"A STUDY ON NEUTROPHIL-LYMPHOCYTE RATIO AND PLATELETLYMPHOCYTE RATIO AS AN ASSESSMENT TOOL OF GLYCEMIC CONTROL IN TYPE 2 DIABETES MELLITUS PATIENTS"

By

Dr. Veena Varier

Dissertation submitted to BLDE (Deemed to be University), Vijayapura. In partial fulfilment of the requirements for the award of the degree of

DOCTOR OF MEDICINE

IN

PATHOLOGY

Under the guidance of

Dr. Prakash M Patil

Associate Professor Department of Pathology

BLDE (DEEMED TO BE UNIVERSITY)

SHRI B.M. PATIL MEDICAL COLLEGE, HOSPITAL & RESEARCH CENTRE, VIJAYAPURA, KARNATAKA.

2019

"A STUDY ON NEUTROPHIL-LYMPHOCYTE RATIO AND PLATELET-LYMPHOCYTE RATIO AS AN ASSESSMENT TOOL OF GLYCEMIC CONTROL IN TYPE 2 DIABETES MELLITUS PATIENTS"

BLDE (DEEMED TO BE UNIVERSITY),

Vijayapura, Karnataka

DOCTOR OF MEDICINE

IN

PATHOLOGY

List of abbreviations used

HbA _{1c}	Glycated Hemoglobin A _{1c} .
NLR	Neutrophil Lymphocyte Ratio
PLR	Platelet Lymphocyte Ratio
WBC	White Blood Cells
RBC	Red Blood Cells
ANC	Absolute Neutrophil Count
ALC	Absolute Lymphocyte Count
Hb	Hemoglobin
HCT/PCV	Hematocrit/ Packed Cell Volume
IDF	International Diabetes Federation
AEC	Absolute Eosinophil Count
AMC	Absolute Monocyte Count
ABC	Absolute Basophil Count
S.TG	Serum Triglycerides
S. Chl	Serum Cholesterol
S.HDL	Serum High density lipoprotein
S.LDL	Serum Low density lipoprotein
S.VLDL	Serum Very low-density lipoprotein
CKD	Chronic Kidney Disease
HSC	Hematopoietic Stem Cells
CHD	Coronary Heart Disease

ABSTRACT

INTRODUCTION

Type 2 diabetes mellitus is one component of metabolic syndrome, which includes impaired glucose tolerance, hypertension, obesity, and dyslipidemia. White blood cell (WBC) count is linked to various components of metabolic syndrome, and subclinical inflammation may be associated with the increased cardiovascular risk in patients with impaired glucose tolerance. Neutrophil lymphocyte ratio (NLR) is an essential marker of systemic inflammation and an indicator of increased risk for cardiovascular events in patients with metabolic syndrome.

OBJECTIVES

- To understand the role of NLR and PLR in assessment of glucose regulation in type 2 diabetes mellitus.
- 2) To study the correlation between NLR, PLR & HbA1C in type 2 diabetes mellitus.

METHODS

A total of 300 individuals were divided into three groups of 100 each: Pre-diabetic (HbA1c between 5.7-6.4%), Overt Diabetes Mellitus (HbA1c > 6.4%), and Control (HbA1c <5.7). Total WBC, differential count, and platelet count were determined using an automated blood cell counter. NLRs and PLRS were quantified from the reports as total neutrophil counts divided by lymphocyte counts and total platelet count divided by lymphocyte count respectively using the same blood samples drawn at the time of admission. HbA1c levels were measured using automated ion exchange high performance liquid chromatography (BIO RAD D10).

RESULTS

The absolute neutrophil count showed a statistically significant elevation in the Diabetic group compared to the control and pre-diabetic group (p value 0.000 and 0.003 respectively). The absolute lymphocyte count showed a statistically significant decrease in the Diabetic group in comparison to the control and pre-diabetic group (p value 0.000 and 0.009 respectively). As expected, the NLR had a statistically significant increase in the Diabetic group compared to the control (p value 0.000) and PLR had a statistically significant decrease in the Diabetic group in comparison to the control (p value 0.000)

CONCLUSIONS

NLR and PLR may be used as independent parameters to monitor the progress of Type II Diabetes Mellitus. Owing to their ease of availability and being relatively inexpensive, it may be used in those parts of the country with minimal health infrastructure.

<u>KEYWORDS</u>: Type II Diabetes Mellitus, complications of diabetes mellitus, glycemic control, glycated hemoglobin, NLR, PLR

Table of contents

Sl	Content	Page No.
No.		
1	Introduction	1-2
2	Objectives of study	3
3	Review of literature	4-33
4	Materials and methods	34-39
5	Results	40-54
6	Discussion	55-58
7	Summary	59
8	Limitations	60
9	Conclusion	61
10	Bibliography	62-70
11	Annexure - I	71
12	Annexure - II	72-73
13	Annexure - III	74-75
14	Master chart	77-104

List	of	Tabl	les

Table	Description	Page No.
No.		
1	Etiological classification of Diabetes Mellitus and glucose	9-10
	homeostasis	
2	Typical symptoms of Diabetes Mellitus	13
3	Global estimates of the association and impact of diabetes on	16-17
	cardiovascular diseases	
4	Diagnostic tests for diabetes mellitus	21
5	Comparison of various methods for measurement of glycated	25
	hemoglobin	
6	Factors affecting glycated hemoglobin levels	27
7	Major causes of neutrophil, lymphocyte, and thrombocyte	31-32
	alterations	
8	Inclusion and Exclusion Criteria for the study	34
9	Reference values	39
10	Age-wise distribution of the sample population	40
11	Gender distribution for the study	41
12	Descriptive data among the three different groups	43
13	Total WBC count between different groups	46
14	Absolute neutrophil count between different groups	47
15	Absolute eosinophil count between different groups	47

16	Absolute monocyte count between different groups	48
17	Absolute lymphocyte count between different groups	48
18	Absolute basophil count between different groups	49
19	Neutrophil-Lymphocyte Ratio between different groups	49
20	Platelet count between different groups	50
21	Platelet-Lymphocyte Ratio between different groups	50
22	RBC count between different groups	51
23	Hemoglobin between different groups	51
24	PCV between different groups	52
25	Serum triglyceride levels between different groups	52
26	Serum cholesterol levels between different groups	53
27	Serum HDL levels between different groups	53
28	Serum LDL levels between different groups	54
29	Serum VLDL levels between different groups	54
30	Comparison of the conclusions of our study to other studies on	57-58
	the same parameters	

List of Figures

Figure	Description	Page No.
No.		
1	Prevalence of diabetes by age group in adults (20-79 years) in	7
	2019, 2030 and 2045	
2	Age-adjusted comparative prevalence (%) of diabetes (20-79	7
	years) in IDF South-East Asia Region	
3	Prevalence (%) estimates of diabetes by age and sex	8
4	Mortality due to diabetes by age and sex, IDF South-East Asia	8
	Region, 2019	
5	Types of hemoglobin present in adult humans	23
6	Hematopoiesis	29
7	Maturation of myeloblast into neutrophils (with their granules)	30
8	Methods followed for retrieval of data	35
9	SYSMEX XN 350 and 1000	36
10	BIORAD D10	37
11	Mean HbA _{1c} levels	41
12	Gender distribution among the participants of the study	42
13	Group-wise gender distribution	42

14	Box plots for HbA1c among the different groups	43
15	Box plots for NLR among the different groups	44
16	Box plots for PLR among the different groups	44
17	Scatterplot for HbA1c against NLR	45
18	Scatterplot for HbA1c against PLR	45
19	Scatterplot for NLR vs PLR	46

A STUDY ON NEUTROPHIL-LYMPHOCYTE RATIO AND PLATELET LYMPHOCYTE AS AN ASSESSMENT TOOL OF GLYCEMIC CONTROL IN TYPE 2 DIABETES MELLITUS PATIENTS"

INTRODUCTION

Diabetes mellitus a chronic preventable metabolic disorder and is considered to be one of the major 'silent killers' across the globe. This is because unless they develop complications, most of the patients remain asymptomatic for years. The burden of diabetes is on the rise in middle- and lower-income countries due to strong influence of urbanization, sedentary lifestyle, nutritional and epidemiological transition. Therefore, drastic steps are required through various health awareness programs in order to control the escalating trends of diabetes in these countries to reduce disease burden. (1)

Type 2 diabetes mellitus is one component of metabolic syndrome, which includes impaired glucose tolerance, hypertension, obesity, and dyslipidemia. White blood cell (WBC) count is linked to various components of metabolic syndrome, and subclinical inflammation may be associated with the increased cardiovascular risk in patients with impaired glucose tolerance. Furthermore, an association has been shown between chronic subclinical inflammation and insulin resistance, metabolic syndrome, and atherosclerosis. Low-grade chronic inflammation is associated with increased cardiometabolic risk. The process of atherosclerosis is known to involve inflammatory mechanisms, and leukocytosis is directly associated with the pathogenesis of both atherosclerosis and metabolic syndrome. The prevalence of macrovascular complications has been shown to correlate positively with increased WBC count in patients with type 2 diabetes mellitus.(2)

Neutrophil lymphocyte ratio (NLR) is an essential marker of systemic inflammation and an indicator of increased risk for cardiovascular events in patients with metabolic syndrome. In addition, increased NLR may be related to type 2 diabetes mellitus. Thus, it may be proposed that chronic inflammation plays a key role in the pathogenesis of clinical complications including cardiovascular diseases. (2)

The purpose of the present study is to investigate the relationship between NLR and blood glucose regulation. A comparison will be made between the NLR of patients with regulated diabetes mellitus (glycosylated hemoglobin [HbA1c<7%) and patients with unregulated diabetes mellitus (HbA1c>7%). (3)(4)

OBJECTIVES OF THE STUDY:

- To understand the role of NLR and PLR in assessment of glucose regulation in type 2 diabetes mellitus.
- 2) To study the correlation between NLR, PLR & HbA1C in type 2 diabetes mellitus.

