilled water as vehicle 

2 Low dose  100mg/kg b. wt of CGMR dissolved in 1% propylene 

glycol (v/v) 

3 Moderate dose  200mg/kg b. wt of CGMR dissolved in 1% propylene 

glycol (v/v) 

4 High dose 400mg/kg b. wt of CGMR dissolved in 1% propylene 

glycol (v/v) 
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4.16.4 Hematological parameters 

Blood collected through cardiac puncture was taken in a heparin-coated tube was used for the 

estimation of hematological parameters such as hemoglobin, total RBC, platelet count, WBC 

count and differential count using fully automated Mindray BC 20s analyzer. 

4.16.5 Biochemical parameters 

The blood collected through cardiac puncture was kept at room temperature for 30 minutes 

for clotting and serum was separated by centrifugation at 5000 rpm for 10 minutes for further 

analysis. Liver function markers Serum Glutamate Oxaloacetate Transaminase-SGOT (IFCC 

method), Serum Glutamate Pyruvate Transaminase-SGPT (IFCC method), total protein, 

albumin, and bilirubin were determined using commercially available kits (Agappe 

diagnostics, India). Kidney function tests like serum creatinine and urea were measured using 

kits available from Agappe diagnostics.  

4.16.6 Histopathology 

The liver, kidney, heart, brain, ovaries were dissected out and washed thoroughly in ice-cold 

saline (0.9%). A small portion of the tissue was fixed with 10% neutral buffered formalin. 

Sections of paraffin-embedded tissues were taken as thin 4µm and stained with hematoxylin-

eosin and observed under light microscope 200X magnification (Knoblaugh, Hohl, and La 

Perle 2018). 

4.17 Determination of LD50 of venom 

The LD50 of DRSV was calculated by Reed and Munch method according to WHO 

guidelines(Meier and Theakston 1986). Briefly female Swiss albino mice weighing 20-25 g 

each were randomly grouped into 4 groups (n=6). The lyophilized venom sample (100 mg) 

was dissolved in 4ml of 0.9% NaCl (25 mg/ml). A calculated amount of venom (5, 10, 15, 

and 20 µg) in increasing dosage was administered intraperitoneal (i.p) to animals of each 
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group respectively. The cumulative survival/death of the animal was recorded over a period 

of 24 hr from the time of venom administration. 

4.17.1 Study protocol 

Table 4.3: Determination of LD50 - Experimental groups (n=6 per group) 

GROUP 

NO. 
VENOM DOSE (µg) TREATMENTS (single dose, i.p) 

1 Low dose 5µg of venom injected i.p 

2 Moderate dose 10µg of venom injected i.p 

3 High dose 15µg of venom injected i.p 

4 Very high dose 20µg of venom injected i.p 

4.18 Neutralization of venom 

The in vivo neutralization of venom was performed according to a standard method as 

described by Theakston and Reid (Theakston and Reid 1983). Briefly, Swiss albino mice 

were administered with different doses of CGMR (i.p), immediately after administration of 

LD50 quantity of venom intraperitoneally (i.p).  The extracts were prepared in a constant 

volume of 200 µl propylene glycol, while venom was administered by dissolving LD50 

quantity in 0.9% NaCl. The positive control group received 0.6 mg of antivenom (Bharat 

Serums and Vaccines limited, Ambernath), while the vehicle group received 200 µl of 

propylene glycol. The in vitro neutralization of venom was performed by administering (i.p) 

pre-incubated mixture of venom and extract at 37oC. In both methods the 24 hour 

survivability of the animal was considered as the endpoint. 
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4.18.1 Study protocol 

Table 4.4 : In vivo neutralization study - experimental groups (n=6 per group) 

SL NO. GROUPS TREATMENTS (i.p) 

1 Control No treatment 

2 Vehicle Saline + 1% propylene glycol 

3 Venom Venom LD50 

4 Low dose Venom LD50+100mg/kg b.wt of CGMR 

5 Moderate dose Venom LD50+200mg/kg b.wt of CGMR 

6 High dose Venom LD50+400mg/kg b.wt of CGMR 

7 Antivenom (positive control) Venom LD50+ Antivenom 

 

4.18.2 Study protocol 

Table 4.5 : In vitro neutralization study - experimental groups (n=6 per group) 

SL NO. GROUPS TREATMENTS (i.p) 

1 Control No treatment 

2 Vehicle Saline + 1% propylene glycol 

3 Venom Venom LD50  

4 Low dose Venom LD50 + 200mg/kg b.wt of CGMR (pre-incubated) 

5 High dose Venom LD50 + 400mg/kg b.wt of CGMR (pre-incubated)  

6 Antivenom Venom LD50+Antivenom (pre-incubated) 
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4.19 Prophylactic effect of the extract 

Swiss albino mice were grouped into 5 groups of 6 animals each. Group 1 (control) consisted 

of mice not administered with CGMR and not treated with venom. Group 2 (vehicle control) 

consisted of mice administered with 1% propylene glycol. Group 3 (Venom group) consisted 

of  mice injected with 0.9% NaCl (i.p), each day, for a period of 14 days and then challenged 

with LD50 dose of DRSV on final day. Group 4 (CGMR-DRSV low dose group) consisted of 

mice injected with 100 mg/kg b.wt of CGMR (i.p), each day, for a period of 14 days and then 

challenged with LD50 dose of DRSV on final day. Group 4 (CGMR-DRSV high dose group) 

consisted of mice injected with 200 mg/kg b.wt of CGMR (i.p), each day, for a period of 14 

days and then challenged with LD50 dose of DRSV on final day (Fung et al. 2009). 

4.19.1 Study protocol 

Table 4.6: Prophylactic study - experimental groups (n=6 per group) 

SL NO. GROUPS TREATMENTS (i.p) 

1 Control No treatment 

2 Vehicle Saline + 1% propylene glycol (10 days) 

3 Venom Saline administered (10 days) + LD50 venom injected on final day 

4 Low dose 200mg/kg b.wt of CGMR (10days) +  

LD50 venom injected on final day 

5 High dose 400mg/kg b.wt of CGMR (10 days) + 

 LD50 venom injected on final day 

4.19.2 Clotting time test 

Mice were anesthetized using chloroform and stabilized on a horizontal platform. The tail 

was pulled into a fixed size opening set as a template. About 2cm of terminal tail edge was 

cut along the surface of template using a surgical blade no. 21. The procedure ensures 

uniform cut in all experimental animals. The first drop of blood was cleaned away using 
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surgical spirit and the second drop was taken into capillary tube for assessing the clotting 

time. The time was recorded during the start of the experiment and during each 1min interval 

of capillary break (Parasuraman, Raveendran, and Kesavan 2010). The formation was fibrin 

threads were observed following each break of capillary tube and corresponding time was 

noted. The experiment was concluded after the appearance of the first fibrin thread. 

4.19.3 Bleeding time test 

In the same experimental set up the blood obtained after incision was applied on Whatman 

filter paper No.1 (EISCO, Ambala, India) every 30 sec, without disturbing the clot. The 

experiment was concluded until complete cessation of bleeding through hemostasis. The 

terminal edge of the tail was sterilized using surgical spirit at the end of the experiment 

(Kung et al. 1998).  

4.19.4 Histopathological analysis- Time based study  

Table 4.7 : Time based study- Experimental groups (n=6) 

 TREATMENT 

Group I LD50 dose of venom injected and sacrificed immediately 

Group II Pretreated with 100mg/kg body weight of CGMR (i.p) for 10 days + 

LD50 of venom injected and sacrificed immediately 

Group III LD50 dose of venom injected and sacrificed at the end of 12 hrs 

Group IV Pretreated with 100mg/kg body weight of CGMR (i.p) for 10 days + 

LD50 of venom injected  and sacrificed at the end of 12 hrs 

 

The liver, kidney, heart, brain, ovaries were dissected out and washed thoroughly in ice-cold 

saline (0.9%). A small portion of the tissue was fixed with 10% neutral buffered formalin. 

Sections of paraffin-embedded tissues were taken as thin 4µm and stained with hematoxylin-

eosin and observed under light microscope 40x magnification. 
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4.20 Statistical analysis 

(1) The values are expressed as mean ± SD. The statistical significance was compared 

between untreated animals and experimental groups by one-way analysis of variance 

(ANOVA) followed by Dunnett’s multiple comparison tests ( For food intake, water 

consumption, body weight, and organ weight analysis of subacute toxicity study) using 

GraphPad instat 3 software (GraphPad Software, inc. La Jolla, USA). 

(2) The values are expressed as mean ± SD. The statistical significance was compared 

between experimental groups by one-way analysis of variance (ANOVA) followed by 

Tukey’s multiple comparison tests (For total phenol content, total flavonoid content and 

PLA2 inhibition study) using GraphPad instat 3 software (GraphPad Software, inc. La Jolla, 

USA). 

(3) For in vivo study- The mortality rate of each treatment group was calculated and the 

percent survival was calculated. Probit analysis was performed to arrive at a statistically 

significant value. 
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5.1 Extraction of CGMR 

The percentage yield of crude extract, MF (methanol fraction) and HF (Hexane fraction) was 

2.823g, 1.28g, and 0.91g respectively. The percentage yield of extract was calculated using 

the following formula. 

% yield= residue weight (g) / initial weight of the plant material (g) 

5.2 Phytochemical screening 

Table 5.1: Preliminary phytochemical screening of CGMR 

 

 

 

 

 

 

 

 

 

 

Table 5.1 shows the qualitative analysis of phytochemical present in CGMR. The results 

indicate the presence of diverse pharmacologically important compounds. 

Sl. No Test Result 

1 Alkaloids Present 

2 Flavonoids Present 

3 Phenols Present 

4 Tannins Present 

5 Phlobotannins Absent 

6 Anthraquinones Present 

7 Resins Absent 

8 Coumarins Present 

9 Emodins Absent 

10 Saponins Present 

11 Leucoanthocyanins Absent 

12 Glycosides Absent 

13 Carbohydrates Absent 

14 Protein and free amino acids Present 

15 Terpenoid Absent 
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5.3 Total phenol and flavonoid content 

 

Figure 5.1A : Determination of total phenols content (TPC) in crude extract, methanol 

fraction (MF) and hexane fraction (HF). TPC expressed as -mg GAE/g DW= mg of gallic 

acid equivalents per gm dry weight of root extract. (Statistical comparison: Tukey-Kramer 

multiple comparison; ****P<.00001; ***P < .001;**P < .01; *P < .05 compared to all 

groups). 

The total phenol content (TPC) in crude CGMR, HF and MF was estimated as 28.72±1.343, 

3.52±1.012, and 15.92±0.9126 mg GAE/g DW respectively. Figure 5.1A shows higher total 

phenol content in CGMR crude extract, when compared to HF (P=.0001) and MF (P=.0001) 

fractions. In the polar methanolic fraction (MF), the total phenols were determined to be 

higher than non-polar hexane fraction (HF) (P=.0001). The hexane fraction contained least 

amount of total phenol. 
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Figure 5.1B:  Determination of total flavonoids content (TFC) in crude extract, methanol 

fraction (MF) and hexane fraction (HF). TFC expressed as- mg Quercetin equivalent/ g DW= 

mg of quercetin equivalent per gm dry weight of root extract. (Statistical comparison: Tukey-

Kramer multiple comparison; ****P<.00001; ***P < .001;**P < .01; *P < .05 compared to 

all groups). 

The total flavonoid content (TFC) in crude CGMR, HF and MF was estimated as 

18.22±1.213, 3.12±1.242, and 12.92±0.826 mg Quercetin equivalent/ g DW respectively. 

Figure 5.1B shows higher TFC in CGMR crude extract, when compared to HF (P=.0001) 

and MF (P=.0001) fractions. In the polar methanolic fraction (MF), the TFC were determined 

to be higher than non-polar hexane fraction (HF) (P=.0001). The hexane fraction contained 

least amount of total phenol. 
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5.4 In vitro PLA2 assay 

 

Figure 5.2A : Standard curve of Lecithin- X axis = micromoles of Lecithin (Phosphatidyl 

choline ) ; Yaxis= absorbance at 570 nm. 

Figure 5.2A shows the standard curve obtained for lecithin in increasing concentrations 0.24, 

0.37, 0.617, 0.864, 1.11, and 1.48 μmol. The O.D measured at 570 nm was proportional the 

hydroxamic acid derivative formed in the reaction mixture. An R2 value of 0.992 indicates 

that the data points fits well with the regression line. Using the standard curve further enzyme 

experiments was performed. Firstly, the activity of PLA2 enzyme was determined by 

checking the amount of hydroxamic derivative formed per minute (uninhibited reaction). The 

activity of the enzyme and was found to be 686.246 units/mg of enzyme. Later the PLA2 

enzyme concentration (0.05 μl) and lecithin substrate concentration was kept constant all 

through the experiment, while extract was taken in increasing concentration to determine the 

enzyme activity of inhibited reaction. The difference between the activity of PLA2 enzyme in 

uninhibited and inhibited reaction was calculated to estimate the percentage inhibition of the 

extract. 
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Figure 5.2B: Inhibition of PLA2 activity- Comparison of percentage inhibition of CGMR 

crude extract, non-polar (HF) and polar (MF) fractions (μg/ml). (X axis- % inhibition, Y axis-

Concentration of extract in μg/ml) 

The data from Figure 5.2B indicates that crude CGMR significantly inhibited PLA2 activity. 

The non-polar fraction and polar fraction show activity at low concentration (5μg/ml). The 

non-polar and polar fractions were obtained by dissolving the crude extract in hexane: water: 

methanol mixture (2:1:2). The phyto-chemicals were separated based on polarity. PLA2 

activity was ascertained against hexane fraction (HF) containing mostly non-polar phyto-

chemicals and against methanol fraction (MF) containing mostly polar constituents.  
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Figure 5.2C: Inhibition of PLA2 activity- Comparison of IC50 values of CGMR crude 

extract, non-polar (HF) and polar (MF) fractions (μg/ml). (Statistical comparison: Tukey-

Kramer multiple comparison; ****P<.00001; ***P < .001;**P < .01; *P < .05 compared to 

all groups). 