REVIEW OF LITERATURE

Introduction To Diabetes Mellitus

Diabetes Mellitus (or Diabetes, as it is commonly known) is a term used to describe a disorder of metabolism marked by chronic hyperglycemia and/or disorders of carbohydrate, protein, and fat metabolism. Even though the etiology is heterogeneous, the condition results from either an impaired secretion of insulin or resistance to the action of insulin or both.(5)

Insulin, the hormone that is deficient/non-functional in diabetes is secreted by the beta cells of the pancreas. Insulin helps in the efficient transport of glucose into the cells of the body, particularly muscles and adipose tissue.

Diabetes Mellitus is a serious, long-term (or 'chronic') condition that occurs when there are raised levels of glucose in a person's blood because their body cannot produce enough of the hormone insulin or cannot effectively use the insulin it produces.

Insulin is an essential hormone produced in the pancreas. It allows glucose from the bloodstream to enter the body's cells where that glucose is converted into energy. A lack of insulin, or the inability of cells to respond to it, leads to high levels of blood glucose (hyperglycemia). Insulin deficiency, if left unchecked over the long term, can cause damage to many of the body's organs, leading to disabling and life-threatening health complications such as cardiovascular diseases

(CVD), nerve damage (neuropathy), kidney damage (nephropathy) and eye disease (leading to retinopathy, visual loss and even blindness). On the other hand, early and optimal management of hyperglycemia goes a long way in delaying, and in some cases, preventing the long-term complications(6).

Incidence And Prevalence

It is estimated that Diabetes Mellitus is prevalent in approximately 9.3% of the total population of the world. Worldwide, this translates to around 460 million people between the age group of 20-79 years. By the year 2045, this number is forecasted to reach 578 million by 2030 (10.2%) and to 700 million (10.9%) by 045 (Figure 1).

Individuals diagnosed with Impaired Glucose Tolerance (pre-diabetes) within the age group 20-79 years is approximately 374 million (7.5% of world population in this age group). Just as with the case of overt diabetes, prevalence of impaired glucose tolerance too is expected to climb up, with the most conservative of estimates putting the prevalence by 2030 at 454 million (8%) and 548 million (8.6%) by 2045. Under the age of 20 years, approximately 1.1 million children and adolescents are categorized to have Type I Diabetes Mellitus. An estimate on the number of children and adolescents with Type II Diabetes Mellitus is currently unknown due to the asymptomatic presentation and incomplete diagnosis. Number of deaths directly attributable to Diabetes Mellitus and its complications is estimated to be around 4.2 million in the year 2019. In the same year, approximately 15.8% of livebirths were affected with transient hyperglycemia, leading to neonatal complications. It is estimated that the world spent an equivalent of 760 billion USD to treat diabetes and diabetes related complications. This figure is said to rise to 825 billion USD by 2030 and 845 billion USD by 2045. The current trends indicate that by the year 2045, not less than 700 million adults worldwide would have diabetes (6).

In India, the incidence and prevalence of Diabetes Mellitus has been on the rise in comparison to the previous years. This trend is noticeable in both the urban and rural areas. As urbanization increases, the middle class grows, and as the proportion of aged individuals increase, it is expected that the prevalence of Diabetes Mellitus too will increase in the future (7). An increase in the disease burden would be a strain on a growing economy like India, which brings to light the need to address this growing problem. The age-adjusted comparative prevalence of diabetes mellitus in India is shown in Figure 2. The age and gender-wise prevalence of diabetes mellitus in India is shown in Figure 3.

According to the World Health Organization (WHO), the death rate from Diabetes Mellitus and its complications would more than double between 2005 and 2030 (Figure 4), with the low-and-middle income group countries contributing to about 80% of the number (8).

Figure 1: Prevalence of diabetes by age group in adults (20-79 years) in 2019, 2030 and 2045

Figure 2: Age-adjusted comparative prevalence (%) of diabetes (20–79 years) in IDF South-East Asia Region

Figure 3: Prevalence (%) estimates of diabetes by age and sex

Figure 4: Mortality due to diabetes by age and sex, IDF South-East Asia Region, 2019(6)

Diabetes Mellitus: Etiopathogenesis

The main etiological classification of disorders involving glucose homeostasis is shown in Table

1(3), (9), (10).

Туре	Pathophysiology	Etiology
Type 1	β-cell destruction	Autoimmune
		Idiopathic
		Genetic
Type 2	Insulin	Idiopathic
	insulin resistance	Genetic
Genetic defects of β-cell function	TCF7L	Genetic
Genetic defects in insulin action	MTNR1B, FADS1, DGKB, GCK gene defects	Genetic
Diseases of exocrine	Acute pancreatitis	-
pancreas	Chronic pancreatitis	
	Neoplasms	
	Neuroendocrine tumors	
	Cystic fibrosis	
Drug or chemical induced	Thiazide diuretics	Iatrogenic
	Beta blockers	
	Quinolones	
	Protease inhibitors	
	Nucleotide reverse transcriptase inhibitors	
Infections	Chronic bacterial and viral infections	Beta cell destruction secondary to viral infections

				Increased stress response
Gestational	Diabetes	Pancreatic cell dysf	unction	-
Mellitus		Chronic insulin resistance	e	
Chromosomal aneu	uploidy	Prader-Willi Syndrome		Genetic
		Down Syndrome		
Friedreich's ataxia				
Table 1: Etiological classification of Diabetes Mellitus and glucose homeostasis				

Pathophysiology Of Type 1 And Type 2 DM

Disorders of glycaemia: etiological types and clinical stages.(3)

TYPE 1 DIABETES MELLITUS

This is a condition characterized by the pancreas's inability to produce insulin because of the destruction of beta cells of pancreas by the individual's own immune system. The trigger for this attack is not completely elucidated but it is hypothesized that it is a combination of genetic (multiple genes are implicated) and some environmental triggers (predominantly viral infections) that trigger the body's immune system to attack itself. Environmental toxins and diet may also contribute to aggravation of the auto-immune attacks. Although seen predominantly in children and young adults, type 1 diabetes mellitus may be seen in any age group. Type 1 diabetes mellitus is considered one of the most prevalent chronic diseases of childhood although changes in diet, environmental and other epigenetic factors are resulting in an increase in the prevalence of Type 2 diabetes mellitus as well.

TYPE 2 DIABETES MELLITUS

Accounting for about 90% of all cases of diabetes mellitus worldwide, Type 2 diabetes mellitus is by far the most prevalent among all types.

Type 2 Diabetes Mellitus is characterized by two independent, but interrelated conditions:

- 1. Insulin resistance
- 2. Inadequate production of insulin

<u>Insulin resistance:</u> This term refers to the body's inability to effectively respond to insulin. Tissues like muscles and adipose, which needs insulin dependent glucose transporters (GLUT-4) for insulin uptake, over time becomes insensitive to the actions of the hormone. This results in increased peripheral glucose levels and a state of hypoglycemia in the tissues.

<u>Inadequate production of insulin</u>: As peripheral insulin resistance increases, the pancreas tries to compensate for that by increasing the production of insulin from β -cells. This results in an undue stress on the cells of the pancreas, and over time, the production becomes ineffective.

The combination of insulin resistance and inadequate insulin production over a sustained period of time results in the signs and symptoms of diabetes mellitus. Historically considered a disease of middle age, changes in diet and lifestyle changes have resulted in the disease being diagnosed even in young adults and children these days.

The symptoms of Type 2 Diabetes Mellitus may at times mimic those of Type 1 Diabetes Mellitus, but most often is less dramatic and symptomless (10).

The term prediabetes is a term used interchangeably with impaired glucose tolerance or impaired fasting glucose. This condition is considered the biggest risk factor for developing Type 2 diabetes mellitus and associated complications.

Gestational diabetes, on the other hand, is the development of impaired glucose tolerance for the first-time during pregnancy. Not only does this condition predispose to the development of Type 2 Diabetes Mellitus in the future, but also may result in large for gestational age babies.

Increased glucose levels in blood results in endothelial damage through a variety of mechanisms including elevated oxidative stress, increased induction of atherogenic circulating adhesion molecules, and those cytokines that regulate and induce cell recruitment, migration, growth, and proliferation (11).

<u>Clinical presentation</u>

The clinical symptoms and signs are quite similar for Type 1 and Type 2 Diabetes Mellitus. These symptoms are often vague and hence, results in a delayed diagnosis. The typical symptoms of Diabetes Mellitus are listed in Table 2.

The classical triad of polydipsia, polyuria, and weight loss may not be present in all cases and hence, may result in delayed diagnosis (6)

Acute Complications Of Diabetes Mellitus

Even though acute complications of diabetes mellitus are more common in Type 1 diabetes mellitus, uncontrolled type 2 diabetes mellitus too may result in complications. The most common acute complication of diabetes mellitus is Diabetic Ketoacidosis, a condition resulting in life threatening metabolic acidosis due to the accumulation of lactic acid. Initially presenting with confusion, lethargy, and disorientation, if untreated, the individual quickly will progress to irreversible neurological damage, coma, or even death. The incidence of diabetic ketoacidosis is the hallmark of Type 1 diabetes although uncontrolled type 2 diabetes mellitus too can cause the same.

In individuals with Type 2 diabetes mellitus, hyperglycemic hyperosmolar state is another major complication. Insidious in inset, it progresses rapidly to dehydration, loss of electrolytes, and increased serum osmolality. Triggers for hyperglycemic hyperosmolar state are varied although infections have been implicated as the major precipitating cause. This is more commonly seen in the elderly and chronically ill individuals. The overall mortality for hyperglycemic hyperosmolar state is about 5-20%, about ten times higher than that of diabetic ketoacidosis (6).

Paradoxically, hypoglycemia is another important complication of diabetes mellitus, particularly in those individuals who are on insulin and sulfonylureas for glycemic control.

Long Term Complications Of Diabetes Mellitus

Long term complications of Diabetes Mellitus may be broadly categorized into the following:

- 1. Macrovascular complications
- 2. Microvascular complications

The major macrovascular complications are:

- Coronary Artery Disease: Long term diabetics are prone to cardiovascular complications such as angina, myocardial infarction, and/or changes in cardiac imaging.
- Cerebrovascular disease: Incidences of stroke, transient ischemic attacks, hemiplegia, paraplegia etc. are not uncommon in long standing diabetics (12).
- Peripheral vascular disease: History of intermittent claudication, pain in the limbs/extremities, and absence of one or more peripheral pulses may be suggestive of peripheral vascular disease in diabetes mellitus.

The major microvascular complications are:

- Peripheral neuropathy: Involvement of the peripheral nerves is quite common in cases of long-standing diabetes mellitus. The major symptoms are tingling, pins and needles sensation, loss of sense of touch and temperature, and muffled reflexes (13).
- Diabetic nephropathy: Long standing diabetes mellitus may cause diabetic nephropathy, resulting in decreased glomerular filtration rate (14).
- Diabetic retinopathy: A major microvascular complication of diabetic mellitus is diabetic retinopathy, resulting in irreversible damage to sight in uncontrolled cases (15).

Diabetes And Cardiovascular Diseases

Cardiovascular complications contribute to the highest rate of morbidity and mortality among individuals with diabetes mellitus (16). Studies have indicated that the relative risk of cardiovascular disease in individuals with diabetes mellitus is between 1.6 and 2.6, with a higher predisposition seen in young individuals and women (17,18). Currently, there is conclusive evidence that an increase in fasting glucose, glycated hemoglobin, and glucose challenge test is associated with a 6-20% increased risk of cardiovascular events (Table 3).

Outcome	Impact	Data systems/study	Reference
Prevalence of	Any CVD: 32%	57 cross-sectional	Einarson et.al, 2018
cardiovascular	CHD: 21%	studies	
diseases			
	MI: 10%		
	Stroke: 7.6%		
Concernent	1600/ in an and right	102	Emergina viele festare
Coronary neart	160% increased risk	102 prospective	Emerging risk factors
disease		studies	collaboration, 2010
Ischemic heart disease	127% increased risk	102 prospective	Emerging risk factors
		studies	collaboration, 2011
Hemorrhagic stroke	56% increased risk	102 prospective	Emerging risk factors
		studies	collaboration, 2011

Cardiovascular	132% increased risk	97 prospective studies	
diseases/death			
Years of life lost	5.8 years of men aged	97 prospective studies	
	50		
	6.4 years for women		
	aged 50		
Table 3: Global estin	nates of the association	n and impact of diabe	tes on cardiovascular
diseases			

Various mechanisms have been implicated for the increased risk of cardiovascular disease in diabetics:

Insulin resistance •

- Direct damage to endothelium through the effect of free radicals •
- Other associated risk factors like hypertension and dyslipidemia and central obesity • (Metabolic syndrome) (19)
- Low grade inflammation •
- Atherosclerosis •
- Concomitant hyperuricemia, albuminuria, and high atherogenic index of plasma (20) •

Apart from these, risk is also strongly influenced by lifestyle factors like smoking, lack of exercise, and consumption of junk food. Adopting life style changes, taking measures to lower blood pressure and lipids significantly reduces the risk of cardiovascular diseases (21).

Chronic low-grade inflammation has been shown to derange the metabolic functions by inducing insulin resistance, resulting in cardiovascular complications. Insulin resistance in turn is associated with a variety of inflammatory factors, resulting in a vicious cycle (22).

Other concomitant disorders like albuminuria, hyperuricemia, and high atherogenic index are said to be at an increased risk of developing cardiovascular disorder (23).

Similarly, metabolic syndrome is associated with systemic inflammation and thereby, the risk for cardiovascular accidents too increases (24).

The link between atherosclerosis and insulin resistance too has been recently elucidated and two pro-inflammatory cytokines namely TNF- α and IL-6 (25). Metabolic syndrome is seen more in those individuals who have an increased transcription rates of these cytokines, concomitantly increasing the risk of coronary heart disease (26).

Diabetic Eye Disease

Diabetic eye disease, comprising of diabetic retinopathy, macular edema, cataract, and glaucoma is one of the leading causes of morbidity and lowered quality of life in diabetics. Apart from the above mentioned conditions, diplopia, loss of focusing ability, and repeated infections of the eye too are seen in long standing diabetes (27). Early diagnosis and treatment are imperative as chronic diabetes mellitus may have devastating effects on sight and overall health of the eye. Optimization of plasma glucose and routine screening for diabetic retinopathy can drastically reduce the associated morbidity (6).

Diabetic Kidney Disease

People with diabetes mellitus are predisposed to development of chronic kidney disease, Usually, preexisting conditions such as hypertension and hypertriglyceridemia too are contributing factors to the development of CKD. Just as with diabetic retinopathy, strict glycemic control and regular screening for high blood pressure helps in reducing the morbidity from diabetic kidney disease (28). Another sign of chronic kidney disease can be normocytic normochromic anemia, seen at a higher prevalence in diabetics than those with CKD secondary to non-diabetic causes (29), (30). This has been attributed to the activation of the NLRP3/caspace-1/IL-1 β pathway, which happens early in the pathogenesis of diabetic nephropathy (31).

Nerve And/Or Vascular Damage And Diabetic Foot Complications

The most common form of peripheral nephropathy by far is diabetic nephropathy. Affecting the distal nerves of the limbs first, the earliest presentation is usually with an altered conduction of nerve signals resulting in poor perception of pain, temperature, and proprioception. Secondary to this, most people with diabetic neuropathy develops non-healing ulcers resulting from trauma and/or suboptimal distribution of internal bone pressure. The sequalae for this is usually very severe, with cellulitis, amputations, and progression of the ulcer to malignancy (32).

Investigations For Confirmation Of Diabetes Mellitus

Currently, the following tests are used to diagnose diabetes mellitus (see Table 4 for summary) (10):

- 1. Fasting blood glucose
- 2. Glucose tolerance test
- 3. Glycated hemoglobin
- 4. Fructosamine test (not commonly used)

<u>Fasting blood glucose</u>: At least two different fasting blood glucose readings are necessary to make a diagnosis of diabetes mellitus. A value more than 126 mg/dL is confirmatory for diabetes mellitus.

<u>Glucose tolerance test:</u> Not routinely used, but glucose challenge test currently finds in place in the diagnosis of gestational diabetes mellitus in pregnancy.

<u>Glycated hemoglobin</u>: Considered the gold standard for monitoring glycemic control for the last three months, glycated hemoglobin is another important confirmatory test for diabetes mellitus.

<u>Fructosamine test:</u> Not widely used owing to its difficulty in performance and lack of standardized kits, Fructosamine test nevertheless is a very good indicator for the glycemic control over the previous month. Moreover, Fructosamine levels of well controlled diabetics overlap with normal individuals, further reducing its use as a diagnostic tool.

TEST	BIOLOGICAL REFERENCE INTERVAL
	Normal: <100 mg/dL
Fasting Blood Glucose	Impaired glucose tolerance: 101-125 mg/dL
	Diabetes Mellitus: >160 mg/dL
Glucose tolerance Test	2 hours: <140 mg/dL
	Normal: <5.6%
Glycated hemoglobin	Impaired glucose tolerance test: 5.6-6.4%
	Diabetes Mellitus: >6.4%
Fructosamine test	Normal: 200-285 µmol/L when serum albumin is 5 g/dL
Table	e 4: Diagnostic tests for diabetes mellitus

Glycated Hemoglobin

Chromatography of hemoglobin of adult human beings reveal two different types (33):

- 1. Adult type (containing 2α and 2β chains): ~90-92%
- 2. Fetal hemoglobin (containing 2α and 2γ chains): ~8-10%

Apart from these two, minor percentages of other hemoglobin too may be present in trace quantities.

Adult hemoglobin is further divided into HbA₁, HbA₂, HbA₃, and other forms depending on the changes in the globin chains.

The major globin chain in adults (HbA₁) contains 2α and 2β chains. Glycation, the nonenzymatic addition of glucose to the N-terminal end of β chain is a normal reaction happening in all humans, the rate of which depends on blood glucose. An accurate quantification of this value gives an accurate impression of the individual's glycemic control over the life span of RBCs. These glycated hemoglobin molecules have been named HbA_{1c} or glycated hemoglobin (34).

Figure 5: Types of hemoglobin present in adult humans

Methods For Assaying Glycated Hemoglobin

Currently, there are three major methods by which glycated hemoglobin is quantified (35):

- 1. HPLC assay using ion-selective chromatography
- 2. Antibody based immunoassay
- 3. Enzymatic assay

<u>High Performance Liquid Chromatography:</u> The gold standard for measurement of glycated hemoglobin is to make use of high-performance liquid chromatography using ion-exchange chromatography. A negatively charged column is used as the stationary phase to which the positively charged hemoglobin molecules are bound to with varying affinity. A mobile phase, with varying pH is then allowed into the column in a gradient flow, resulting in the elution of various hemoglobin molecules depending on their charge (36).

<u>Antibody based immunoassay:</u> Antibody based immunoassays are based on the latex enhanced immunoassay between the antigen molecules and antibodies specific to HbA_{1c} coated on beads. The cross-linking reaction causes changes in the turbidity of the solution, which is measured and quantified (37)

<u>Enzymatic assays</u>: Recently, a novel direct enzymatic method has been developed which yields a direct measurement of glycated hemoglobin. The advantages of this method include direct glycated hemoglobin and the possibility of not having to calculate the values from the provided measurements (38).