The data from Figure 5.2C shows that crude extract has highest inhibition against PLA2 

activity (IC50=33.531±5.63 μg/ml) compared to non-polar (P=.0005) and polar fractions 

(P=.0001). The non-polar fraction inhibited PLA2 activity (IC50=59.586±1.491μg/ml) 

significantly compared to polar fraction (IC50=77.505±3.772μg/ml) (P=.0037). 

This result suggests that the phenols and flavonoids present abundantly in polar fraction have 

insignificant role in PLA2 inhibition. While the phenol and flavonoid deficient non-polar 

fraction has a distinct phytochemical profile which may also include PLA2 inhibitors. In the 

past several studies have contemplated the inhibitory role of polyphenols and flavonoids. 

However the phenolic and flavonoid composition of CGMR is distinct and doesn’t contain 

any significant PLA2 inhibitory phenols or flavonoids. A more detail account of this result is 

discussed under the discussion section 6.2. 
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5.5 MS analysis 

5.5.1 GC/MS analysis 

 

Figure 5.3 : Gas chromatogram of CGMR. X-axis= time; Y axis =intensity, each peak is 

labeled with peak time. 

The methanolic root extract of CGMR when subjected to gas chromatography (Figure 5.3), 

documented the presence of pharmacologically important compounds (Table 5.2) like ar-

tumerone (Relative Area=0.28%), n-hexadecanoic acid (4.37%), oleic acid (1.72%) and allyl 

octadecyl ester oxalic acid (2.2 %). 9, 12 Octadecadienoic acid (29.38%) or linoleic acid 

(18:2) was noted to be the most abundant bioactive compound in the extract. The structures 

of the compounds are shown in Figure 5.4. Among these compounds the antivenom activity 

of ar-tumerone, n-hexadecanoic acid, oleic acid and 9, 12 Octadecadienoic acid has been 

previously reported (Table 5.3).   
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Table 5.2 : List of compounds identified in CGMR extract through GCMS.  

 

The peak area, molecular formulae and molecular weight of the compounds were matched 

with a repository of compounds present in the library of National Institute of Standards and 

Technology [NIST] for identification purpose. The fragmentation pattern of few selected 

compounds is shown in Figure 5.5. 

Table 5.3 : Antivenom activity of compounds that are previously reported 

Sl 

NO. 
Compound name 

Rt 

(m) 

Peak 

time 

Area 

(%) 

Mol. 

Wt 

Chemical 

formula 

1. Ar-Tumerone 13.61 13.44 0.28 216 C15 H20 O 

2. n-Hexadecanoic acid 18.58 18.22 4.37 256 C16 H32 O2 

3. Oleic acid 20.21 20.02 1.72 282 C18 H34 O2 

4. 9,12 Octadecadienoic acid 21.42 21.01 29.38 280 C18 H32 O2 

5. Oxirane, tetradecyl 21.85 21.48 3.71 240 C16 H32 O 

6. Z-10 Pentadecen-1-ol 22.47 21.92 1.15 226 C15 H30 O 

7. 2-Piperidinone 23.01 22.93 16.71 233 C9 H16 Br NO 

8. Sulfurous Acid,  Octadecyl pentyl ester 23.96 23.39 9.41 404 C23 H48 O3 S 

9. Oxalic acid , allyl octadecyl ester 25.78 25.61 2.22 382 C23 H42 O4 

10. 

 

1-Decanol, 2-Hexyl 

 

27.29 

 

26.92 

 

12.1 

 

242 

 

C16H34O 

 

 

Sl 

No. Compound name 

 

 

Antivenom activity 

 

 

1. 

 

Ar-Tumerone 

 

 

neutralizes hemorrhagic activity of  Bothrops jararaca 

venom (L. A. F. Ferreira et al. 1992) 

2. n-Hexadecanoic acid 

 

Competitive inhibitor of Apis Mellifera venom PLA2 

(Aparna et al. 2012) 

3. Oleic acid 

 

Inhibition of L- amino acid oxidase, ATPase inhibitor 

(Sivaraman et al. 2020) 

4. 9,12 Octadecadienoic acid 

 

Neutralization of Deinagkistrodon acutus venom 

(Xiong et al. 2018) (Subasri et al. 2016) 
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Figure 5.4 : Chemical structures of few selected compounds obtained in GC/MS analysis. 

(A) Ar-tumerone, (B) n-hexadecanoic acid, (C) Oleic acid, (D) 9,12 Octadecadienoic acid, 

(E) Oxalic acid, allyl octadecyl ester, (F) 1-Decanol,2-hexyl 
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Figure 5.5 : (A) Fragmentation pattern of n-hexadecanoic acid and (B) Oxalic acid , allyl 

octadecyl ester Key- Y axis = abundance, X axis = m/z 

A 

B 
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Figure 5.5A and B shows the fragmentation patterns of n-hexadecanoic acid and allyl 

octadecyl ester oxalic acid. After the separation of compound from the gas chromatography 

column the mass spectrometer detector captures the positively charged molecules and 

converts it into a signal that is read out as bars in the graph. In the graph abundance is plotted 

against mass by charge ratio and hence it also measures mass of the compound. 

5.5.2 LC/MS analysis 

 

Figure 5.6 : Chromatogram (LC/MS) of CGMR; X axis = time, Y axis = intensity 

The LC/MS analysis of CGMR (Figure 5.6) revealed the presence of 40 diverse compounds 

in the extract (Table 5.4). Many of these compounds were identified to possess important 

pharmacological actions. Anti-inflammatory compounds like cosmosiin, fluoxymesterone, 

and capsaicin supports the anti-inflammatory effect exhibited by the extract (Mandal 2017). 

Presence of antioxidant compounds like hemmatomic acid, fraxidin methyl ether and piperine 

substantiates the free radical scavenging property of the extract. Few of these compounds like 
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piperine, resrpine and cosmosiin have been shown to exhibit antivenom property (Table 5.5). 

But none of the compounds docked efficiently with PLA2 macromolecule, indicating that 

their antivenom action is by other mechanism.  

Table 5.4 : List of compounds identified in CGMR extract through LC/MS. 

 

SL No Compound name 
RT 

(m) 

Mol Wt 

(g) 

Chemical          

Formula 

1 Lactulose 1.004 342 C12 H22 O11 

2 D-Pantetheine 4'-phosphate 1.004 358 C11 H23 N2 O7 P 

3 Triparanol 1.038 143 C7 H13 N O2 

4 isoamyl nitrite 1.047 117 C5 H11 N O2 

5 Scopoline 1.077 155 C8 H13 N O2 

6 Cosmosiin 7.06 432 C21 H20 O10 

7 Phenylpyruvic acid 7.179 164 C9 H8 O3 

8 Fluoxymesterone 7.741 336 C20 H29 F O3 

9 Desoxycorticosterone acetate 7.741 372 C23 H32 O4 

10 Etretinate 7.743 354 C23 H30 O3 

11 9a-Fluoro-Bhydroxyandrosterone 7.745 324 C19 H29 F O3 

12 Haematommic Acid, Ethyl Ester 7.776 224 C11 H12 O5 

13 Betaxolol 7.988 307 C18 H29 N O3 

14 Capsaicin 8.08 305 C18 H27 N O3 

15 Fraxidin Methyl Ether 8.311 236 C12 H12 O5 

16 Isopimpinellin 9.899 246 C13 H10 O5 

17 Hydroxyprogesterone 10.331 330 C21 H30 O3 

18 Normorphine 10.401 271 C16 H17 N O3 

19 Galanthamine 11.136 287 C17 H21 N O3 

20 8S-hydroxy-2-Decene-4,6-diynoic acid 11.34 178 C10 H10 O3 

21 Norcodeine 11.349 285 C17 H19 N O3 

22 Piperine 11.661 285 C17 H19 N O3 

23 12-epi-LTB4 11.876 336 C20 H32 O4 

24 10,12,15-octadecatrienoic acid 11.877 278 C18 H30 O2 

25 Methyl  Reserpate 11.88 414 C23 H30 N2 O5 

26 Terbinafine metabolite 12.188 313 C19 H23 N O3 

27 2-Methoxyxanthone 12.332 226 C14 H10 O3 

28 Nalorphine 12.371 311 C19 H21 N O3 

29 Pentazocine trans acid 12.594 315 C19 H25 N O3 

30 Capsaicin 12.785 305 C18 H27 N O3 

31 N-Desethyloxybutynin 13.196 329 C20 H27 N O3 

32 His- Ala- Ile 13.233 339 C15 H25 N5 O4 



54 

 

 

 

Table 5.5 : Antivenom activity of compounds that are previously reported. 

 

 

 

33 3alpha-Hydroxy-4,4-Bisnor-8,11,13-Podocarpatriene 13.522 216 C15 H20 O 

34 Estradiol  Diacetate 13.531 356 C22 H28 O4 

35 p-Hydroxypropoxyphene 13.985 355 C22 H29 N O3 

36 Dibucaine 14.025 343 C20 H29 N3 O2 

37 Nafronyl 15.216 383 C24 H33 N O3 

38 Reserpine 16.901 608 C33 H40 N2 O9 

39 Oleamide 16.936 281 C18 H35 N O 

40 Khayanthone 17.177 570 C32 H42 O9 

 

 

Sl no 

Compound name Antivenom activity reported 

1 Cosmosiin Antiplatelet aggregation activity (Chaves et al. 2011) 

2 
Capsaicin Reduction of hemorrhage  induced by Bothrops jararaca 

venom (Gonçalves and Mariano 2000) 

3 

 

 

Piperine Inhibition of lethality, necrosis, defibrinogenation  and 

hemorrhage induced by Russells viper venom (Shenoy et 

al. 2013) 

4 

 

Methyl  Reserpate Traditionally used for venom neutralization (Boopathi 

2019) 

5 

 

 

Dibucaine Inhibits PLA2 activity at higher concentration 

(Scherphof and Westenberg 1975) 

6 

 

Reserpine Traditionally used for venom neutralization (Boopathi 

2019) 
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5.6 Active site determination 

 

 

Figure 5.7 : (A) Depiction of active site groove in Daboia russelii snake venom 

Phospholipase A2 (svPLA2) (PDBID- 3CBI ), (A chain). (B) The active site residues are 

depicted in magenta. 

Phospholipase A2 [PLA2] in this inset contains only the A chain (121 amino acids) and the 

heteroatom ajmaline is removed. The Figure 5.7 shows the active site groove of PLA2 

enzyme. The metapocket webserver (v2.0) predicted the active site residues using six 

different programs and provided a consensus sequence of ligand binding residues.  Leu2, 

Gly30, His48, Ile19, Trp31, Asp99, Lys69, Tyr52, Ser23, Tyr22, Asp49, Phe5, Ala18 residues 

formed the active site of the enzyme. His48 and Asp49 are involved in catalysis of the 

enzyme. Trp31 is present at the entrance of the active site (Deka et al. 2017).  
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5.7 Docking 

Table 5.6 : Interaction of ligands with Active Site Residues of PLA2 enzyme. 

 

Table 5.6 : n-Hexadecanoic acid, Oleic acid, 9, 12 Octadecadienoic acid and allyl octadecyl 

ester oxalic acid interact with catalytic residue His48. Compounds also interacted with amino 

acid residues which are not present within the active site of PLA2 enzyme. Those interactions 

are detailed in right panel (others). Key: H=Hydrogen Bond, *=Hydrophobic Interaction. 
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2-Piperidinone 

* ** 
 

 *        
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** 
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 **  
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7 
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** 
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 * 
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 B. n-hexadecanoic acid 

A. Ar-tumerone 
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C. Oxalic acid, allyl octadecyl ester 

D. Oleic acid 
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Figure 5.8 : Interactions of Ligand with active site residues of PLA2 enzyme (A) Ar-

tumerone (B) n-Hexadecanoic (C) Oxalic acid, allyl octadecyl ester (D) Oleic acid  (E) 9,12 

Octadecadienoic acid. Salt bridge interaction with His48 (catalytic residue of PLA2 enzyme) 

is depicted. 

Figure 5.8 and Table 5.6 indicate the protein ligand interactions. n-Hexadecanoic acid  

(Ki=1.58 X 10-5 M; IC50 = 43.26 X 10-5 M ) a known competitive inhibitor of  PLA2, 

interacted with His48 through H bond, and other predicted active site residue of PLA2 

enzyme. Interestingly 3 other phyto-chemicals, Oleic acid (18:1), allyl octadecyl ester Oxalic 

acid and 9, 12 Octadecadienoic acid (18:2) also interacted with His48 through H bonds. The 

interactions are shown in Figure 5.8 and respective residues are tabulated in Table 5.8. 

Moreover all three compounds and n-Hexadecanoic acid, showed similar type of chemical 

interactions with active site residues of PLA2. 

E. 9, 12 Octadecadienoic acid 
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Though Ar-tumerone is a known for its antivenom property but the binding analysis with 

PLA2 indicate that it does not bind strongly (Binding energy= -5.5kcal). While saturated fatty 

acid n-hexadecanoic acid (Binding energy = - 8.9kcal) binds strongly to the binding residues, 

in comparison with Arachidonic acid (Binding energy= -9.1kcal). Also allyl octadecyl oxalic 

acid with a binding energy of (-8.5kcal) could be a potent inhibitor of PLA2 activity. In 

addition, it interacts with His48 with 2H bonds. Oleic acid (-8.1kcal) and 9, 12 

octadecadienoic acid (-7.8k cal) could be researched further as potent inhibitors of PLA2.  



61 

 

5.8 Toxicity study 

5.8.1 Acute toxicity 

Table 5.7 : Acute oral toxicity changes of CGMR in Swiss albino mice 

 

 

 

 

 

 

 

 

 

 

In the 14-day acute toxicity evaluation, oral administration of CGMR limit dose (2000 mg/kg 

b.wt) did not result in mortality, and no sign of pain, suffering, morbidity or distress were 

observed in the treated animals within 4h of continuous observation and even after 24 hours. 