For a comparison of the methods used for the measurement of glycated hemoglobin, please refer to Table 5.

Method with	Advantages	Disadvantages
principle		
Ion exchange	Gold standard	• Variable interference from
chromatography	• Chromatograms provide	hemoglobinopathies
(HPLC using an	information of variants of	
anion-exchange	hemoglobin as well	
column)		
Immunoassay	• Easier to implement	• Affected by
(glucose binding to		hemoglobinopathies
m-amino		
phenylboronic		
acid)		
Direct enzymatic	Minimal interference	• Measures more than the N-
method	• No need of calculation	glycosylation in β -chains,
		but also in the α -chains
Table 5: Comparison of various methods for measurement of glycated hemoglobin		

Indications For Testing Glycated Hemoglobin

Since glycated hemoglobin measures the glycation of glucose to beta chain of hemoglobin, the measurement of HbA_{1c} is a fair reflection of the glycemic control over the life span of RBCs, which is approximately 120 days. Hence, after the diagnosis of diabetes mellitus, glycated hemoglobin should be performed every three months in those individuals for assessing their glycemic control until the target level is reached. Once the target glycemic control is attained, the measurements may be necessary only twice a year (39).

Limitations Of Measurement of Glycated Hemoglobin

Since glycated hemoglobin is directly affected by the life span of RBC, any condition that affects the life of RBCs would affect HbA_{1c} measurements as well. Conditions like anemia, hemolysis, blood loss, presence of other hemoglobin variants, and other conditions affecting the life span of RBCs results in potentially wrong measurements. It is also important to keep in mind that a measure of glycated hemoglobin is not a measure of an individual's routine glycemic variability or a measure of blood glucose levels (34)
Factors Affecting Glycated Hemoglobin Levels

Factors affecting the levels of glycated hemoglobin levels are summarized in Table 6 as given below.

FACTORS	INCREASED GLYCATED HEMOGLOBIN	DECREASED GLYCATED HEMOGLOBIN		
Erythropoiesis	Iron, Vitamin B12 deficiency, decreased erythropoiesis	Administration of erythropoietin, iron, folic acid, reticulocytes, chronic liver disease		
Altered hemoglobin	Genetic or chemical alterations in hemoglobin, hemoglobinopathies, HbF, methemoglobin	Genetic or chemical alterations in hemoglobin, hemoglobinopathies, HbF, methemoglobin		
Glycation	Alcoholism, chronic renal failure, decreased intraerythrocytic pH	Aspirin, Vitamin C and E, increased intraerythrocytic pH		
Erythrocyte destruction	Increased erythrocyte lifespan, splenectomy	Decreased erythrocyte life span, splenomegaly, rheumatoid arthritis		
Assays Hyperbilirubinemia, carbam hemoglobin, alcoholisr		Hypertriglyceridemia		
Table 6: Factors affecting glycated hemoglobin levels				

Hematopoiesis

The process of blood cell production from hematopoietic stem cells is called hematopoiesis. The hematopoietic stem cells have an infinite potential to proliferate and produce more stem cells as well as to differentiate to committed progenitor cells.

If it is committing into progenitor cells, HSCs specialize into either myeloid lineage or lymphoid lineage. Myeloid lineage finally differentiates into monocytes, neutrophils, RBC, platelets, basophils, and eosinophils while lymphoid lineage finally differentiates into T cell, B cell, and NK cells. See Figure 6 for more details.

During its development in the bone marrow, the cells programmed to be leukocytes of the granulocytic series (neutrophils, eosinophils, basophils) synthesize specialized proteins which are then stored as granules in their cytoplasm.

Myeloblast, a primitive, agranular cell, synthesizes proteins and stores them in cytoplasmic granules (primary or azurophilic granules), marking the conversion to promyelocytes. This is followed by the synthesis and storage of secondary granules, which marks the progress of promyelocytes into neutrophilic, basophilic, and eosinophilic myelocytes. What follows next is the conversion of myelocytes into mature amniotic cells capable of chemotaxis and phagocytosis (40).

28

The maturation of neutrophils from myeloblasts is shown in the figure below (Figure 7).

Figure 7: Maturation of myeloblast into neutrophils (with their granules)

A variety of conditions can alter the number of neutrophils, lymphocytes, and platelets. Any increase in the absolute count of neutrophils is depicted by the name neutrophilia while any decrease is depicted by the term neutropenia. Any increase in the absolute count of lymphocytes and platelets are known by the terms lymphocytosis and thrombocytosis respectively while any

decrease is known by the terms lymphocytopenia and thrombocytopenia respectively. The major causes of these are highlighted in Table 7(40).

	Neutrophilia	Neutropenia		
	Physical stimuli: cold, heat, convulsions, pain, labor, anesthesia, surgery	Infections: Hepatitis, Lyme disease		
	Hematological disorders: Myeloproliferative disorders, hemorrhage.	Hematological disorders: Aplastic anemia, Fanconi anemia		
Neutrophils	Emotional stimuli: Panic, rage, stress, depression	Drugs: Chemotherapy		
	Infections: Mycotic, bacterial, and rickettsial	Cancer, bone marrow disorders, hypersplenism		
	Inflammation	Nutritional deficiencies like Vitamin B12 and iron deficiency		
	Drugs	Autoimmune diseases like		
	Hormones	Crohn's disease, SLE		
	Toxins	Felty syndrome, Kostman syndrome		
	Lymphocytosis	Lymphopenia		
Lymphocytes	Malignancies: ALL, CLL	Inherited: Wiskott-Aldrich syndrome		
	Reactive: Dengue, EBV, CMV	Acquired: Aplastic anemia		
	Hypersensitivity: Drugs, insect bites	Infectious: Viral (HIV, SARS)		
	Persistent: Cancer, leprosy, smoking	Marrow suppression, irradiation		
	Serum sickness, post- vaccination			

	Thrombocytosis	Thrombocytopenia			
	Primary thrombocytosis: ET,	Decreased production:			
	CML, MDS, chronic	Amegakaryocytotic			
	myeloproliferative disorder	thrombocytopenia, aplastic			
Thursday		anemia, MDS			
Inrombocytes	Reactive: Infection,	Increased destruction: SLE,			
	malignancy, renal disorder,	lymphoproliferative disorders,			
	hemolytic anemia, asplenia	drugs, viral fevers, DIC			
		Abnormal distribution:			
		Dilutional from massive blood			
		transfusion, hypersplenism			
Table 7: Major causes of neutrophil, lymphocyte, and thrombocyte alterations					

Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio

Neutrophil-lymphocyte ratio and Platelet-lymphocyte ratio are important markers of systemic inflammation. Both these ratios are also seen to be elevated in Type 2 diabetes mellitus and has a predictive value in cardiovascular events in diabetics (41). In conditions of systemic inflammation, the WBC constitution changes dramatically, with a predisposition towards lymphopenia and neutrophilia (42). This also results in an altered Platelet-lymphocyte ratio, which may be used as a marker for several conditions like cardiac, rheumatological, and cancerous conditions (43). The comparative stability and minimal cost for calculating NLR and PLR serves as an important advantage when compared to other more expensive markers such as inflammatory cytokines (44).

Elevation in the NLR after an ischemic attack of the heart acts as an independent predictor of mortality in diabetics. The use of this parameter along with other existing risk scoring systems may be beneficial for prognosis and stratification of risk (45). Other biomarkers like TNF- α , interleukin 6, C-reactive protein, VCAM-1, von Willibrand factor, fibrinogen, and adiponectin

are seen to develop with Type 2 Diabetes Mellitus (46). Both NLR and PLR may be used as a marker for end-stage renal disease patients in diabetes mellitus, but PLR is found to be superior in this regard (47). In individuals with long standing diabetes mellitus, an elevation in NLR is reflective of diabetic nephropathy, thereby serving as a reliable early marker for the prediction of the same (48).

NLR and PLR can be used as markers of conditions other than diabetes mellitus as well. For example, NLR may be used as a biomarker for the prediction of IgA vasculitis (49), prognostic marker for the outcome of CABG (50), and as an indicator for the possibility of miscarriage during pregnancy (51), (52).

MATERIALS AND METHODS

STUDY DESIGN: CROSS-SECTIONAL STUDY

SOURCE OF DATA: Data is obtained from patients reporting to Haematology Laboratory, Department of Pathology, Shri B.M. Patik Medical College. Hospital, and Research Centre, B.L.D.E (Deemed to be University), Vijayapura.

STUDY PERIOD: 1st December 2019 to 30th May 2021

INCLUSION AND EXCLUSION CRITERIA:

The Inclusion and exclusion criteria for the study is tabulated in Table 8:

INCLUSION CRITERIA	EXCLUSION CRITERIA	
	Suspected medical conditions like sepsis, renal	
	disorders	
	On medications (except antidiabetic agents)	
Patients with Type 2 Diabetes Mellitus in Shri	that may interfere with the results of the study	
B.M. Patil Medical College, Hospital and	and inflammatory parameters	
Research Centre, Vijayapura	Patients with previous/coexisting	
	cardiovascular diseases (as defined by history,	
	medical examination, and cardiac imaging)	
	History of smoking	
Table 8: Inclusion and Exclusion Criteria for the	study	

SAMPLE COLLECTION AND ANALYSIS

Informed consent was taken from those patients who fulfil the inclusion criteria for the study. Relevant medical history was taken from them, followed by a routine clinical examination. The archived sample (stored after running the requested tests) were retrieved to confirm the identity of the patient. In the Laboratory Information System, the patient's unique ID was entered, and the relevant values retrieved (HbA1c and Complete Blood Count). Care was taken to run the samples within four hours of collection. Refer the flow chart given below for more the schematic.

Figure 8: Methods followed for retrieval of data

METHODS OF COLLECTION OF DATA

Data on the analyzed parameters (glycated hemoglobin and complete blood count) from the patients fulfilling the inclusion criteria were evaluated.

Complete blood count was done using an automated blood cell counter (Sysmex XN 1000, Sysmex Corporation, Kobe, Japan, see figure below). Out of the CBC parameters, total WBC count, differential count, and platelet count were of particular importance.

Figure 9: SYSMEX XN 350 and 1000

Neutrophil-lymphocyte ratio was calculated as absolute neutrophil count divided by absolute lymphocyte counts.

 $NLR = \frac{Absolute \ neutrophil \ count}{Absolute \ lymphocyte \ Count}$

Platelet-lymphocyte ratio was calculated as the total platelet count divided by lymphocyte counts.

$PLR = \frac{Total \ platelet \ count}{Absolute \ lymphocyte \ count}$

Glycated hemoglobin was measured using automated ion exchange high performance liquid chromatography (BIORAD D10) according to the manufacturer's instructions.

Figure 10: BIORAD D10

SAMPLE SIZE:

With 95% confidence level and margin of error of $\pm 7.5\%$, a sample size of 300 subjects will included in the study to determine the association of Neutrophil-Lymphocyte ratio and blood glucose regulation in type 2 Diabetes Mellitus patients with finite population correction (N=5000).

Formula used: $n = z^2 \underline{p(1-p)}$ d^2

Z= z statistic at 5% level of significance

d is margin of error

p is anticipated prevalence rate (50%)

The sample size of 300 were then divided equally into three groups: Group 1 (prediabetic with HbA_{1c} between 5.7-6.4%), Group 2 (diabetes mellitus with HbA_{1c} more than 6.4%), and Group 3 (control with HbA_{1c} value less than 5.7%).

Statistical analysis:

All statistics were summarized descriptively. For continuous variables, the summary statistics of N, mean, standard deviation (SD) will be used. For categorical data, the number and percentage were used in the data summaries and data were analyzed by comparison of means using t test, ANOVA, post hoc, and diagrammatic presentation.

Biological Reference Interval (40,53)

Parameters	Biological Reference Interval
RBC	3.8-4.8 millions/c mm
Hb	11.6-14.5 g/dl
PCV	36-46 %
Platelet	150-450 x10 ³ μL
WBC	4.8-10.8 x10 ³ μL
Absolute Neutrophil Count	1.4-6.5 x10 ³ μL
Absolute Lymphocyte Count	$1.2-3.4 \text{ x}10^3 \mu \text{L}$
Absolute Eosinophil Count	$0-0.5 \times 10^{3} \mu L$
Absolute Monocyte Count	$0.1-0.6 \text{ x} 10^3 \mu \text{L}$
Absolute Basophil Count	$0-0.2 \text{ x} 10^3 \mu \text{L}$

Table 9: Reference values

RESULTS

The study was conducted in the Department of Pathology and Department of Biochemistry, Shri B.M. Patel Medical College, Hospital, and Research Centre, B.L.D.E (Deemed to be University), Vijayapura.

The results of study are as follows:

- 1. Age-distribution (Please refer to Table 10 for more information)
 - a. For Group 1 (pre-diabetic group), the mean age is 51.06 with the minimum age being 18 and the maximum age of 84.
 - b. For Group 2 (diabetes mellitus), the mean age is 52.65 with the minimum age being 18 and the maximum age being 80.
 - c. For Group 3 (control), the mean age is 45.28 with the minimum age of 17 and the maximum age of 92.

Group	Mean	Minimum age	Maximum age			
Group 1 (Prediabetic)	51.06	18	84			
Group 2 (Diabetic)	52.65	18	80			
Group 3 (Control)	45.28	17	92			
Table 10: Age-wise distribution of the sample population						

- 2. Distribution of HbA_{1c} levels among the groups (Please refer to the graph for more information)
 - a. For Group 1 (pre-diabetic group), the mean HbA1c level is 6.068% with the minimum being 5.7% and the maximum of 6.4%.
 - b. For Group 2 (diabetes mellitus), the mean HbA1c level is 9.51% with the minimum being 6.50% and the maximum being 15.3%
 - c. For Group 3 (control), the mean HbA1c level is 5.17% with the minimum of 3.90% and the maximum age of 5.60%.

Figure 11: Mean HbA_{1c} levels

- 3. Gender distribution
 - a. The gender distribution for the study is as follows (Figure 12):

	Frequency	Percentage
Female	118	39.3%
Male	182	60.7%
Total	300	100%
Table 11: Gender distribution	n for the study	

b. The group-wise gender distribution is as shown in Figure 13.

Figure 13: Gender distribution among the groups(%).

4. Descriptive Statistics

The mean, standard deviation, and the range for HbA1c, NLR, and PLR are shown in Table 12 given below:

		HbA _{1c}			NLR		PLR		
	Group 1	Group 2	Group 3	Group 1	Group 2	Group 3	Group 1	Group 2	Group 3
Mean	6.068	9.515	5.175	2.088	3.950	1.677	113.963	152.127	94.199
Std. Deviation	0.220	2.399	0.370	0.640	2.008	0.729	54.114	70.633	39.331
Minimum	5.70	6.50	3.90	1.020	1.190	0.709	31.532	31.389	18.446
Maximum	6.4	15.30	5.60	4.324	9.652	4.414	372.54	426.20	222.22
Table 12: De	escriptive d	ata among t	the three dif	fferent grou	ıps				

The box plots for HbA1c, NLR, and PLR among the different groups is shown below (Figures 14,15,16)

Figure 14

Figure 16

The scatterplot of HbA1c against NLR is shown below (Figure 17):

Figure 17:

The scatterplot for HbA1c against PLR is shown below (Figure 18):

Figure 18:

The scatterplot for NLR vs PLR is shown in the figure below (Figure 19):

POST-HOC ANALYSIS

One way ANOVA was used to compare the total WBC count between the different groups and no statistically significant difference was seen between the groups (Table 13).

Group	Comparison group	Mean value	p-value	Significance		
Group 1	Group 2	9258.2	0.438	Not significant		
	Group 3 (Control)	8555.9	0.251	Not significant		
Group 2	Group 1	8975.2	0.438	Not significant		
	Group 3 (Control)	8555.9	0.055	Not significant		
Group 3 (Control)	Group 1	8975.2	0.251	Not significant		
	Group 2	9258.2	0.055	Not significant		
Table 13: Total WBC count between different groups						

One way ANOVA was used to compare the absolute neutrophil count between the different groups and a statistically significant increase was seen in Group 1 (pre-diabetic) and Group 2 (diabetic) compared to Group 3 (Control). Similarly, the absolute neutrophil count was found to be increased in Group 2 (Diabetes) in comparison to Group 1 (pre-diabetic). See the table 14 below for more information.

Group	Comparison group	Mean	p-value	Significance		
Group 1	Group 2	6641.7	0.000*	Significant		
	Group 3 (Control)	4758.7	0.003*	Significant		
Group 2	Group 1	5523.01	0.000*	Significant		
	Group 3 (Control)	4758.7	0.000*	Significant		
Group 3	Group 1	5523.01	0.003*	Significant		
(Control)	Group 2	6641.7	0.000*	Significant		
Table 14: Absolute neutrophil count between different groups						
The mean difference was found to be significant at a p-value of 0.05						

One way ANOVA was used to compare the absolute lymphocyte count between the different groups and a statistically significant decrease was seen in Group 1 (pre-diabetic) and Group 2 (diabetic) compared to Group 3 (Control). Similarly, the absolute lymphocyte count was found to be decreased in Group 2 (Diabetes) in comparison to Group 1 (pre-diabetic). See the table 15 below for more information.

Group	Comparison group	Mean	p-value	Significance		
Group 1	Group 2	1983.16	0.000*	Significant		
	Group 3 (Control)	3163.01	0.009*	Significant		
Group 2	Group 1	2776.56	0.000*	Significant		
	Group 3 (Control)	3163.01	0.000*	Significant		
Group 3	Group 1	2776.56	0.009*	Significant		
(Control)	Group 2	1983.16	0.000*	Significant		
Table 15: Absolute lymphocyte count between different groups						
The mean different	ence was found to be sign	nificant at a p-va	alue of 0.05			

One way ANOVA was used to compare the absolute eosinophil count between the different groups. It was found that the absolute eosinophile count was found to be to be decreased in the Group 1 (Pre-diabetes) and Group 2 (Diabetes) compared to Group 3 (Control). Comparisons among the other groups yielded no statistically significant results (Table 16).

Group	Comparison group	Mean	p-value	Significance	
Group 1	Group 2	223.3	.025	Significant	
	Group 3 (Control)	326.23	.534	Not significant	
Group 2	Group 1	303.91	.025	Significant	
	Group 3 (Control)	326.23	.004	Significant	
Group 3 (Control)	Group 1	303.91	.534	Not significant	
	Group 2	223.3	.004	Significant	
Table 16: Absolute eosinophil count between different groups					
The mean difference was found to be significant at a p-value of 0.05					

One way ANOVA was used to compare the absolute monocyte count between the different groups and no statistically significant difference was seen between the groups (Table 17).

Group	Comparison group	Mean	p-value	Significance
Group 1	Group 2	379.11	.075	Not significant
	Group 3 (Control)	321.98	.864	Not significant
Group 2	Group 1	317.69	.075	Not significant
	Group 3 (Control)	321.98	.063	Not significant
Group 3 (Control)	Group 1	317.69	.864	Not significant
	Group 2	379.11	.063	Not significant
Table 17: Absolute monocyte count between different groups				

One way ANOVA was used to compare the absolute basophil count between the different groups. It was found that the absolute basophil count was found to be decreased in the Group 2 (Diabetes) compared to Group 3 (Control). Similarly, the absolute basophil count was found to be statistically decreased in Group 2 compared to Group 1. Comparisons among the other groups yielded no statistically significant results (Table 18).