The morphological, physiological and behavioral characteristics appeared normal in treated 

animals and are illustrated in Table 5.7. Food intake, water consumption, relative organ 

weights and body weight changes were normal. The control group animals receiving vehicle 

(200μl of 1% propylene glycol v/v) were normal and did not show any signs of toxicity 

during the 14 days study period. A rapid heartbeat was observed in the first hour after 

PARAMETER CONTROL 
CGMR 

treated 

Body weight Normal No change 

Feed and water intake Normal No change 

Rate of respiration Normal Normal 

Change in skin, eye, hair and fur No effect No effect 

Drowsiness Not observed Not observed 

Tremors, convulsions Not  observed   Not  observed 

Salivation No effect No effect 

Sedation No effect No effect 

Diarrhea Not  observed Not  observed 

Grooming pattern Normal No change 

General physics Normal No change 

Death or alive alive alive 
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administration and became normal which may be due to the stress of receiving extract. Since 

all observed parameters appeared normal and no mortality or suffering was recorded in 

treated animals, the CGMR extract at doses below 2000mg/kg bodyweight was safe and the 

LD50 value was considered to be higher than 2000mg/kg bodyweight. CGMR oral doses of 

1/5th, 1/10th, and 1/20th of limit dose viz, 100, 200 and 400 mg / kg body weight were 

therefore selected to evaluate sub-acute toxicity associated with the extract. 

5.8.2 Sub-acute toxicity evaluation 

During 28 days of treatment with CGMR, no mortality was recorded in mice at doses of 100 

(low), 200 (moderate) and (high) 400 mg / kg b.wt. There were no indications of pain, 

suffering or morbidity in treated animals and no obvious toxic signs, such as morphological 

changes, functional changes or behavioral changes were observed. The control group 

receiving vehicles (200μl of 1% propylene glycol v/v) were normal during the 28 days study 

period. 

5.8.2.1 Effect of CGMR on food intake 

 

Figure 5.9A : Effect of CGMR consumption on food intake X axis= treatment groups; Y axis 

= total food intake in gm.; Statistical comparison: Dunnet’s t-test multiple comparison; 

****P<.00001; ***P < .001;**P < .01; *P < .05 compared control groups. 
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Figure 5.9A shows that the total food intake during the course of the experiment (28days) is 

increased in case of high dose (400 mg/kg b.wt) treated group when compared statistically 

with control (P=.0165). However no significant change was observed in low dose and 

moderate dose group when compared to control groups. The total food intake during the 

period of study for control, low dose, moderate dose and high dose group animals were 

calculated as 98.6±1.756, 101.675±4.951, 110.45±13.395, and 120.3±11.796 grams 

respectively. 

 

Figure 5.9B : Weekly trend indicating the effect of CGMR on food intake. A remarkable 

increase in food intake is seen from first week evidently in high dose group. 

Data from Figure 5.9B shows the weekly trend in food consumption pattern. The amount of 

food taken by CGMR treated groups, measured at a 7-day interval over the 28 day treatment 

period showed a dose dependent increase, when compared with control group. Animals 

treated with higher dose of CGMR showed remarkable increase from the first week of 

treatment and same trend continued till the last week of experiment. With respect to lower 

dose and moderate dose the relative amount of food intake increased but was not statistically 

significant. 
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5.8.2.2 Effect of CGMR on body weight 

 

 

Figure 5.10A : Effect of CGMR consumption on total body weight. Values are expressed as 

mean ± S.D. (n = 6); Statistical comparison: Dunnet’s t-test multiple comparison; 

****P<.00001; ***P < .001;**P < .01; *P < .05 compared control groups. 

 

Figure 5.10A shows that the total body weight  during the course of the experiment (28days) 

is increased in case of high dose group when statistically compared with control (P=.0386). 

However no significant change was observed in low dose and moderate dose group when 

compared to control groups.  
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Figure 5.10B : Weekly trend indicating the effect of CGMR on bodyweight- The bodyweight 

significantly increased in high dose group animals from 3 rd week of treatment with CGMR.  

Data from Figure 5.10B shows the weekly trend in food consumption pattern. The amount of 

food taken by CGMR treated groups, measured at a 7-day interval over the 28 day treatment 

period showed a dose dependent increase, when statistically compared with control group. 

The bodyweight in high dose group increased from 3rd week of treatment and continued till 

the 4th week. A slight increase in bodyweight was noted in low and moderate dose (p=0.14) 

groups during the entire course of study. 
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5.8.2.3 Effect of CGMR on water consumption  

 

Figure 5.11A: Effect of CGMR on total water consumption (28 days). Statistical comparison: 

Dunnet’s t-test multiple comparison; ****P<.00001; ***P < .001;**P < .01; *P < .05 

compared control groups. 

Data from Figure 5.11A shows that the administration of CGMR for 28 days results in 

significant increase in water consumption with respect to high dose group animals when 

compared with control group animals (P= .0036). While in the case of low and moderate 

dose group animals, the total water consumption pattern was found to be equivalent and 

comparable to control group animals. 
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Figure 5.11B: Weekly trend indicating the effect of CGMR on water consumption for 28 

days  

Figure 5.11B shows the weekly water consumption pattern of treated and control animals. It 

is clear from the graph that the water consumption was higher by the high dose group from 

the 1st week of treatment. But that trend is not seen in case of low and moderate group 

animals compared to control group. 

5.8.2.4 Relative organ weight (ROW) 
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Figure 5.12 : Effect of CGMR on relative organ weights- Liver, Heart, Kidney, Brain and 

Ovary. Statistical comparison: Dunnet’s t-test multiple comparison; ****P<.00001; 

***P < .001;**P < .01; *P < .05 compared control groups. 

Data from Figure 5.12 indicates that there exist no significant changes with respect to 

relative organ weights when control and treated groups are statistically compared. Though the 

food intake, water consumed and bodyweight was found to be significantly increased in high 

dose group, remarkable changes in relative organ weight were not observed. The relative 

organ weight of liver, heart, brain, kidney and ovary isolated from all groups were within 

normal limits and were comparable with control group. 

5.8.2.5 Hematological analysis 

Table 5.8 : Effect of CGMR extract on hematological in mice treated for 28 days 

 

Parameters Control 100 mg/kg b.wt 200 mg/kg b.wt 400 mg/kg b.wt 

 Hb (g/dl) 11.9±0.1 12.7±0.4 13.13±1.789 12.96±0.808 

 RBC (106μL) 7.26±0.026 7.67±0.161 8.04±0.713 7.67±0.467 

 MCV (fL) 54±2 53±2 55±2 56±1 

 MCH (pg) 16 17 17 18 

 MCHC (%) 29.666±1.514 31.666±1.154 30.333±0.577 30±1.732 

 PCV 39.33±1.154 40.66±0.577 46.33±1.154 44.33±1.154 

Platelet count (105mm3) 7.8±0.888 7.09±1.110 7.5±0.624 4.833±0.750** 

Total count (103μL) 8433.33±351.1 9633.33±378.59 9233.33±378.59 9766.67±288.67 

Neutrophils (%) 22.66±2.51 20.66±2.51 19±4 17.333±3.055 

Lymphocytes (%) 73.666±2.51 77.333±3.05 75.666±4.72 79.666±3.51 

Eosinophils (%) 4±0.511 2.666±0.577 3.333±0.577 3.666±0.577 
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Figure 5.13: Effect of CGMR administration (28 days) on total platelet count. Statistical 

comparison: Dunnet’s t-test multiple comparison; ****P<.00001; ***P < .001;**P < .01; 

*P < .05 compared control groups. 

The data shown in Figure 5.13 and Table 5.8 indicates that the oral administration of CGMR 

at a concentration of 100, and 200 mg/kg body weight did not alter the hematological 

parameters of mice; results are summarized in the (Table 5.8). In this study hematological 

parameters including hemoglobin, RBC count, PCV, platelet count, total leukocyte count and 

differential leukocyte count were analyzed. In case of animals receiving high dose (400 

mg/kg b.wt) statistically significant decline in platelet count (105mm3)) (P=.0048) was 

recorded. All other hematological parameters in CGMR treated animals were found to be 

within normal limits. No toxicological significant differences between treated and untreated 

animals were recorded. 
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5.8.2.6 Biochemical analysis 

Table 5.9 : Effect of CGMR extract on biochemical parameters (Liver panel) in mice treated 

for 28 days 

Values were  

Table 5.10 :  Effect of CGMR extract on blood urea and creatinine (Kidney panel) in mice 

treated for 28 days 

 

Data from Table 5.9 and Table 5.10 indicates that CGMR administration for 28 day period 

did not show any significant changes with respect to low dose and moderate dose groups. 

Parameters related to hepatic function including SGPT, SGOT, ALP, total bilirubin and total 

protein were not altered (Table 5.9). The renal function markers such as blood urea and 

creatinine were found to be within normal range. But in case of high dose group statistically 

Parameters Control 100 mg/kg b.wt 200 mg/kg 

b.wt 

400 mg/kg 

b.wt 

Bilirubin (Total) (mg/dl) 0.3±0.054 0.3±0.051 0.333±0.057 0.366±0.577 

Bilirubin (Direct) (mg/dl) 0.1±0.043 0.1±0.052 0.1±0.051 0.1±0.054 

Bilirubin  (Indirect) (mg/dl) 0.2±0.047 0.2±0.032 0.233±0.057 0.233±0.057 

SGOT (IU/L) 253±24.04 228±84.85 225±26.87 270±11.31 

 SGPT (IU/L) 97±9.89 79±18.38 91±4.24 106±9.89 

Alkaline Phosphatase[ALP] (IU/L) 230±22.62 252±2.82 231±1.41 252±19.79 

Total protein (g/dl) 7.6±0.28 6.7±0.42 7.1±0.14 8.3±0.14 

Albumin (g/dl) 3.6±0.21 3.2±0.28 3.5±0.14 4.2±0.18 

Globulin (g/dl) 4.2±0.28 3.5±0.14 3.6±0.17 4.1±0.14 

Parameters Control 100 mg/kg b.wt 200 mg/kg b.wt 400 mg/kg b.wt 

Urea (mg/dl) 39.5±4.94 42±2.82 40.5±0.70 39.5±0.70 

Creatinine (mg/dl) 0.5±0.18 0.45±0.07 0.4±0.15 0.5±0.17 
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non-significant increase in SGOT levels, and SGPT levels was recorded, which indicates 

hepatotoxic and cardiotoxic nature of extract. However tests conducted for evaluating kidney 

function (urea and creatinine) were found to be normal. 

5.8.2.7 Histopathological studies 

The liver, kidney, brain, heart, and ovaries from both treated and control mice were 

necropsied, on the last day of the treatment, and were examined for any histopathological 

aberrations. The tissue sections of the control group (1%propylene glycol v/v) animals had 

normal cellular architecture with no histological variations. There were no obvious 

histopathological variation seen in any of the tissue sections, with respect to low dose and 

moderate dose treated animals, when compared with control groups. However, in case of high 

dose group, notable histopathological changes in liver and heart tissue were observed.  
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Figure 5.14: Histopathological analysis - Liver panel - photomicrograph of liver sections 

stained with eosin and hematoxylin from (A1) control (x40) (A2, A3 and A4) treated group 

400 mg/kg b.wt (x40)  

Multiple sections of liver tissue showed periportal necrosis (indicated by white circles in 

Figure 5.14A2 and A3) with minimal inflammatory cell infiltrate along with porto-porto 

bridging necrosis (indicated by white arrow in (Figure 5.14A3). Also central venous 

congestion and dilatation was seen at places (denoted by white circles in (Figure 5.13A4).  

 

Figure 5.14 A: Histopathological analysis– Heart panel- photomicrograph of heart sections 

stained with eosin and hematoxylin from (B1) control (x40) (B2 and B3) treated group 400 

mg/kg b.wt (x40)  

The treated group (400mg/kg b.wt) heart sections showed nuclear pyknosis (Figure 5.14A- 

B2-section) at areas along with waviness of cardiomyocytes and mild increase in eosinophilia 

of the cytoplasm (Figure 5.14A-B3-section) when compared to control group heart section 

(Figure 5.14A-B1 section). 
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Figure 5.14 B: Histopathological analysis- shows photomicrograph of kidney sections 

stained with eosin and hematoxylin from (C1) control (x40) (C2) treated group 400mg/kg 

b.wt (x40). Brain panel- (D1) control (x40) (D2) treated group 400mg/kg b.wt (x40). Ovary 

panel-(E1) control (x40) (E2) treated group 400mg/kg b.wt (x40). 

The histopathological examination of kidneys brain and ovaries showed normal pathology 

and no histological aberration were observed for both control and high dose treated groups 

(Figure 5.14B). 
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5.9 Determination of LD50 of Daboia russelii snake venom (DRSV) 

Table 5.11 : Determination of LD50 dose of Daboia russelii snake venom 

 

Abbreviation DRSV: Daboia russelii snake venom 

Table 5.11 shows the results of the LD50 determination. It is clearly evident that the number 

of dead increase proportionally over a 24 hr period, as the dose of venom increased.  

 

Figure 5.15: Determination of LD50 dose of Daboia russelii snake venom 

From the data shown in Figure5.15 and Table 5.11 the LD50 dose of DRSV was determined 

as 11.27 µg/dose or 0.375 µg/g body weight. The results were also cross checked with venom 

supplier. The 50% death rate was analyzed to be between 10-15 μg doses. Accurate 

measurement was done using probit analysis. 
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Figure 5.15A: Photograph of envenomed animal (LD50 dose = 11.27µg/dose) 

The inset Figure 5.15A shows the picture of envenomed animal, after receiving LD50 dose. 

Immediately after receiving the dose gasping and convulsions were observed in few animals. 