Group	Comparison group	Mean	p-value	Significance
Group 1	Group 2	27.89	.002	Significant
	Group 3 (Control)	50.36	.987	Not significant
Group 2	Group 1	50.47	.002	Significant
	Group 3 (Control)	50.36	.002	Significant
Group 3 (Control)	Group 1	50.47	.987	Not significant
	Group 2	27.89	.002	Significant

 Table 18: Absolute basophil count between different groups

The mean difference was found to be significant at a p-value of 0.05

The Neutrophil-Lymphocyte ratio was compared between different groups using one-way ANOVA. It was found that NLR had a statistically significant increase in Group 2 (Diabetes) compared to both Group 1 (Pre-diabetic) and Group 3 (Control). There was no significant difference between Control and Pre-diabetic group (Table 19).

Group	Comparison group	Mean	p-value	Significance
Group 1	Group 2	3.94	.000	Significant
	Group 3 (Control)	1.67	.08	Not significant
Group 2	Group 1	2.08	.000	Significant
	Group 3 (Control)	1.67	.000	Significant
Group 3	Group 1	1.6768	.08	Not significant
(Control)	Group 2	3.94	.000	Significant
Table 19: Neutrophil-Lymphocyte Ratio between different groups				

The mean difference was found to be significant at a p-value of 0.05

One way ANOVA was used to compare the platelet count between the different groups and no statistically significant difference was seen between the groups (Table 20).

Group	Comparison group	Mean	p-value	Significance
Group 1	Group 2	265900	.205	Not significant
	Group 3 (Control)	265690	.199	Not significant
Group 2	Group 1	281560	.205	Not significant
	Group 3 (Control)	265690	.986	Not significant
Group 3 (Control)	Group 1	281560	.199	Not significant
	Group 2	265900	.986	Not significant
Table 20: Platelet count between different groups				

The Platelet-Lymphocyte ratio was compared between different groups using one-way ANOVA. It was found that PLR had a statistically significant increase in Group 2 (Diabetes) compared to both Group 1 (Pre-diabetic) and Group 3 (Control). The PLR was also found to have a statistically significant increase in Group 2 (Diabetes) in comparison to Group 1 (Pre-diabetic). There was no significant difference between Control and Pre-diabetic group (Table 21).

Group	Comparison group	Mean	p-value	Significance
Group 1	Group 2	153.12	.000	Significant
	Group 3 (Control)	94.19	.062	Not significant
Group 2	Group 1	113.96	.000	Significant
	Group 3 (Control)	94.19	.000	Significant
Group 3	Group 1	113.96	.062	Not significant
(Control)	Group 2	153.12	.000	Significant
Table 21: PLR be	tween different groups			
The mean differen	nce was found to be sig	gnificant at a p	-value of 0.05	

One way ANOVA was used to compare the RBC count, hemoglobin, and PCV between the different groups and no statistically significant difference was seen between the groups (Table 22, 23, 24).

Group	Comparison group	Mean	p-value	Significance
Group 1	Group 2	4.47	.980	Not significant
	Group 3 (Control)	4.39	.571	Not significant
Group 2	Group 1	4.46	.980	Not significant
	Group 3 (Control)	4.39	.554	Not significant
Group 3 (Control)	Group 1	4.46	.571	Not significant
	Group 2	4.47	.554	Not significant
Table 22: RBC count between different groups				

Group	Comparison group	Mean	p-value	Significance
Group 1	Group 2	12.42	.762	Not significant
	Group 3 (Control)	12.71	.350	Not significant
Group 2	Group 1	12.35	.762	Not significant
	Group 3 (Control)	12.71	.217	Not significant
Group 3	Group 1	12.35	.350	Not significant
(Collutor)	Group 2	12.42	.217	Not significant
Table 23: Hemoglobin between different groups				

Group	Comparison group	Mean	p-value	Significance	
Group 1	Group 2	36.28	.339	Not significant	
	Group 3 (Control)	38.02	.425	Not significant	
Group 2	Group 1	37.21	.339	Not significant	
	Group 3 (Control)	38.02	.081	Not significant	
Group 3 (Control)	Group 1	37.21	.425	Not significant	
	Group 2	36.28	.081	Not significant	
Table 24: PCV between different groups					

The lipid profile parameters were compared between the groups and the results are given below:

One way ANOVA was used to compare the serum triglyceride levels between the different groups and a statistically significant increase was seen in the diabetic group in comparison to prediabetic group (Table 25).

Group	Comparison group	Mean	p-value	Significance
Group 1	Group 2	211.14	.035	Significant
	Group 3 (Control)	163.68	.839	Not significant
Group 2	Group 1	158.21	.035	Significant
	Group 3 (Control)	163.68	.066	Not significant
Group 3 (Control)	Group 1	158.21	.839	Not significant
	Group 2	211.14	.066	Not significant
Table 25: Serum triglyceride levels between different groups				

Group	Comparison group	Mean	p-value	Significance
Group 1	Group 2	164.1	.098	Not significant
	Group 3 (Control)	176.87	.474	Not significant
Group 2	Group 1	185.12	.098	Not significant
	Group 3 (Control)	176.87	.367	Not significant
Group 3 (Control)	Group 1	185.12	.474	Not significant
(Condol)	Group 2	164.1	.367	Not significant
Table 26: Serum cholesterol levels between different groups				

One way ANOVA was used to compare the serum cholesterol levels between the different groups and no statistically significant difference was seen between the groups (Table 26).

One way ANOVA was used to compare the serum HDL between the different groups and no statistically significant difference was seen between the groups (Table 27).

Group	Comparison group	Mean	p-value	Significance	
Group 1	Group 2	35.44	.538	Not significant	
	Group 3 (Control)	38.44	.658	Not significant	
Group 2	Group 1	37.17	.538	Not significant	
	Group 3 (Control)	38.44	.305	Not significant	
Group 3 (Control)	Group 1	37.17	.658	Not significant	
	Group 2	35.44	.305	Not significant	
Table 27: Serum HDL levels between different groups					

One way ANOVA was used to compare the serum LDL between the different groups and a statistically significant increase was seen in the prediabetic group compared to the prediabetic group (Table 28).

Group	Comparison group	Mean	p-value	Significance	
Group 1	Group 2	88.98	.013	Significant	
	Group 3 (Control)	105.34	.338	Not significant	
Group 2	Group 1	116.41	.013	Significant	
	Group 3 (Control)	105.34	.135	Not significant	
Group 3 (Control)	Group 1	116.41	.338	Not significant	
(,	Group 2	88.98	.135	Not significant	
Table 28: Serum LDL levels between different groups					

One way ANOVA was used to compare the serum VLDL between the different groups and no statistically significant difference was seen between the groups (Table 28).

Group	Comparison group	Mean	p-value	Significance		
Group 1	Group 2	36.53	.283	Not significant		
	Group 3 (Control)	42.76	.841	Not significant		
Group 2	Group 1	31.12	.283	Not significant		
	Group 3 (Control)	42.76	.402	Not significant		
Group 3 (Control)	Group 1	31.12	.841	Not significant		
	Group 2	36.53	.402	Not significant		
Table 29: Serum VLDL levels between different groups						

DISCUSSION

Type II Diabetes Mellitus is the most prevalent chronic disease across the world. Termed 'The Silent Killer', Type II Diabetes Mellitus exerts a great toll on the health infrastructure of all nations across the globe. The long-term complications of Type II Diabetes Mellitus, including cardiovascular, renal, neurological, and metabolic disturbances greatly increase the mortality and morbidity of patients (41). The extent of damage that may be caused by Type II Diabetes Mellitus results in the need for developing newer tools for predicting the extent of complications effectively and cost efficiently. This study was such an attempt to develop a tool for accurate and economical prediction of the disease and its complications.

In this study, there was no statistically significant difference between the total leukocyte count between the three different groups. This contrasts with the observation made by Barbora et. al and Kayo et. al (54) (55) (56) (57), where they noticed an association between increased WBC count and deteriorating action of insulin, tipping the scale towards the development of Diabetes Mellitus. Their findings strengthened the notion that development of Type II Diabetes Mellitus may be associated with the chronic activation of immune system.

In this study, Absolute Neutrophil Count (ANC) is found to be indicator for Type II Diabetes Mellitus, with a statistically significant increase seen in ANC in those with Diabetes Mellitus compared to Impaired Glucose Tolerance and the Control group. These findings were corroborated by various other authors including Fatih et al (2).

Absolute Lymphocyte Count was found to be statistically significant among the three different groups in our study. The absolute lymphocyte count was the lowest for the Diabetic group in comparison to pre-diabetic and control group, whereas it was lower for the pre-diabetic group in

comparison to the control group. Similar findings were obtained by Fatih et. al in his work on Neutrophil-Lymphocyte Ratio and diabetes mellitus (2).

The Neutrophil-Lymphocyte Ratio (NLR) is found to be significantly different in diabetics in comparison to both pre-diabetics and control group. Similar findings have been obtained by various other authors across the world (58) (2) (59) (60) (1) (61). In addition to Diabetes Mellitus, NLR has also been attributed in morbidly obese patients, as shown in a study by Yilmaz et al. His data proved that increase in NLR is a strong predictor of development of Type II Diabetes Mellitus in morbidly obese individuals (62). On top of being a predictor for Type II Diabetes Mellitus, an increase in NLR has also been noticed in cases of Diabetic Retinopathy, as shown by Wang et al (63). The use of NLR as a prognostic markers extends beyond Diabetic Retinopathy, but may be used for other diabetic complications like neuropathy, peripheral vascular disease, and nephropathy (64).

Our study also proves that the Platelet-Lymphocyte Ratio (PLR) also increases in the diabetic group in comparison to the pre-diabetic and control group. This is an expected finding since a decrease in lymphocytes is seen in Type II Diabetes Mellitus. This contrasts with the findings by Metroglau et al, who concluded that PLR decreases in the pre-diabetic stages, but increases in diabetic group (58). Demirtas et al concluded that leukocyte count, platelet distribution width, and PLR may serve as independent predictor of diabetes, while leukocyte count, mean platelet volume, neutrophil-lymphocyte ratio and platelet-lymphocyte ratio may be independent predictors of impaired glucose tolerance (47).

The serum LDL and VLDL levels were found to be significantly elevated in the diabetic group in comparison to the pre-diabetic group. Surprisingly, no statistically significant difference was

observed between the diabetic and control group. This is in contrast to the conclusion from Mertoglu et al, who found no statistically significant difference among any of the groups (58).

The conclusions derived from our study is compared and contrasted with other studies on similar parameters in the table given below (Table 30):

Parameter	Relation to blood glucose levels	Concordant studies	Discordant studies
Total leukocyte count	No statistically significant difference	None	Vozaroa et al; Kayo et al; Tong et al
	Increased ANC in diabetics in comparison to control		
Absolute Neutrophil Count	Increased ANC in pre-diabetics in comparison to control	Fatih et al	None
	Increased ANC in pre-diabetics in comparison to control		
Absolute lymphocyte count	Significantly lowered in the diabetic group compared to prediabetic and control	Fatih et al	None
Neutrophil- Lymphocyte ratio	Increased NLR in diabetics in comparison to control Increased NLR in pre- diabetics in comparison to control Increased NLR in diabetics in comparison to pre- diabetics	Sefil et al Merteglu and Gunay Azab B et al Devamsh et al Hussain et al Lou et al	None
Platelet-Lymphocyte	Increased PLR in	Demitras et al	Mertoglu and Gunay

Ratio	diabetics in					
	comparison to control					
	Increased PLR in pre- diabetics in comparison to control Increased PLR in					
	diabetics in					
	diabetics					
LDL	Statistically significant increase in the diabetic group in comparison to the pre- diabetic group	None	Mertoglu and Gunay			
VLDL	Statistically significant increase in the diabetic group in comparison to the pre- diabetic group	None	Mertoglu and Gunay			
Table 30: Comparison of the conclusions of our study to other studies on the same parameters						

Summary

Type II Diabetes Mellitus is one of the most important chronic diseases prevalent in the world in terms of morbidity and mortality. In developing countries, the effect of diabetes mellitus and its complications proves to be a huge burden on the healthcare infrastructure. Even though there are a lot of tests available for the diagnosis and follow-up of diabetes mellitus, these may not be available in all health care centers, particularly in the rural areas. This study was undertaken with the objective of developing an affordable and reliable test for follow up as well as prediction of glycemic control.

Research has proven that neutrophil-lymphocyte ratio and platelet-lymphocyte ratio is altered during different stages of Type II Diabetes Mellitus. Building upon that, we divided our participants into three groups, (Group 1 (prediabetic with HbA_{1c} between 5.7-6.4%), Group 2 (diabetes mellitus with HbA_{1c} more than 6.4%), and Group 3 (control with HbA_{1c} value less than 5.7%). Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio (among other parameters) were compared among the three groups and the statistical significance determined using ANOVA.

We found a statistically significant association for NLR and PLR between the participants in the diabetic group and the control group. Hence, we conclude that NLR and PLR may be used as a more economical alternative to glycated hemoglobin for monitoring glycemic control in those areas with minimal health infrastructure. Further research needs to be undertaken to establish the NLR/PLR values against the corresponding HbA_{1c} values.

LIMITATIONS OF THE STUDY

- Our study is a cross-sectional study, and the parameters are measured on that specific day. If any pre-analytical errors/variables have crept in on the day of analysis, the values might be biased. Conducting serial measurements of these parameters would have provided a better picture.
- 2. Lipid profiles of all patients could not be collected, thereby potentially biasing the analysis of lipid profile parameters.
- Patients with anemia of unknown causes/unknown hemoglobinopathies were not excluded. This may potentially cause false high/low values of HbA_{1c}.
- 4. The current coronavirus pandemic may have introduced bias into the study since patients recovered from COVID were not a part of the exclusion criteria.

CONCLUSIONS

- Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio may be used as economical and efficient screening tests for the monitoring of patients with Type II Diabetes Mellitus.
- Being a routine investigation and being something that may be done in any basic hematology laboratory, NLR and PLR has the potential to be of great use for follow-up and prediction of complications in cases of Type II Diabetes Mellitus.
- Further studies conducted in more controlled conditions will definitely pave way for various advances in the diagnosis, follow-up, and management of Type II Diabetes Mellitus across the globe.

References

- Hussain M, Babar MZM, Akhtar L, Hussain MS. Neutrophil lymphocyte ratio (NLR): A well assessment tool of glycemic control in Type-2 diabetic patients. Pakistan J Med Sci. 2017;33(6):1366–70.
- Sefil F, Ulutas KT, Dokuyucu R, Sumbul AT, Yengil E, Yagiz AE, et al. Investigation of neutrophil lymphocyte ratio and blood glucose regulation in patients with type 2 diabetes mellitus. 2014;
- Alberti KGMM, Zimmet PZ. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications Part 1 : Diagnosis and Classification of Diabetes Mellitus Provisional Report of a WHO Consultation. 1998;539–53.
- Diagnosis and classification of diabetes mellitus. Diabetes Care [Internet].
 2014;37(SUPPL.1):81–90. Available from: https://care.diabetesjournals.org/content/27/suppl_1/s5
- Report A, Consultation WHO. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus. :1–25.
- 6. Atlas IDFD. Idf diabetes atlas. 2019.
- R.M.Anjana RP. Prevalence of diabetes and prediabetes (impaired fasting glucose and / or impaired glucose tolerance) in urban and rural India : Phase I results of the Indian Council of Medical Research INdia DIABetes (ICMR INDIAB) study. Diabetologia. 2011;3022–7.
- Hwang CK, Han P V, Zabetian A, Ali MK, Narayan KMV. Rural diabetes prevalence quintuples over twenty-five years in low- and middle-income countries : A systematic review and meta-analysis. Diabetes Res Clin Pract [Internet]. 2012;96(3):271–85. Available from: http://dx.doi.org/10.1016/j.diabres.2011.12.001
- Fathallah, Neila, Raoudha Slim, Sofien Larif, Houssem Hmouda CBS. Drug-induced Hyperglycemia and Diabetes. Drug Saf. 2015;38:1153–68.
- Of S, Carediabetes M. STANDARDS OF MEDICAL CARE Standards of Medical Care in Diabetes d 2016. 2016;39(January). Available from: https://care.diabetesjournals.org/content/suppl/2015/12/21/39.Supplement_1.DC2/2016-Standards-of-Care.pdf
- 11. Home P. Contributions of basal and post-prandial hyperglycaemia to micro- and macrovascular complications in people with type 2 diabetes Contributions of basal and post-prandial hyperglycaemia to micro- and macrovascular complications in people with type 2 diabet. Curr Med Res Opin. 2015;7995(October).
- 12. Little M, Humphries S, Patel K, Dodd W, Dewey C. Factors associated with glucose tolerance , pre diabetes , and type 2 diabetes in a rural community of south India : a cross sectional study. Diabetol Metab Syndr. 2016;1–11.
- Shera AS, Jawad F, Maqsood A, Jamal S. Prevalence of Chronic Complications and Associated Factors in Type 2 Diabetes. J Pak Med Assoc. 2004;(54):54–9.
- 14. Agrawal RP, Ranka M, Beniwal R, Sharma S, K. Prevalence of micro and macro vascular complications in Type 3 Diabetes Mellitus and their risk factors. Vol. 24, Int. J. Diab.

Dev. Countries. 2004.

- 15. Venguidesvarane AG, Jasmine A, Varadarajan S, Shriraam V, Muthuthandavan AR,
 Durai V, et al. Prevalence of Vascular Complications Among Type 2 Diabetic Patients in
 a Rural Health Center in South India. 2020;
- Gerstein HC. Dysglycaemia as a cause of cardiovascular outcomes. Nat Publ Gr [Internet]. 2015;1–2. Available from: http://dx.doi.org/10.1038/nrendo.2015.118
- Emerging T, Factors R. Diabetes Mellitus, Fasting Glucose, and Risk of Cause-Specific Death. 2011;
- 18. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease : a collaborative meta-analysis of 102 prospective studies. Lancet [Internet].
 2010;375(9733):2215–22. Available from: http://dx.doi.org/10.1016/S0140-6736(10)60484-9
- Krauss RM. Lipids and Lipoproteins in Patients With Type 2 Diabetes. Diabetes Care.
 2004;27(6):1496–500.
- 20. Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. 2009;5(3):150–9.
- 21. Andersson C, Gaal L Van, Caterson ID, Weeke P. Relationship between HbA 1c levels and risk of cardiovascular adverse outcomes and all-cause mortality in overweight and obese cardiovascular high-risk women and men with type 2 diabetes. 2012;2348–55.
- 22. Low-Grade Chronic Inflammation in the Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC) Population Associations with insulin resistance and cardiometabolic risk profile. 2009;32(7).