In some there was no movement and animal laid flat. In other few animals bleeding through 

mouth and severe convulsions were observed. A very common observation that was observed 

in all animals was the slow blackening of the pupil and bulging of eyes (within a few minutes 

after administration). 
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5.10 In vivo neutralization 

Table 5.12 : In vivo neutralization of venom DSRV by CGMR 

 

The LD50 dose of venom was significantly neutralized by animals treated with and 400 mg/kg 

b.wt of CGMR extract. Further the extract neutralized venom in concentration dependent 

manner (Table 5.12) (Figure 5.16). The death rate in LD50 venom group and group receiving 

100mg/kg.bwt remained same. However death was delayed in 100mg/kgb.wt group. Also no 

mortality or morbid condition was recorded in group receiving saline + 1%propylene glycol. 

Following venom administration (P.O) asphyxia and restlessness were observed. After a 

couple of minutes dilatation and blackening of pupils were observed in all cases. After noting 

this observation extract was administered (P.O). The 24 hr survival rate was taken as 

endpoint and probit values were calculated. The experiment was performed by keeping 

Venom LD50 + antivenom group as positive control. On the whole the in vivo neutralization 

experiment confirms that extract delays the death in envenomed animals. 

 

Dosage 
No of 

mice 

Weight of 

mice (g) 

Mortality 

(no. of dead 

/ total mice) 

% 

Survival 

% 

corrected 

 

Probit 

Saline+ Propylene glycol 6 28-30 0/6 100 4.15 3.26 

Venom LD50  6 28-30 3/6 50 50 5.00 

Venom LD50 + 

100mg/kg b.wt of CGMR 
6 28-30 3/6 50 50 

5.00 

Venom LD50 + 

200mg/kg b.wt of CGMR 
6 28-30 3/6 50 50 

5.00 

Venom LD50 + 

400mg/kg b.wt of CGMR 
6 28-30 2/6 66.67 62.52 

5.75 

Venom LD50 + 

Antivenom 
6 28-30 6/6 100 95.85 

6.75 
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Figure 5.16: Kaplan-Meier curves of in vivo neutralization study (24hr). Each tick on X axis 

represents 1hr interval, decent in the graph denotes a death while plateaus indicate surviving 

animals. Y axis = probability of survival in percentage. 

The time line indicated in Figure 5.16 shows that extract possess significant neutralization 

ability even at very low dose. For instance, death recorded in LD50 group is at 1.5hr, 6hr and 

11hr. While in 100 mg/kg b.wt group deaths were recorded at 5hr, 8hr and 15 hr following 

administration.  Contrary to this in high dose group (400 mg/kgb.wt) first death was recorded 

in after 13hrs of administration which validates the neutralization effect of extract. 
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5.11 In vitro neutralization 

Table 5.13 : In vitro neutralization of DRSV by CGMR 

 

The LD50 dose of venom was significantly neutralized by pre-incubation with 200 mg/kg b.wt 

and 400 mg/kg b.wt of CGMR extract. Further the extract neutralized venom in concentration 

dependent manner as seen in case of in vivo neutralization. The survival rate of the animals 

improved remarkably compared to in vivo study. In fact no death was recorded in group 

receiving venom incubated with 400 mg/kg.bwt. In case of 200 mg/kg b.wt group, first death 

was reported at 10 hrs following administration which is higher than 8hrs reported for in vivo 

study (Table5.13). The findings of this study indicate the presence of inhibitors in extract that 

may be acting on venom components during incubation.  

 

 

 

Neutralization In vitro 
No of 

mice 

Wt of 

mice (g) 

Mortality 

(no. of dead 

/ total mice) 

% 

Survival 

% 

corrected 

 

Probit 

Saline + propylene glycol 6 28-30 0/6 100 4.15 3.25 

LD50 venom 6 28-30 3/6 50 50 5.00 

Venom LD50 + 

200mg/kg b.wt of CGMR 
6 28-30 1/6 83.33 79.18 

5.95 

Venom LD50 + 

400mg/kg b.wt of CGMR 
6 28-30 0/6 100 95.83 

6.75 

Venom LD50 + 

Antivenom 
6 28-30 0/6 100 95.83 

6.75 



79 

 

 

Figure 5.17 : Kaplan-Meier curves of in vitro neutralization study (24hr). Each tick on X 

axis represents 1hr interval, decent in the graph denotes a death while plateaus indicate 

surviving animals. 

The in vitro neutralization time line indicated in Figure 5.17 shows that the neutralization of 

venom was better compared to in vivo study. The first death noted in case of 400mg/kg b.wt 

is at 19 hrs from envenomation. In addition the number of deaths also decreased in high dose 

group compared to in vivo study. 
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5.12 Protective effect 

Table 5.14 : Protection effect of CGMR against DRSV 

Data from Table 5.14 suggests that the death rate decreased as the concentration of 

pretreatment with extract increased. Physical observation of pre-treated animals after venom 

challenge showed normal signs. Dilatation of pupils, asphyxia and lethargy seen during 

envenomation was not commonly seen in pretreated animals. The survival rate also increased 

in pretreated animals suggesting that the CGMR extract has a prophylactic action against 

Daboia russelii venom. 

 

Protection effect 
No of 

mice 

Weight 

of 

mice (g) 

Mortality 

(no. of dead 

/ total mice) 

% 

Survival 

% 

corrected 
Probit 

Control  6 28-30  0/6 100 4.15 3.25 

Saline + propylene 

glycol  

6 
28-30  0/6 100 50 

5.00 

LD50 venom  6 28-30  3/6 50 50  5.00 

200mg/kg b.wt of 

CGMR + Venom 

LD50  

6 

28-30  3/6 50 50 

5.00 

400mg/kg b.wt of 

CGMR + Venom 

LD50  

6 

28-30  1/6 83.33 79.18 

5.95 
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Figure 5.18 : Kaplan-Meier curves of protective action of extract against venom. Each tick 

on X axis represents 1hr interval, decent in the graph denotes a death while plateaus indicate 

surviving animals. 

Animals pretreated with CGMR showed more tolerance to venom insult, as it is evident from 

(Figure 5.18). The histopathological observation of organ tissue proves the protection effect 

of the extract. 

5.12.1 Bleeding time BT and Clotting time test CT 

Table 5.15 : Determination of Bleeding and Clotting time 

Sl 

No 
Test Control 

Vehicle 

Control 

Venom 

(LD50) 

(1hr) 

Venom 

(LD50) 

(12 hr) 

CGMR-

400 mg/ 

kg b.wt 

CGMR-

400 mg/ 

kg b.wt 

+Venom 

(0hr) 

CGMR-

400 mg/ 

kg b.wt 

+Venom

(12hr) 

1  BT  1.50±0.85  1.40±0.75  3.5±1.2  4.1±0.9  1.45±0.82  2.8±0.6

5  

1.8±0.5

8  

2 CT  4.8±0.88  0.51±0.66  >20  >20*  5.12±0.77  >20*.  18±0.32  
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Clotting time increased following venom administration in all groups. In groups receiving 

only venom the clotting time exceeded 20 min. This result is suggestive of consumptive 

coagulopathy changes induced by the venom. Surprisingly the clotting time increased 

immediately after venom administration suggesting the fast action of venom components on 

coagulation cascade. In 12 hour group CT was increased. But in CGMR pretreated animals 

the increase was limited and the condition improved after 12 hrs of venom administration. 

 

Figure 5.19: Determination of bleeding time using whatmann filter paper.  

Key- A. 0hr after venom administration, B. 12hr after venom administration, and C. 0hr after 

venom administration in 400mg / kgb.wt CGMR treated mice, D. 12hr after venom 

administration in 200mg/kgb.wt CGMR treated mice, E. Control 

Estimation of bleeding time in venom treated and low dose group animals (200mg/kgb.wt) 

gave a clear indication of protection rendered by the extract, especially after 12hr of venom 

administration (Table 5.19) (Figure 5.19). The bleeding time is remarkably increased in both 

venom treated groups.  The bleeding time estimated after 1hr of venom administration 
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(3.5±1.2) is increased to 6.1±0.9 after 12 hrs. This indicates the lethal action of venom on 

blood components, especially the clotting factors. Usually in case of DRSV envenomation 

coagulopathy is seen due to deficiency of clotting factors and bleeding time is drastically 

increased. But in CGMR pretreated group slight improvement in bleeding time is noted 

suggesting the protective action of extract. The results are more evident after 12 hr of venom 

administration (1.8±0.58).  

5.12.2 Histopathological analysis 

 

Figure 5.20A: Histopathological analysis – time based study (0hr) - (A1) Liver- LD50 

venom treated (x40) (A2) Liver -Pretreated with CGMR 400mg/ kg b.wt and injected with 

LD50 venom. (B1) Heart- LD50 venom treated (x40) (B2) Heart -Pretreated with CGMR 

400mg/ kg b.wt and injected with LD50 venom (x40). (C1) Kidney- LD50 venom treated 

(x40) (C2) Kidney -Pretreated with CGMR 400mg/ kg b.wt and injected with LD50 venom. 
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(D1) Diaphragm- LD50 venom treated (x40) (D2) Diaphragm -Pretreated with CGMR 

400mg/ kg b.wt and injected with LD50 venom. 

Time based study- After venom injection the organs were necropsied from the animal to 

assess the immediate changes that are occurring due to venom insult. Gross necrosis was seen 

in liver tissue and kidney compared to extract pretreated liver tissue (Figure 5.20A). 

Diaphragm was damaged beyond the scope of evaluation, with hemorrhages and necrosis all 

around the section. But in CGMR pre treated mice the deleterious effect on diaphragm is 

circumvented and the tissue along with vasculature is intact. 

 

Figure 5.20B: Histopathology analysis – time based study (12hr) - (A1) Liver- LD50 venom 

treated (x40) and sacrificed after 12 hrs (A2) Liver -Pretreated with CGMR 400mg/ kg b.wt 

and injected with LD50 venom and sacrificed after 12 hrs (x40). (B1) Heart- LD50 venom 

treated and sacrificed after 12 hrs (x40) (B2) Heart -Pretreated with CGMR 400mg/ kg b.wt 
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and injected with LD50 venom and sacrificed after 12 hrs (x40). (C1) Kidney- LD50 venom 

treated and sacrificed after 12 hrs (x40) (C2) Kidney -Pretreated with CGMR 400mg/ kg b.wt 

and injected with LD50 venom and sacrificed after 12 hrs (x40). (D1) Diaphragm- LD50 

venom treated and sacrificed after 12 hrs (x40) (D2) Diaphragm -Pretreated with CGMR 

400mg/ kg b.wt and injected with LD50 venom and sacrificed after 12 hrs (x40). 

Time based study (Figure 5.20B) - 12 hrs after venom injection the organs were necropsied 

from the animal to assess the changes that are occurring due to venom insult. 12 hours after 

venom injection the organs were necropsied from animals to assess the changes that are 

occurring due to venom insult. Gross necrosis is observed in liver and diaphragm while in 

CGMR pretreated group the extent of damage is limited. 

5.13: Comparison of survival curves of in vivo, in vitro and protective effect of CGMR 

against DRSV 

 

Figure 5.21 : Kaplan Meier survival curve of 400mg/ kg b.wt from in vivo, in vitro and 

protective action of CGMR experiments. 
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In Figure 5.21 the effect of 400 mg/kg b.wt of the CGMR extract on in vivo neutralization, in 

vitro neutralization and protective action experiments is shown. The effect of the extract to 

ameliorate the properties of venom is better in case of in vitro experiment. No deaths or 

morbidity was observed in group receiving venom + 400mg/kg b.wt of the extract (pre-

incubated). This result reemphasizes the action of PLA2 inhibitors present in the extract that 

inhibit PLA2 integral venom components    
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6.1 Extraction of plant material 

Calotropis gigantea is a perennial shrub, locally found in dry land areas of India (V. Singh 

2012). It is commonly known as “milkweed” or “shallow wort” (Bhardwaj and Misra 2018). 

The roots of the plant, in particular, are regarded to possess high medicinal value. Previous 

studies have investigated innumerable pharmacologically active substances such as cardiac 

glycosides (calactin, calotropin and calotoxin), steroids and anti-inflammatory compounds 

present in the root extract. Many phytochemical studies have found methanol as a good 

solvent for herbal extraction, especially if the study intends to identify and isolate plant 

secondary metabolites (Truong et al. 2019). Calotropis gigantea methanolic leaf and latex 

extracts have also demonstrated exceptional venom neutralizing ability in many other studies 

(Chacko et al. 2012).  

6.2 In vitro inhibition of PLA2 activity 

This study ascertained the inhibitory activity of crude CGMR on PLA2 activity (major toxic 

component of venom) through in-vitro inhibition assay. The in vitro PLA2 inhibition was 

highest in crude extract, followed by non-polar fraction, and polar fraction. The increased 

percent inhibition seen in non-polar fraction may be due to PLA2 inhibitors which are not 

identified so far. On the other hand the CGMR extract is known for its anti-inflammatory and 

steroidal properties (Adak and Gupta 2006). In the past many compounds possessing anti-

inflammatory properties have been investigated for PLA2 inhibition(Meyer et al. 2005). The 

low percentage inhibition obtained in polar extract may be due to lack of concentration of 

metabolite. In addition the polar extract in this study has shown very high content of phenols 

and flavonoids which are previously proven to posses anti-PLA2 activity (Lindahl and 

Tagesson 1997). Flavonoids like rutin and polyphenols compounds like rosmarinic acid and 

aristolochic acid have been demonstrated to posses PLA2 inhibition activity (S. L. da Silva et 
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al. 2009). So, comprehensive characterization of both the fractions is inevitable for better 

understanding of their bioactivity. In addition, it is possible that PLA2 inhibitors of polar and 

nonpolar nature might have additive effect in the crude extract. 

6.3 Phytochemical study and docking analysis 

The phytochemicals present in root extract has not been profiled, so far. For the first time, in 

this study a detailed phytochemical analysis is performed using GC/MS, LC/MS and routine 

phytochemical tests. However, the phytochemical constituents present in C.gigantea leaves 

(24 compounds) and latex (22 compounds) have been profiled (Sharma, Kumari, and Sharma 

2016). Shalini.et,al have documented that ~60% of the compounds were common in both leaf 

and latex extract while the remainder compounds were unique to either of the extracts 

studied. In contrast to the above finding our GC/MS data of root extract revealed a distant 

phytochemical profile which predominantly consists of unsaturated and saturated long chain 

fatty acids. Most of which were exclusively confined to root. The study confirms the 

variation between the chemical constituents of leaf, latex and root which shows their different 

potential of therapeutic activities. 

The GC/MS analysis of CGMR indicated the presence of 10 compounds such as ar- 

turmerone, n-hexadeanoic acid and 2-piperidinone. Among these compounds ar turmerone, 

oleic acid, n-hexadeanoic acid and 9, 12 Octadecadienoic acid have been shown previously to 

possess significant anti-venom activity (Table 5.4). Ar-turmerone, extracted from Curcuma 

longa, has been shown to inhibit hemorrhagic activity induced by Bothrops jararaca venom. 

In the same study it has been reported that ar-turmerone fraction significantly lowered the 

lethal effect induced by Crotalus durissus terrificus venom (L. A. F. Ferreira et al. 1992). n-

Hexadecanoic acid (Ki=1.58 x 10-5)was found to be competitive inhibitor of PLA2 isolated 

from bee venom (Aparna et al. 2012). Further GC/MS data indicates the presence n-
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Hexadecanoic acid (4.3%), a known competitive inhibitor (Ki=1.58 x 10-5) of PLA2. The 

concentration of this metabolite according to GC/MS data is about 4% which is sufficiently 

high to show its effect. This is significantly low if we compare it with 9, 12 octadecadienoic 

acid concentration (29.2%). However in other studies it has been postulated that just 2% of 

metabolite is a significant quantity for pharmacological action. The concentration of 

Coumarins for instance is mere 2% in plants belonging to Fabaceae and Rubiaceae, but 

coumarins are sourced from these plants for cosmetic use (Wink 2015). Docking analysis has 

revealed the possible inhibitory role of other phyto-chemicals like allyl octadecyl ester oxalic 

acid, oleic acid, 9, 12, Octadecadienoic acid.  

PLA2 is regarded as the single most toxic component of the venom and its inhibition 

certainly ensures neutralization of venom and its components (Manjunatha Kini 2003). An in 

silico study has predicted that n-hexadecanoic acid binds to catalytically important residues 

on PLA2 viz, His48, Asp49 and Gly30 significantly (docking score= -3.41, glide energy =-

45.95kcal/mol). In the same study, 9, 12-octadecadecenoic acid is predicted to bind PLA2 at 

Gly30 and Asp49 residue (Docking score= -6.46, glide score= -43.58)(Subasri et al. 2016). 

Further molecular dynamics simulations have been performed to show that n-hexadecanoic 

acid and 9, 12 Octadecadienoic acid bind strongly to target PLA2. Another study has 

postulated the antivenom activity of 9,12 Octadecadienoic acid against Deinagkistrodon 

acutus venom(Xiong et al. 2018). Phospholipase A2 inhibitors are potential anti-

inflammatory agents as they block the release of Arachidonic acid (Meyer et al. 2005). Few 

unsaturated long chain fatty acids such as oleic acid (18:1), palmitoleic (16:1), linoleic acid 

(18:2), arachidonic acid (20:4) and linolenic (18:3), are proven to be inhibiting human 

platelet PLA2 activity by 50%. Further these long chain fatty acids were shown to inhibit 

PLA2 activity non-competitively (5X10-7) M. Also methylated long chain unsaturated fatty 

acids failed to inhibit PLA2 activity while demethylation restored the inhibition (Ballou and 
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Cheung 1985). The GC/MS profile of the extract indicates the presence of long chain fatty 

acids and hence these compounds may be involved in inhibition of venom PLA2 activity. 

This assumption is supported by two important findings of this study.  The results of protein-

ligand docking performed in this study are in line with this assumption. As many unsaturated 

fatty acids present in the extract were shown to bind strongly to PLA2 at the active site. Also 

the docking study has purported the involvement of allyl octadecyl ester oxalic acid, another 

unsaturated fatty acid present in the extract, as a potent PLA2 inhibitor. That may be 

potentially inhibiting PLA2 activity along with other known PLA2 inhibitors present in the 

extract.  

In addition, the findings of this study support the above assumption wherein, increased PLA2 

inhibition was observed in non-polar fraction of the extract and increased neutralization of 

venom is seen when non-polar fraction was administered. The degree of inhibition of PLA2 

and neutralization of venom is found lesser in polar fraction compared to non-polar fraction. 

Comparatively high PLA2 inhibition and neutralization noted in non-polar fraction may be 

due to synergistic action of all the long chain unsaturated fatty acids. However the polar 

fraction also shows significant inhibition of PLA2 (in vitro) and remarkably neutralizes 

venom in in vivo study. Therefore presence of compounds exhibiting antivenom property in 

the polar extract cannot be neglected. Their effect may be diminished either due to the 

concentration or dilution with other polar compounds or due to their comparison with 

synergistic action of fatty acids present in non- polar fraction. 

The LC/MS analysis of CGMR indicated the presence of 40 diverse compounds in the extract 

(Table- 5.5). However none of the compounds bound to PLA2 in docking study. On the other 

hand the in vitro study provides evidence of some PLA2 inhibitors in the polar fraction of the 

extract (IC50=120μg/ml). May the concentration of these inhibitors in the extract is not 
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significant enough and therefore very low inhibition is seen even at 100μg/ml of extract 

concentration. However other pharmacological benefits that accrue from these compounds 

cannot be neglected. Hence a list of their known pharmacological actions is given in Table 

6.1 Many of these compounds are identified to possess important pharmacological actions. 

Anti-inflammatory compounds like cosmosiin, fluoxymesterone, and capsaicin supports the 

anti-inflammatory effect exhibited by the extract (Mandal 2017). Presence of antioxidant 

compounds like hemmatomic acid, fraxidin methyl ether and piperine substantiates the free 

radical scavenging property of the extract (Biswasroy et al. 2020). Steroids like 

Fluoxymesterone, Desoxycorticosterone acetate, 9a-Fluoro-Bhydroxyandrosterone and 

Hydroxyprogesterone may be responsible for extracts steroid like activity. Cardenolides like 

calactin, uzarigenin and calotropin possessing steroidal ring system have been isolated from 

this plant (Chan et al. 2017). These cardenolides molecules are glycosides and shown to 

cause cytotoxicity and hence used in cancer treatment (El-Seedi et al. 2019). Traditionally, 

they are used as heart tonics to treat arhythmmias. (You et al. 2013) (Wen et al.2016). 

Surprisingly, our GC/MS data do not show the presence of any cardenolides. Reserpine and 

cosmosiin are known to posses’ antivenom activity but their mechanism of action is not well 

understood. Cosmosiin is an anti-inflammatory agent possessing anti platelet aggregation 

activity. The venom neutralizing potential has been investigated in a study (Chaves et al. 

2011). It may be countering the venom action by modulating the platelet action. Historically 

blood thinners and anticoagulants have been used to treat snakebite victim. However their use 

in snakebite treatment is contraindicated due to increased comorbidities that occur post 

treatment (Levine et al. 2014). Reserpine has been used as a medication for snake bite 

treatment; however the mechanism of its action remains unclear. A study has investigated its 

antivenom property but there is no details of its mode of action(Sivaraman et al. 2020) 

(Boopathi 2019). The antivenom property of piperine and its derivatives have been 
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investigated in the past (Shenoy et al. 2013). But the mechanism of its action is not 

elucidated, so far. The inhibition of PLA2 activity seen in this study by polar fraction may be 

due their combined and non-specific action.  

Table 6.1: Pharmacological actions of compounds obtained from LC/MS analysis of CGMR 

SL 

No 
Compound name 

Compound 

type 
Pharmacological action 

1 Lactulose Carbohydrate Management of constipation (Kot and 

Pettit-Young 1992) 

2 D-Pantetheine 4'-phosphate Vitamin Carrier of acyl residues in metabolic 

reactions (Czumaj et al. 2020) 

3 Triparanol Stilbenoid Anticancer (Bi et al. 2012),  Lowers  

4 isoamyl nitrite Alkyl nitrite Vasodilator, cyanide antidote and anti-

hypertensive (Kielbasa and Fung 2000) 

5 Cosmosiin Flavonoid Anti-inflammatory, Antiplatelet 

aggregation activity (Chaves et al. 

2011) 

6 Phenylpyruvic acid Keto acid  Inhibition of macrophage migration 

inhibition factor (Carpy, Haasbroeck, 

and Oliver 2004) 

7 Fluoxymesterone Steroid Suppression of testosterone and 

spermatogenesis (Jones et al. 1977) 

8 Desoxycorticosterone acetate Steroid Addisons disease treatment (Mccullagh 

and Ryan1940) 

9 Etretinate Retinoid Treatment of psoriasis and 

dyskeratoses (Ward et al. 1983) 

10 9a-Fluoro-

Bhydroxyandrosterone 

Steroid Psoriasis treatment (Imaizumi et al. 

1975) 

11 Haematommic Acid, Ethyl Ester  Antioxidant (Whang et al. 2005a) 

12 Betaxolol  Glaucoma treatment (Buckley, Goa, 

and Clissold 1990) 

13 Fraxidin Methyl Ether Coumarin Antioxidant (Whang et al. 2005b) 

14 Isopimpinellin Coumarin Anti-HCV activity (Widyawaruyanti et 

al. 2021) 

15 Hydroxyprogesterone Steroid Prevention of preterm delivery 

(Facchinetti and Vaccaro 2009) 

16 Normorphine opioid Analgesic (Lasagna and De Kornfeld 
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6.4 In silico analysis 

Docking analysis indicated that inhibitors of PLA2 are present in the extract. According to 

obtained GCMS data, n-Hexadecanoic acid (Ki=1.58 x 10-5) a known competitive inhibitor of 

PLA2 is found in the extract. It interacted with catalytic residue (His48) of PLA2. 

Interestingly, three other phyto-chemicals found in the extract, oleic acid, 9, 12 

Octadecadienoic acid and allyl octadecyl ester oxalic acid also formed interactions with 

His48 of PLA2. Moreover all three compounds including n-Hexadecanoic acid, showed 

similar type of chemical interactions with active site residues of PLA2. Allyl octadecyl ester 

oxalic acid, in particular seems to be a potent inhibitor of PLA2, as it form two H bonds with 

His48. Further the bond lengths (2.38Å and 2.24Å) are within the prescribed bond lengths for 

strong binding (L. Ferreira et al. 2015). Using the PLIP visualization tool the bond lengths 

can be adjusted to 4Å that provides more non-specific interactions.  When bond lengths were 

set to 4Å allyl octadecyl ester oxalic acid interacted with more crucial residues like Tyr119 

1958) 

17 Galanthamine alkaloid Alzheimers, and Dementia treatment 

(Scott and Goa 2000) 

18 Norcodeine opioid Sedative property (Fraser, Isbell, and 

Horn 1960) 

19 Piperine alkaloid Inhibition of lethality, necrosis, 

defibrinogenation  and hemorrhage 

induced by Russells viper venom 

(Shenoy et al. 2013) 

20 Methyl  Reserpate alkaloid Present in Rouwolfia serpentina n 

21 Nalorphine opioid Analgesic (Paul et al. 1991) 

22 p-Hydroxypropoxyphene  Treatment of pain (Launay-Vacher et 

al. 2005) 

23 Nafronyl  Vasodilator used in treatment of 

claudication (Goldsmith and 

Wellington 2005) 

24 Reserpine  Antivenom 

25 Oleamide Fatty acid Used as hypnotic (Mendelson and 

Basile 2001) 
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and ASP40. Tyr119 is a gateway to the active site groove and its blockage stops the ligand 

from entering the active site groove (Fernandes et al. 2015). Few other known inhibitors like 

rosmarinic acic , aristolochic acid and caffeic acid inhibit PLA2 through this mechanism. 

Asp49 is involved in catalysis, and its blockade is known to relieve myonecrosis (Mora-

Obando et al. 2014).  Together the studies indicate the presence of a potent inhibitor in non-

polar fraction of the extract. 

Further the Lipinski’s rule of five which is generally applied for evaluating druggability of 

the compound is not performed in this study. As the rule holds good for only oral drugs and 

not for non-oral drugs (Choy and Prausnitz 2011). From literature survey it was predictable 

that polar fraction with more phenols and flavonoids may have higher antivenom potential 

compared to phenol and flavonoid deficient non-polar fraction. Several studies have 

investigated the anti-PLA2 potential of phenols and flavonoids  studies (E. Arnold et al. 

2015) (Lindahl and Tagesson 1997). Surprisingly in this study the non-polar fraction inhibits 

PLA2 enzyme effectively. So it can be concluded that PLA2 inhibition by CGMR is because 

of saturated and unsaturated fatty acids like n-hexadecanoic acid and oleic acid but not due to 

phenols or flavonoids. 

All the findings are supportive and reassert the use of C.gigantea root extract as phyto-

antidote for snake bite treatment. However, the study has provided only a snapshot of phyto-

chemicals present in the extract and their possible roles in venom neutralization. The toxicity 

of the extract, adverse reaction and efficacy of the drug in comparison to polyvalent anti 

snake venom is not elucidated. Hence in-vivo studies have to be conducted to collect more 

reaffirming results. 
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6.5 Toxicity study 

The roots of this plant, in particular, are regarded as highly medicinal and harmful as well, by 

local population. Despite its toxic nature, the root extract is traditionally used as a natural 

contraceptive, expectorant, purgative and laxative by local healers, making its usage 

controversial. In addition, the toxicological properties of the root extract have not been 

comprehensively studied so far, which would guarantee the traditional claim. In acute toxicity 

study, oral administration of limit dose (2000 mg/kg b.wt) does not result in any mortality 

and no signs of toxicity are recorded in mice throughout the 14 days experimental period. The 

behavioral, morphological and physiological parameters are found to be normal and 

comparable with control group animals. In the 28 day sub-acute study, all the endpoints  

recorded such as mortality, morphology and behavior changes, food intake, water 

consumption, bodyweight gain, relative organ weight, hematological analysis, biochemical 

analysis, and histopathological examination were observed to be normal in all animals, 

treated with low dose (100mg/kg.bwt) and moderate dose (200 mg/kg b.wt). But in high dose 

group (400 mg/kg b.wt), statistically significant increase in food intake, water consumption, 

and bodyweight gain was recorded. Contrary to our finding other studies have documented a 

decrease in bodyweight following CGMR administration. The high dose group animals also 

showed significant decline in platelet count which indicates antithrombotic effect of the 

extract. The SGOT levels increased compared to control group, but the increase was not 

statistically significant. The histopathological examination of liver and heart tissue section 

indicated necrosis, suggesting that the extract is hepatotoxic and cardiotoxic at high dose. The 

study for the first time has investigated the toxicological properties of CGMR in mice, and 

found that the extract is safe for oral use below 400 mg/kg b.wt.  

The oral administration of CGMR at a concentration of 100, 200 and 400 mg/ kg body weight 

did not alter the morphological characteristics or general behavior of animals, and there was 
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no mortality recorded in any of the groups. All the treated animals were found to be healthy 

with no signs of lethargy, weakness, heavy breathing and self-isolation for 28 days, especially 

at higher doses. However a slight aggressive behavior was observed in animals treated with 

higher dose and restraining the animal while administering became difficult as the experiment 

progressed, when compared with control group or lower and moderate dose group animals. 

6.6 Neutralization of venom 

In vivo experiment conducted in this study confirmed the venom neutralization ability of the 

extract. The low dose of the extract (100mg/kgb.wt) delayed the death significantly compared 

to venom treated group. As the concentration of the extract increased the survival rate 

improved. Neutralization of venom experiment was conducted to check the effect of plant 

secondary metabolites that inhibit venom components. The results obtained from docking and 

in vitro studies gave hints about the presence of inhibitors in CGMR extract. So pre-

incubation of venom with extract at 37 ºC for 1hr before administration could provide ample 

time for inhibitors of PLA2 to act. The result obtained in in vitro neutralization was better 

than the in vivo neutralization suggesting that PLA2 inhibition by fatty acids (n-hexadecanoic 

acid, oleic acid) present in CGMR extract play a crucial role in neutralization of venom.  

The results of this experiment guarantees the traditional claim made by few tribal healers, 

who apply crushed C.gigantea root extract on the snake bite site. Snake venom is a fast acting 

toxin and oral consumption of medication may delay the action of drug against venom 

components(Bhutani, Basu, and Majumdar 2021). In Sundargarh district of Orissa the extract 

is mixed with cow’s milk and taken orally (Dey and De 2011).  Also certain plant compounds 

are used as prophylactics to prevent snake bite. May be the orally consumed Calotropis 

gigantea has a long acting effect and prevents the person from snake bite. In Nigeria for 
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instance Velvet beans ( Mucana pruriens) seed is taken as a oral prophylactic for snake bite 

treatment(Fung et al. 2009).  

Several plant extracts have been demonstrated to neutralize snake venom, in particular viper 

venom (Chandrashekara et al. 2009) (Dhananjaya et al. 2011) . The main focus of these 

studies is to evaluate the anti-mytotoxic, anti-hemorrhagic, and anti-neurotoxic properties of 

the plant extract. But in this study we have seen the neutralization ability and focused more 

on the biochemical changes that take place at different time points after envenomation. 

Together these studies confirm the antivenom potential of Calotropis gigantea root extract 

against hemorrhagic venom components of Daboia russelii. The study confirms that the 

extract apart from neutralizing also has significant protective function.  Finally, the research 

investigations conducted in this study have validated the traditional claim and support the 

application of Calotropis root extract to treat snakebite victims. 
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Summary 

Man's connection with nature is one of give and take. Our reliance on nature, both directly 

and indirectly, is inevitable. Our long-standing reliance on nature to extract medicinal benefit 

from plant items extends back centuries. Modern improvements in medication discovery and 

treatment procedures, on the other hand, have eroded traditional knowledge of plant-based 

remedies. However, in recent years, these therapies have been explored in order to harness 

their pharmacological worth, particularly in the treatment of long-standing diseases such as 

snakebites. Tribes with little interaction with the outside world have retained these age-old 

medical traditions, which must be explored to offer scientific evidence in order to accomplish 

their pharmacological potential. 

Snake bites are a long-standing health hazard that has resulted in substantial mortality all 

across the world. The lacks of available first aid, lack of awareness, and limitations of 

standard antivenom therapy have prompted researchers to look into newer therapeutic 

options. Traditional medications are currently being investigated as alternatives, and several 

plants with antivenom potential are being investigated. Many Indian tribes, such as the 

Bagata, Meena, and Damor, have used the root extract as antivenom, however there is no 

scientific evidence to support this practise.In view of the foregoing, the purpose of the study 

investigate the antivenom potential of Calotropis gigantea root extract, which is frequently 

used as an antidote for snake bites.  

In this study, the Calotropis gigantea plant was identified with the help of its botanical 

characteristics and the roots were isolated. A methanolic extract of the roots was prepared 

using conventional scientific procedures and the polar and non-polar phytochemicals were 

separated by fractionation. The PLA2 inhibition was determined in crude, non-polar and 

polar fractions using in vitro methods. The crude extract showed a highest inhibition of PLA2 

activity. And non-polar fraction had higher inhibition compared to polar fraction. This 
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indicated the presence of few inhibitors in the non-polar fraction. The phytochemicals present 

in the extract was profiled using high performance chromatographic techniques, viz GC/MS 

and LC/MS. The compounds were virtually docked with PLA2 to study the protein ligand 

binding interaction. n-hexadecanoic acid a known competitive inhibitor was identified in the 

extract and the study found a novel PLA2 inhibitor, allyl octadecyl oxalic acid present in the 

extract. However the in vitro and In silico analysis do not reflect the real setting. Therefore in 

vivo experiments were performed for better acceptability of the research data. 

The extract at a low dose of 100mkg/kg b.wt was able to delay the death of the animal in the 

in vivo neutralization experiment. The 400mg/kg b.et group significantly neutralized the 

venom when compared to antivenom group. The results of this experiment indicate the 

remarkable antivenom potential present in the extract. The in vitro neutralization experiment 

provided proof for the antivenom mechanism of action of the extract. As pre-incubation 

provided ample time for the inhibitors of snake venom components present in the extract to 

act. The extract completely neutralized the venom in case of in vitro neutralization 

experiment at a high dose. No deaths were recorded in high dose group when compared to 

antivenom group. The protection effect of the extract against snake venom was significant. 

Together the studies have provided considerable proof for the traditional claim. 
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Conclusions 

• The sub-acute toxicity study results confirm the anti-platelet activity of the extract. 

The histopathology analyses confirm the mild toxicity associated with liver and heart 

at higher dose (above 400mg/kg b.wt) and therefore the extract should be used 

cautiously. 

• The competitive inhibitors of PLA2 like n-hexadecanioc acid may contribute to 

venom neutralization. Further allyl octadecyl oxalic acid ester may be researched as a 

potent PLA2 inhibitor. 

• The extract significantly neutralized venom action even at a low dose and also 

showed better neutralization with in vitro studies which emphasizes the presence of 

inhibitory compounds in the extract against snake venom PLA2 

• The extract enhanced the coagulation ability of incoagulable blood (venom treated 

blood) and therefore confirms the possible prophylactic role of the extract against 

venom insult. 

• The above findings guarantee the traditional claim of the extract which is used as 

antidote for snake bite.  
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Future perspectives of the study 

The in vitro experiments conducted in this study confirm that the non-polar fraction of the 

extract (hexane fraction) possess PLA2 inhibition activity. The in silico experiments 

conducted in this study has identified the phytochemicals responsible for PLA2 inhibition. 

Although a known competitive inhibitor n-hexadecanoic acid was found in the extract, in 

silico studies have supported the possible role of allyl octadecyl oxalic acid ester as a possible 

PLA2 inhibitor. Further the in silico interaction studied here suggest that allyl octadecyl 

oxalic acid ester is a more potent inhibitor of PLA2 than n-hexadecanoic acid, as it forms two 

important H bonds with the active site His48. In future this compound can be tested and 

confirmed for its possible utility as a potent PLA2 inhibitor. 

The CGMR extract has high medicinal properties and is traditionally used to treat arthritis, 

snakebites, bronchitis and eczema, however the toxicological properties of the extract was not 

studied so far. The toxicity findings of this study confirm that the extract is mild toxic above 

400mg/kgb.wt. Slight cardiotoxicity and hepatoxicity was observed. In addition anti –platelet 

activity of the extract was evidently observed. Therefore in future the extract should be 

cautiously used with proper treatment advice. 

Despite its wide use in traditional and folkloric medicine there was no comprehensive 

analysis of phytochemicals of the extract. Studying the phytochemical profile of the extract 

explores the mechanism of action of the extract. The GC/MS and LC/MS analysis data in this 

studied has identified about 50 pharmacologically important compounds present in the 

extract. This data is a goldmine for ascertaining the role and action of extract in different 

pathophysiology. 
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The drawbacks of antivenom administration and the clinical consequences associated with its 

use have made its use controversial. Current researchers are drawn towards alternative ways 

of neutralizing the snake venom. In this regard numerous plant extracts have been tested and 

demonstrated to exhibit antivenom property. Calotropis gigantea root extract though 

traditionally used for snakebite has not been evaluated for its antivenom property so far. The 

findings of in vivo neutralization and in vitro neutralization confirm the antivenom activity of 

CGMR. Further at a high dose 400mg/kg b.wt significant neutralization was observed in 

comparison to antivenom treated group. The extract exhibited antivenom property (delaying 

the death of envenomed animal) even at a low dose of 100mg/Kg.bwt. In future the 

antivenom property of this extract may be evaluated further and possibly may be used as a 

replacement for antivenom administration as the side effects observed with natural treatments 

is insignificant. 

The extract has demonstrated the prophylactic action against venom challenge significantly. 

This is evident from the bleeding time, clotting time and histopathological analysis performed 

as a time based study in this work.  The biochemical changes that the extract induced in the 

treated animals can provide insights into its mechanism of neutralization of venom. This 

aspect can be studied in future for developing novel pharmacological antivenom compounds. 
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Limitations of the study 

The study used in silico methods to propose allyl octadecyl oxalic acid ester as a novel and 

effective inhibitor of PLA2 activity. It cannot be considered as a conclusive result. Molecular 

dynamics simulation study [MDS] in combination with docking analysis would be better 

accepted. Even so, in silico analyses are only simulation-based research that may or may not 

reflect the molecule's true biological function. 

The study has failed to analyze whether the extract is acting against myotoxic, neurotoxic or 

hemotoxic property of the venom. The polar and non-polar fraction may be acting in different 

modes to neutralize the venom. This finding would have made the study more interesting and 

added more future perspectives. 

The results of study have confirmed the presence of PLA2 inhibitors in the non-polar 

fraction. But further analysis and scientific deliberation is required to see the activities of 

these compounds in the in vivo experiment. 

The assessment of biochemical changes in protection of CGMR against venom action is 

elusive and could be included with better hematological markers like activated 

thromboplastin time and determination of clotting factors. However inclusion of these 

parameters was difficult during the actual experiment due to the fast action of venom 

components and mixed action of venom components on each animal. 

Though the results of this study are corroborative the actual use of the extract as an anti-

venom is possible only after clinical trials and other adverse reaction experiments. It is 

premature to conclude and state that the extract could be a possible replacement for anti-

venom. Nevertheless the study has attempted to provide scientific data and ample proof for 

its anti-venom property and reasserted its traditional value. 
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ABSTRACT 
Background: Calotropis gigantea roots are widely used as folklore medicine to treat snake bite victims. 

However the exact neutralization mechanism of the extract is not clear. In this study, snake venom 

phospholipase A2 [PLA2] inhibitors were identified in the root extract. The toxicity of the snake venom is 

mainly attributed to phospholipase A2 [PLA2] enzymes or their protein complexes per se. Therefore findings 

of this study provide valuable insights into neutralization mechanism of the extract.  

Methods: In this study the phyto-chemicals present in C.gigantea root methanolic extract were profiled using 

high resolution GC-MS. The phyto-chemicals were specifically docked into crystal structure of Daboia russelii 

phospholipase A2 [PLA2] to identify possible inhibitors. 

Results: The GC-MS profile of crude methanolic root extract indicated the presence of phyto-chemicals like 

n-Hexadecanoic acid, Oleic acid, 9, 12 Octadecadienoic acid and allyl octadecyl ester oxalic acid. Docking 

analysis revealed that n-Hexadecanoic acid interacted with catalytic residue (His48) of PLA2 (PDBID-3CBI). 

Previous studies have shown n-Hexadecanoic acid (Ki=1.58 x 10-5) as a potent competitive inhibitor of PLA2. 

Interestingly, allyl octadecyl ester oxalic acid also formed similar interaction with His48 of PLA2.  

Conclusion: n-Hexadecanoic acid and allyl octadecyl ester oxalic acid were identified as potent inhibitors of 

Daboia russelii snake venom PLA2. This result provides valuable insights about anti-snake venom potential of 

Calotropis Gigantea root extract. 

Keywords: n-Hexadecanoic acid; allyl octadecyl ester oxalic acid; PLA2, Calotropis Gigantea 

 

INTRODUCTION 

In India, snake bite fatalities are mainly attributed 
to ‘big four’ species. King cobra (Naja naja), 
Russell’s viper (Daboia russelii), Common krait 
(Bungarus caeruleus), and Saw scaled viper (Echis 
carinatus) [1]. Though polyvalent anti-snake 
venom is widely used for treatment, indigenous 
tribes apply C.gigantea root paste locally on bite 
sites [2]. Pertinent to above traditional practice, in 
this study we have investigated Daboia russelii 
snake venom PLA2 inhibitors present in 
C.gigantea root extract. 
Daboia russelii snake venom is a milieu of 
neurotoxins, hemorrahgins, 3-finger toxins [3FT], 
disintegrins, hemotoxins, phospholipase A2 
[PLA2], proteases and DNases [3]. However, PLA2 
enzymes or their protein complexes are known to 
be single most toxic component of venom. For 
example; all known pre-synaptic neurotoxins from 
snake venom are PLA2 enzymes per se or contain 
PLA2 as an integral part [4]. PLA2 is present in 

mammalian tissues, insects, snake venom, bee 
venom and frog venom [5]. PLA2 (E.C- 3.1.1.4) 
catalytically hydrolyzes the Sn-2 acyl bond of 
phospholipids to release arachidonic acid and 
lysophospholipids. Oxidation of Arachidonic acid  
by cyclooxygenases generates active inflammatory 
mediators called eicosanoids- 
prostaglandins (PG), thromboxanes (TX) 
and leukotrienes (LT) [6]. 
Calotropis gigantea (Asclepiadaceae) also called 
milky weed, is a commonly found shrub across 
Indian sub continent [7]. Traditionally, leaves, 
roots and latex of C. gigantea plant are used as 
phyto-antidote to treat snake bite. However the 
roots, in particular are extensively used by Indian 
tribes [8].The traditional practice has been well 
substantiated by invivo neutralization study 
wherein 400 mg/Kg b.wt of C.gigantea leaf 
extract administered to Balb/c mice, substantially 
neutralized 2LD50 and 3LD50 dose of Viper russelli 
venom [9]. But, the mechanism of neutralization 
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is not clear and the role of phyto-chemicals in 
venom neutralization is not well studied. 
Despite the widespread use of C. gigantea plant 
as phyto-antidote for snake bite by tribal people, 
there are no comprehensive studies that have 
investigated the venom neutralizing ability of C. 
gigantea. Though, some studies have investigated 
the venom neutralizing ability of leaf and latex, a 
detailed study on root extract of the plant which is 
extensively used by tribes has been neglected. 
Comparative analysis of phytochemical 
constituents in leaf, latex and root extract would 
provide knowledge about anti-venom property. 
 
METHODS AND MATERIALS 

Plant collection 
C.gigantea plant was identified and collected 
from medicinal garden located within Amala 
medical college campus, Thrissur. The sampling 
site is located at 10033’44.8”N and 
76009’56.4’’E Southern India. The average 
elevation is 6m and 19.7 feet above sea level. A 
herbarium specimen of plant bearing voucher 
number KFRI-1770 was deposited at Kerala 
Forest Research Institute.  
Extract preparation 
Fresh roots of C.gigantea were obtained after 
thorough washing with tap water followed by 
distilled water wash. The roots were shade dried 
and powdered using mechanical grinder. The 
powdered root was extracted in methanol. 10 
grams of root powder was soaked in 100ml 
methanol and allowed to stir overnight at a speed 
of 120 rpm for 24 hrs at room temperature. The 
mixture was centrifuged at 2000 rpm for 15 min 
to get a clear supernatant. This procedure was 
repeated; supernatant was collected, and 
evaporated to dryness [10]. The dried extract was 
collected, weighed and reconstituted in adequate 
volume of methanol. 
GC/MS analysis 
GC-MS analysis of the methanol extract of C. 
gigantea root was performed at SAIF, IITB facility, 
using Thermo Scientific Triple Quadrupole GC-
MS (Trace 1300 GC, Tsq 8000 triple quadrupole 
MS) equipped with TG 5 MS (30 m X 0.25 mm, 
0.25 µm) column [11]. Helium was used as the 
carrier gas at a flow rate of 1ml/min. using an 
injection volume of 1.0 µL. Injector temperature 
was kept at 250oC and ion source temperature 
was 230oC. The oven temperature was 
maintained at 50oC isothermal at 280oC. 

Molecular docking 

The phyto-chemicals were docked with PLA2 
enzyme of snake venom (Daboia russelli- PDBID-
3CBI) using molecular docking software-Autodock 
Vina version 4.1, to obtain 8 different binding 

modes of the ligand with PLA2 [12]. The binding 
energy and predicted Ki was calculated for each 
ligand. The intermolecular interaction between 
ligand and PLA2 was analyzed using PLIP 
software [13]. 
 
RESULTS 

GC/MS analysis 
The methanolic root extract of C.gigantea when 
subjected to gas chromatography (Figure 1), 
documented the presence of pharmacologically 
important compounds (Table 1) like Ar-Tumerone 
(Relative Area=0.28%), n-hexadecanoic acid 
(4.37%), oleic acid (1.72%) and allyl octadecyl 
ester oxalic acid (2.2 %). 9, 12 octadecadienoic 
acid (29.38%) or linoleic acid (18:2) was noted to 
be the most abundant bioactive compound in the 
extract. The identification of compound was 
based on peak area, molecular weight, molecular 
formula and the compound structures and 
matched with National Institute of Standards and 
Technology [NIST] library data. A brief overview 
about their biological activity is provided in (Table 
2).  
Docking studies 

The active site residues of PLA2 (D.russelli - 
PDBID- 3CBI) and the mechanism of actions are 
detailed clearly (5) (6) . His48 of the enzyme was 
involved in catalysis. Leu2, Gly30, His48, Ile19, 
Trp31, Asp99, Lys69, Tyr52, Ser23, Tyr22, 
Asp49, Phe5, Ala18 residues formed the active 
site of the enzyme. In this study phyto-chemicals 
identified in GC/MS data were downloaded as 
SDF files from zinc database and later converted 
to PDB files. The phyto-chemicals (ligands) were 
locally docked to the active site of macromolecule 
PLA2 (D.russelli - PDBID- 3CBI) using Autodock 
vina software (version 4.1). The ligand – 
macromolecule interaction was visualized in 
pymol molecular graphics system 1.7.x. Finally 
the molecular interaction between ligand and 
macromolecule obtained from web based PLIP 
software was tabulated for each compound 
(Table 3). 
n-Hexadecanoic acid  (Ki=1.58 X 10-5 M ; IC50 = 
43.26 X10-5 M ) a known competitive inhibitor of  
PLA2 interacted with His48 (catalytic residue of 
PLA2 enzyme) H bond [14]. Interestingly allyl 
octadecyl ester oxalic acid also interacted with 
His48. Moreover both compounds n-
Hexadecanoic acid, and allyl octadecyl ester 
oxalic acid showed similar type of chemical 
interactions with active site residues of PLA2 
(Figure 2) (Table 4). 
 
DISCUSSION 

The phytochemical constituents present in 
C.gigantea leaves (24 compounds) and latex (22 
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compounds) have been profiled [15]. However, 
the root extract in-spite of its probable importance 
in snake bite treatment has not been profiled. 
Previous studies have documented that ~60% of 
the compounds were common in both leaf and 
latex extract while the remainder compounds 
were unique to either of the extracts studied. In 
contrast to the above finding GCMS data of root 
extract revealed a distant phytochemical profile 
which predominantly consists of unsaturated long 
chain fatty acids. Most of which were exclusively 
confined to root. The study confirms the variation 
between the chemical constituents of leaf, latex 
and root which shows their different potential of 
therapeutic activities. 
In this study, we ascertained the inhibitory effect 
of crude methanolic extract of C.gigantea root on 
PLA2 activity (most toxic component of venom) 
through docking analysis. Further GC/MS data 
indicates the presence n-hexadecanoic acid 
(4.3%), a known competitive inhibitor (Ki=1.58 x 
10-5) of PLA2 [14]. Docking analysis has revealed 
the possible inhibitory role of other phyto-
chemicals like allyl octadecyl ester oxalic acid. All 
the findings are supportive and reassert the use of 
C.gigantea root extract as phyto-antidote for 
snake bite treatment. However, the study has 
provided only a snapshot of phyto-chemicals 
present in the extract and their possible roles in 
venom neutralization. The toxicity of the extract, 
adverse reaction and efficacy of the drug in 
comparison to polyvalent anti snake venom is not 
elucidated. Hence in-vivo studies have to be 
conducted to collect more reaffirming results. 
 
CONCLUSION 

The study has identified potential inhibitors of 
D.russelii snake venom PLA2 present in 
C.gigantea root extract. Both, n-hexadecanoic 
acid and allyl octadecyl ester oxalic acid can be 
used as viable drug candidates in PLA2 inhibition 
studies. The antivenom potential of the extract 
may be due to the antagonistic role of these 
phyto-chemicals against PLA2 present in venom. 
Together the study results provide ample proof 
and reassert the traditional use of the extract to 
treat snake bite victims 
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FIGURES 

 

 

Fig.1: Gas chromatogram of C.gigantea methanolic root extract 

 
 
 
Fig.2: Interactions of Ligand with active site residues of PLA2 enzyme (a) n-Hexadecanoic acid (b) 

Allyl octadecyl ester oxalic acid. Interaction with His48 (catalytic residue of PLA2 enzyme) is 
depicted in black arrows 

 
TABLES 

Table 1: GC-MS analysis of methanolic extract of C.gigantea root 

SL 

No. 
Compound name 

Retention 

Time(min) 

Peak Time    

(min) 

Relative Area 

% 

Mol. 

weight 

Chemical 

Formula 

1. Ar-Tumerone 13.61 13.44 0.28 216 C15 H20 O 

2. n-Hexadecanoic acid 18.58 18.22 4.37 256 C16 H32 O2 

3. Oleic acid 20.21 20.02 1.72 282 C18 H34 O2 

4. 9,12 Octadecadienoic 
acid 

21.42 21.01 
29.38 280 C18 H32 O2 

5. Oxirane, tetradecyl 21.85 21.48 3.71 240 C16 H32 O 

6. Z-10 Pentadecen-1-ol 22.47 21.92 1.15 226 C15 H30 O 

7. 2-Piperidinone  23.01 22.93 16.71 233 C9 H16 Br NO 

8. Sulfurous Acid,  
Octadecyl pentyl ester 

23.96 23.39 
9.41 404 C23 H48 O3 S 

9. Oxalic acid , allyl 
octadecyl ester 

25.78 25.61 
2.22 382 C23 H42 O4 

10. 1-Decanol, 2-Hexyl 27.29 26.92 12.1 242 C16H34O 
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Table 2: Biological activity of Bio-active compounds extracted from C.gigantea roots 

 

Table 3: Interactions of ligands with active site residues 

 
Table- 3 (A) n-Hexadecanoic acid, (B) Allyl 
octadecyl ester oxalic acid interact with catalytic 
residue His48 through H bonds. Compounds also 
interacted with amino acid residues which are not 

present within active site of PLA2 enzyme. Those 
interactions are detailed in right panel (others). 
Key: H=Hydrogen, *=Hydrophobic interaction 

 
 
 
 
 

 

Compound name Biological Activity 

Ar-Tumerone Wound healing, regenerative ability 

n-Hexadecanoic acid Competitive inhibitor of PLA2, Anti-inflammatory,  

Oleic acid Cancer treatment, wound healing, immune modulation  

9,12 Octadecadienoic acid Hypocholesterolemic, Anti-eczemic, Anti-Histamine  

Oxirane, tetradecyl Synthetic waxes, fabric softener, cosmetics  

Z-10 Pentadecen-1-ol Increase zinc availability 

2-Piperidinone  Component of scent gland secretions of garter snakes  

Sulfurous Acid,  Octadecyl pentyl ester Deoxygenating selenoxides  

Oxalic acid , allyl octadecyl ester Acts as UV light stabilizer  

1-Decanol, 2-Hexyl Causes skin irritation, respiratory discomfort  

    

    Other 

Compound name Leu 2 Phe 5 Ala 18 Ile19  Tyr 22  Gly 30  His 48   

Ar-Tumerone ** 
  

    Ile9 * 

n-Hexadecanoic acid *** ** * *  *  H H Ile9 * 

Oleic acid *** 
  

    Ile9 * 

9,12 Octadecadienoic acid * ** 
 

    Tyr 28   

Oxirane, tetradecyl 

   

*  *    Ile9 * 

2-Piperidinone 

   

 *    Ile9 * 

Sulfurous Acid,  Octadecyl pentyl ester   **    *    Ile9*  

Oxalic acid , allyl octadecyl ester ***  **  *  *    H Lys 7* 

1-Decanol, 2-Hexyl   *   *    Ile9 * 
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ABSTRACT 
Background: Inhibition studies on carbonic anhydrase II (CAII) (EC 4.2.1.1) activity are gaining attention due 

to their immense therapeutic application in the treatment of cancer, and obesity. Clinically used CAII inhibitors 

(CAIs), such as acetazolamide, and brinzolamide produce undesirable side effects like depression, and nausea. 

So non-toxic and natural CAI are being researched with special interest. Steroids such as bile acids, steroidal 

sulfamates, and sex hormones have previously been shown to significantly inhibit CAII activity. In the current 

insilico study, cardiotonic steroids (uzarigenin and calotropagenin) have been investigated as possible CAII 

inhibitors. 

Objective: To evaluate uzarigenin and calotropagenin as potential inhibitors of carbonic anhydrase II (CAII) 

activity, using insilico methods 

Methods and materials: Reverse pharmacophore screening and inverse docking of ligands was performed 

to identify potential targets. The results were validated by docking study. The binding affinity and interactions 

of docked ligands viz, uzarigenin, calotropagenin, acetazolamide (standard) and cholic acid (positive control) 

with CAII macromolecule, was comparatively analyzed. MMPBSA calculation of protein ligand complex were 

computed to determine the strength of binding. ADMET analysis was conducted to ascertain drug like 

properties of ligands.  

Results and conclusion: Uzarigenin (Ki= -7.6 kcal/mol) and calotropagenin (Ki= -7.9 kcal/mol), by virtue of 

their interaction with catalytically important residues (Phe130, Ile91, Gln92), good fit score (2.82, and 2.93 

respectively), and significant binding energy (∆Ebind=-21.18 and -23.57kJ/mol respectively) in MMPBSA 

calculation can be further investigated as lead CAII inhibitors.  

Keywords: Carbonic anhydrase II, cardenolides, reverse pharmacophore, uzarigenin, calotropogenin 

 

INTRODUCTION 

Carbonic Anhydrase II (CAII) (EC 4.2.1.1) is an 
important pharmacological target for diuretics, 
anticancer, antiglaucoma and antiobesity drugs 
[1] [2] [3]. CAII catalyzes the hydration of CO2 
and also facilitates bicarbonate reabsorption in 
renal tubules. Structurally, CAII consists of a 
hydrophobic core, which includes active site 
residues 190-210. Further, through mutagenesis 
studies, it has been shown that Thr198, Thr199, 
His64, Phe130, Val121, Cys205, and Leu197 are 
catalytically important [4]. The existing 
sulphonamide drugs like acetazolamide, and 
brinzolamide are potent CAII inhibitors, however 
adverse reactions like nausea, drowsiness, 

acidosis, renal calculi and vomiting are reported, 
following their use [3]. Therefore small molecule 
drugs, which are natural, non-toxic and capable 
of inhibiting CAII activity, are being researched 
with special interest.  Recent research has 
identified molecules possessing steroid ring 
(Cycloparaphenylene ring system) as potential 
inhibitors of CAII [5]. Several studies conducted in 
the past have reported that bile acids with a 
steroid ring significantly inhibited CAII activity. 
Cholic acid (Ki=48.9μM), hyocholic acid 
(Ki=38.9μM), and deoxycholic acid (Ki=51μM) 
were identified as potent CAII inhibitors [5]. 
Unfortunately, not much research is done to 
establish the CAII inhibitory activity of large 
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numbers of other plant and animal-derived 
steroids. For instance, the CAII inhibitory role of 
cardiotonic steroid compounds like cardenolides 
and bufadenolides have not been 
comprehensively studied so far. Since steroid 
molecules available in nature is exhaustive, 
testing and validating all the steroid like 
molecules using wet lab experiments is time 
consuming [6]. Instead, insilico tools like reverse 
pharmacophore mapping, and docking that 
enable easy screening and identification of 
potential inhibitors can be employed [7] [8]. So in 
this study the potential use of two low molecular 
weight cardenolides (uzarigenin and 
calotropagenin) (Figure 1) as CAII inhibitors was 
investigated using Insilico methods. 
Calotropis gigantea and other milkweed plants 
belonging to Apocyanacea family are a rich 
source of naturally occurring cardenolides [9]. 
The root extract of Calotropis gigantea in 
particular contains cardenolides such as 
calotropin, uzarigenin, calotropagenin, frugoside 
and afroside [10]. Traditionally, cardenolides like 
calotropin, were used to treat cardiac arrhythmia 
and congestive heart failure [11]. However, recent 
research has shown multiple therapeutic uses of 
these compounds as anticancer agents, emetics, 
and natural diuretics [9]. Uzarigenin for instance 
is traditionally used as a cardiotonic steroid, anti 
diahorreal and as diuretic [12][13]. 
Calotropagenin is known for its  anticancer 
property [14]. The findings of the current study 
would provide more valuable insights into the 
therapeutic aspect of these compounds.  
 
MATERIALS AND METHODS 

Target prediction 

Reverse pharmacophore screening helps in the 
identification of potential macromolecules 
(targets) to which a ligand (query) can bind. This 
method has enabled the development of in-silico 
approaches to study drug repositioning, 
replacement, adverse effects, and toxicity [15]. 
The reverse screening strategy adopted in this 
study is presented as graphical abstract in Figure 
2. PharmMapper, an online web server was 
employed in this study. Basically, it identifies key 
pharmacophore features in the ligand and 
matches it with other pharmacophores in its 
database to identify new targets. The output file 
contained the top 300 potential targets, ranked 
according to the fit score [16]. The top 10 targets 
obtained were included for further analysis. 
Targets that bound to both cardenolides or the 
overlapping hits were identified by using Microsoft 
Excel’s COUNTIF function. 

 

Reverse docking and MMPBSA calculation 

Reverse docking of ligands was performed using 
ACID-Auto in silico consensus inverse docking 
tool to confirm targets obtained through reverse 
pharmacophore screening[17]. It also calculates 
vander waals energy (Evdw), electrostatic energy 
(Eele), ∆EMM (Evdw + Eele ), polar solvation energy 
(Gpolar), non-polar solvation energy (Gnon-polar) and 
binding energy (∆Ebind) of protein ligand 
complex[18].  

Macromolecule and ligand preparation  

The crystal structure of Carbonic Anhydrase II 
(CAII) (PDB ID-1OKL)- structure of Homo sapiens 
CAII bound to Zinc, Mercury and Dansylamide, 
was downloaded from the Protein Data Bank 
[19]. Heteroatoms were removed in Argus lab 
tool and energy minimization was done using 
Swiss PDB Viewer [20]. The structures of  
uzarigenin and calotropagenin cardenolides, 
naturally occurring in Calotropis gigantea root, 
were obtained from an article published 
previously [10]. The structures were downloaded 
from the PubChem database in SDF format 
(Figure 1) [21]. The structures were checked for 
torsion count, amide bonds if present were 
considered non-rotatable, non-polar hydrogen 
were merged, and energy minimization was done 
using the mmff94 force field [22]. 
 
Active site prediction  

The active site of the macromolecule was 
predicted using metapocket 2.0 online server.  It 
utilizes a multi computational consensus 
approach by employing 8 different algorithms for 
active site prediction viz. LIGSITE, PASS, Q-
siteFinder, SURFNET, Fpocket, GHECOM, 
ConCavity and POCASA. Based on z-score, the 
top three pocket sites in each predictor are 
obtained and clustered based on spatial similarity 
[23]. 

Docking 

The 3D structures of ligands viz, uzarigenin, 
calotropagenin, acetazolamide (standard) and 
cholic acid (positive control) were docked with 
Carbonic Anhydrase (CAII) (PDB ID-1OKL) using 
molecular docking software-Autodock Vina 
version 4.1, to obtain 9 different binding modes 
of the ligand with CAII [24]. The predicted 
binding affinity was obtained for each ligand. The 
docked pose having RMSD<2 and least binding 
affinity (more negative) was included for 
analyzing intermolecular interaction using PyMOL 
Molecular Graphics System, Version 1.8 
Schrödinger, LLC and PLIP software [25]. 
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Molinspiration 

The bioactivity score and drug-likeness of 
cardenolides were determined using 
Molinspiration chemoinformatics tool. It computes 
cLog P, molecular weight, hydrogen bond donors 
and hydrogen bond acceptor for queried 
compounds [26]. Also compounds activity as a 
enzyme inhibitor is calculated as bioactivity score. 
 
RESULTS AND DISCUSSION 

Target prediction 

Three common pharmacophore features were 
noted in both the cardenolides viz, 2 Hydrophobic 
and one acceptor feature. Carbonic anhydrase II 
ranked among top 10 targets with respect to both 
cardenolides and hence was selected for further 
analysis (Table 1). The normalized score for 
uzarigenin  (0.9623) and calotropagenin(0.9771) 
indicated CAII as a potential target. 

Reverse docking and MMPBSA calculation 

The ligands were reverse docked  in ACID 
webserver and UNIPROT ID but not PDBID was 
used for searching potential targets . The reverse 
docking results confirmed CAII as a potential 
target of both ligands (Table 1). Evdw, Eele, and Gnon-

polar correlate negatively whereas Gpolar correlates 
positively with binding energy. Cholic acid 
(positive control) showed high binding affinity in 
the range of  -42.09 kJ/mol, high dock score (-
9.34) and considerably high ∆EMM (-134.91 
kJ/mol) (Table-2). A high ∆EMM value obtained for 
positive control and standard indicates the 
importance of vander waals and electrostatic 
interactions in stabilizing protein –ligand complex. 
Uzarigenin (-21.18 kJ/mol), calotropagenin (-
23.57 kJ/mol) showed good binding energy 
(more negative). However the binding energies 
were less compared to positive control cholic acid 
(-42.09 kJ/mol) and acetazolamide (-58.69 
kJ/mol  ). This indicates that both ligands have 
good binding potential but their affinities are 
weak compared to standard. So further 
optimization of functional groups in the ligands 
could be a possible option for designing novel 
CAII inhibitors.  

Active site prediction 

Top 3 binding sites obtained in Metapocket 2.0 
were cross-checked with existing data through a 
literature search. Accordingly, His94, His96, 
His119, Val121,Val142, Trp208, Thr198, 
Leu197, Gln92, Leu140, Phe130, Ile91, Asn62, 
Ala65, Asn67, Thr199,Val134, His64, 
Asn243,Tyr7, Pro200, Pro201,Trp5, Phe20 were 
considered as potential binding residues. The 
active site and potential binding residues were 
visualized in Pymol and illustrated in (Figure 3). 

Docking 

The reverse screening results were confirmed by 
site-specific, flexible docking using AutoDock Vina 
V 4.2 available on the PyRx platform. Uzarigenin, 
calotropagenin, acetazolamide (standard) and 
cholic acid (positive control) were docked with 
Carbonic Anhydrase (CAII) (PDB ID-1OKL) 
Highest binding affinity was obtained with respect 
to acetazolamide  (-9.3 kcal/mol), followed by 
cholic acid (-8.1 kcal/mol), calotropagenin (-7.9 
kcal/mol), and uzarigenin (-7.6 kcal/mol) (Table 
3). Binding mode analysis indicated that both 
cardenolides interacted with active site residues 
like Phe130, Ile91, and Gln92 (Figure 4).  

Validation 

The docking simulation was validated by 
redocking dansylamide to Carbonic anhydrase 
(CAII) crystal structure (PDB ID-1OKL) containing 
an inbuilt dansylamide. The interaction and the 
bond lengths between docked and crystal 
structure were the same, with a deviation of 
0.12A. The RMSD values of heavy atoms in 
dansylamide were in the range of 0.3-0.14A 

Bioactivity prediction 

Both uzarigenin and calotropagenin, had lower 
than stipulated molecular mass of 500 Daltons. 
However all other parameters like the number of 
hydrogen donors (nOHNH), acceptors (nON) and 
miLogP was within Lipinski’s limit (Table 4). 
Interestingly both cardenolides showed significant 
bioactivity score for nuclear receptor ligand and 
enzyme inhibition (Table 5). Hence, it was 
concluded that  uzargenin and calotropagenin 
have drug-like action and also have significant 
enzyme inhibitory score. 
 
CONCLUSION 

All the insilico methods adopted in this study, 
reverse pharmacophore mapping, reverse 
docking, MMPBSA calculation, docking, and 
ADMET analysis point out that uzarigenin and 
calotropagenin are good lead candidates for 
designing CAII inhibitors. However their binding 
affinities were determined to be weaker 
compared to standard and therefore further 
optimization of functional groups may be  
required. Also the study needs to be replicated in 
invitro, and invivo models to validate and confirm 
the present findings.   
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Table  1:Target prediction using reverse pharmacophore and reverse docking 
 

 

Reverse Pharmacophore 

(Normalized Fit Score) 

 Reverse docking 

(Dock score) 

 

Targets Uzarigenin  Calotropagenin Uzarigenin Calotropagenin 

Carbonic Anhydrase II 
(1OKL) 

0.9623  0.9771 -8.72 -8.88 

TREM2 (1Q8M) 0.9333 0.9512 NIL -8.10 

Pregesterone receptor 
(2OVM) 

0.9353 0.9402 -5.34 -7.23 

Liver Carboxylesterase 1 
(1YA8) 

0.9412 0.8972 -6.43 NIL 

Prothrombin (1NO9) 0.8901 0.9012 NIL -7.74 

Caspase-7(1SHJ) 0.8888 0.9432 -5.86 -6.43 

Table 2:MMPBS calculation 

Ligand ∆EMM ∆GSol ∆EBind Dock score 

Uzarigenin -51.72 23.69 -21.18 -8.72 

Calotropagenin -69.04 37.02 -23.57 -8.88 

Acetazolamide -165.72 149.33 -58.69 -11.45 

Cholic acid -134.91 113.23 -42.09 -9.34 

Table 3:Binding affinity prediction of docked ligands 

Ligands Binding affinity 

(kcal/mol) 

H bonds Hydrophobic interaction 

Uzarigenin -7.6 Glu69 (2.11) Glu69, Ile91, Asp129, Phe130 

Calotropagenin -7.9 Asn62(2.43),Asp72(2.32) Ile91, Gln92,Phe130,Phe130 

Acetazolamide -9.3 Thr199(2.03), Thr200(3.31) Phe130, His94, His96, His119 

Cholic acid -8.1 Gln92 Ile91,Phe130,Phe130, His94*, His96*, His119* 

Table 4:Druglikeness prediction of ligands 

Cardenolide Molecular weight nON nOHNH miLogP 

Uzarigenin 374.52 4 2 2.47 

Calotropagenin 404.50 6 3 0.83 

Table 5:Bioactivity prediction of ligands 

 

Cardenolides 

GPCR 

Ligand 

Ion channel 

inhibitor 

Kinase 

inhibitor 

Nuclear 

receptor ligand 

Protease 

inhibitor 

Enzyme 

inhibitor 

Uzarigenin 0.14 0.10 -0.39 0.53 -0.03 0.80 

Calotropagenin 0.05 -0.06 -0.43 0.50 0.13 0.82 

 

Fig.1:Structures of ligands, acetazolamide (standard) and cholic acid (positive control). Structures 
drawn using Pubchem sketcher web server V2.4 
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Fig.2- Work flow of reverse screening strategy adopted in this study 

 

Fig.3:Indicating active site residues of CAII. Molecule shown in green is inbuilt ligand dansylamide. 

 

Fig.4:Binding interaction analysis of (A) uzarigenin (B)calotropagenin (C) cholic acid (D) 
acetazolamide with CAII macromolecule (PDB ID-1OKL) 

 