- Akbas EM, Timuroglu A, Ozcicek A, Ozcicek F, Demirtas L, Gungor A. Association of uric acid, atherogenic index of plasma and albuminuria in diabetes mellitus. 2014;7(12):5737–43.
- Buyukkaya E, Karakas MF, Karakas E, Akc AB. Correlation of Neutrophil to Lymphocyte Ratio With the Presence and Severity of Metabolic Syndrome. 2014;
- Lewis MR, Tracy RP. The Role of the Immune System in the Insulin Resistance Syndrome. 2002;
- Ferna M. Insulin Resistance and Chronic Cardiovascular Inflammatory Syndrome. Endocr Rev. 2015;24(July):278–301.
- 27. Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI insight. 2017;2(14):1–13.
- Lim AKH. Diabetic nephropathy Complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361–81.
- 29. Thomas MC. Anemia in diabetes : marker or mediator of microvascular disease ?2007;3(1):20–30.
- 30. Stevens PE, Donoghue DJO, Lameire NR. Anaemia in patients with diabetes : unrecognised , undetected and untreated ? 2003;19(5):395–401.
- Yu Z, Zhang J, Li X, Wang Y, Fu Y, Gao X. Jo ur na l P re of. Life Sci [Internet].
 2019;117138. Available from: https://doi.org/10.1016/j.lfs.2019.117138
- 32. Bansal V, Kalita J, Misra UK. Diabetic neuropathy. Postgrad Med J. 2006;82(964):95-

100.

- T.H.J H. High-performance chromatography as a method to identify hemoglobin abnormalities. Acta Hematol. 1987;78:123–6.
- 34. Peterson KP, Pavlovich JG, Goldstein D, Little R, England J, Peterson CM. What is hemoglobin Alc? An analysis of glycated hemoglobins by electrospray ionization mass spectrometry. Clin Chem. 1998;44(9):1951–8.
- Stratton IM, Adler AI, Neil HAW, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and prospective observational study. 2000;(Ukpds 35):405–12.
- Eckerbom S, Bergqvist Y, Jeppsson JO. Improved method for analysis of glycated haemoglobin by ion exchange chromatography. Ann Clin Biochem. 1994;31(4):355–60.
- D Groche, W. Hoeno, G Hoss, B Vogt, Z Hermann AV. Standardization of two immunological HbA1c routine assays according to the new IFCC reference method. Clin Lab. 2003;49(11):657–61.
- 38. Shaivya Gupta UJ. Laboratory Diagnosis of HbA1c : A Review. 2017;5(4):1–10.
- Lois Jovanovic HS. Frequent Monitoring of A1C During Pregnancy as a Treatment Tool To Guide Therapy. 2011;34(1):0–1.
- Kenneth Kaushansky, Marshall A Lichtman, Josef T Prchal, Marcel M Levi, Oliver W
 Press, Linda J Burns MAC. Williams Hematology. 9th ed. McGraw Hill; 2016. 925–935
 p.

- Cheekurthy AJ. Bioanalysis & Biomedicine Biochemical Biomarkers-Independent Predictors of Type 2 Diabetes Mellitus. 2018;(April 2015):6–11.
- 42. Imtiaz F, Shafique K, Mirza SS, Ayoob Z, Vart P, Rao S. Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population.
 2012;1–6.
- 43. Atak B. Diabetes control could through platelet-to-lymphocyte ratio in hemograms.2019;65(1):38–42.
- Qin B, Ma N, Tang Q, Wei T, Yang M, Fu H. Neutrophil to lymphocyte ratio (NLR),
 platelet to lymphocyte ratio (PLR) were Useful Markers in Assessment of Inflammatory
 Response and Disease Activity in SLE patients. 2015;7595(September).
- 45. Lee G, Lee L, Chong E, Lee C, Teo S, Chia B. The long-term predictive value of the neutrophil-to- lymphocyte ratio in Type 2 diabetic patients presenting with acute myocardial infarction. 2012;(July):1075–82.
- 46. Garcia C, Feve B, Ferré P, Halimi S, Baizri H, Bordier L, et al. Diabetes and inflammation : Fundamental aspects and clinical implications. Diabetes Metab [Internet]. 2010;36(5):327–38. Available from: http://dx.doi.org/10.1016/j.diabet.2010.07.001
- 47. Turkmen K, Erdur FM, Ozcicek F, Ozcicek A, Akbas EM, Ozbicer A, et al. Platelet-tolymphocyte ratio better predicts inflammation than neutrophil-to-lymphocyte ratio in endstage renal disease patients. 2013;391–6.
- 48. Huang W, Huang J, Liu Q, Lin F, He Z, Zeng Z, et al. Neutrophil lymphocyte ratio is a reliable predictive marker for early-stage diabetic nephropathy. 2015;229–33.

- 49. George RM, Inamadar AC, Janagond AB. Neutrophil-to-lymphocyte ratio : A biomarker for predicting systemic involvement in iga vasculitis Neutrophil - to - Lymphocyte Ratio : A Biomarker for Predicting Systemic Involvement in IgA Vasculitis. 2020;(June).
- 50. Bhat T, Bhat H, Raza M, Khoueiry G, Meghani M, Akhtar M. Neutrophil to lymphocyte ratio and cardiovascular diseases : a review. 2013;55–9.
- 51. Verdoia M, Schaffer A, Barbieri L, Aimaretti G, Marino P, Sinigaglia F. Impact of diabetes on neutrophil-to-lymphocyte ratio and its relationship to coronary artery disease. Diabetes Metab [Internet]. 2015;1–8. Available from: http://dx.doi.org/10.1016/j.diabet.2015.01.001
- 52. Christoforaki V, Zafeiriou Z, Daskalakis G, Siristatidis C. First trimester neutrophil to lymphocyte ratio (NLR) and pregnancy outcome. J Obstet Gynaecol (Lahore).
 2019;0(0):1–6.
- Vinay Kumar, Abul Abbas JA. Pathologic basis of disease. 10th editi. Elsevier Inc; 2021.
 583–590 p.
- 54. Vozarova B, Weyer C, Lindsay RS, Pratley RE, Bogardus C, Tataranni PA. High White Blood Cell Count Is Associated With a Worsening of Insulin Sensitivity and Predicts the Development of Type 2 Diabetes. 2002;51(October 2001).
- 55. Kayo Ohshita, Kiminori Yamane, Miki Hanafusa, Hiroshi Mori, Kazuyo Mito, Massamichi Okubo, Hitoshi Hara NK. Elevated White Blood Cell Count in subjects with impaired glucose tolerance. Diabetes Care. 2004;27(2):491–6.
- 56. Peter C Tong, Ka-Fai Lee, Wing-Yee So, Margaret H. Ng, Wing-Bun CHan MK Lo.

White Blood Cell Count is Associated With Macro- and Microvscular Complications in CHinese Patients With Type 2 Diabetes. Diabetes Care. 2004;27:216–22.

- 57. Duman TT, Aktas G, Atak BM, Kocak MZ, Erkus E, Savli H. Neutrophil to lymphocyte ratio as an indicative of diabetic control level in type 2 diabetes mellitus.
 2019;19(1):1602–6.
- 58. Mertoğlu C, Günay M. Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio as Useful Predictive Markers of Prediabetes and Diabetes Mellitus. Diabetes Metab Syndr Clin Res Rev [Internet]. 2016; Available from: http://dx.doi.org/10.1016/j.dsx.2016.12.021
- Azab B, Chainani V, Shah N MJ. Neutrophil–Lymphocyte Ratio as a Predictor of Major Adverse Cardiac Events Among Diabetic Population: A 4-Year Follow-Up Study. Angiology. 2013;64(6):456–65.
- Devamsh GN, Parvathi M, Madhumathi R, Raghavan L. Study of neutrophil lymphocyte ratio in patients with type 2 diabetes mellitus and its correlation with glycemic control. 2019;6(5):1637–41.
- 61. Lou M, Luo P, Tang R, Peng Y, Yu S, Huang W, et al. Relationship between neutrophillymphocyte ratio and insulin resistance in newly diagnosed type 2 diabetes mellitus patients. 2015;4–9.
- 62. Yilmaz H, Ucan B, Sayki M, Unsal I, Sahin M, Ozbek M, et al. Diabetes & Metabolic Syndrome : Clinical Research & Reviews Usefulness of the neutrophil-to-lymphocyte ratio to prediction of type 2 diabetes mellitus in morbid obesity. Diabetes Metab Syndr

Clin Res Rev [Internet]. 2014;2–7. Available from: http://dx.doi.org/10.1016/j.dsx.2014.04.009

- 63. Wang R, Zhang J, Li Y, Liu T, Yu K. Journal of Diabetes and Its Complications Neutrophil – Lymphocyte ratio is associated with arterial stiffness in diabetic retinopathy in type 2 diabetes. J Diabetes Complications [Internet]. 2015;29(2):245–9. Available from: http://dx.doi.org/10.1016/j.jdiacomp.2014.11.006
- 64. Shiny A, Bibin YS, Shanthirani CS. Association of Neutrophil-Lymphocyte Ratio with Glucose Intolerance : An Indicator of Systemic Inflammation in Patients with Type 2 Diabetes. 2014;16(8):524–30.

Annexure I

B.L.D.E. (DEEMED TO BE UNIVERSITY)

(Declared vide notification No. F.9-37/2007-U.3 (A) Dated. 29-2-2008 of the MHRD, Government of India under Section 3 of the UGC Act, 1956) The Constituent College SHRI. B. M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE

INSTITUTIONAL ETHICAL CLEARANCE CERTIFICATE

The ethical committee of this college met on 13-11-2019 at 3-15 pm to scrutinize the synopsis of Postgraduate students of this college from Ethical Clearance point of view. After scrutiny the following original/corrected and revised version synopsis of the Thesis has been accorded Ethical Clearance

Title: A study on neutrophil-lymphocyte ratio as an assessment tool of glycemic control in type 2 diabetes mellitus patients

Name of PG student: Dr. Veena Varier, Department of Pathology

Name of Guide/Co-investigator: Dr. Prakash M. Patil, Associate Professor Department of Pathology

DR RAGHVENDRA KULKARNI CHAIRMAN Institutional Ethical Committee BLDEU's Shri B.M. Patii Medical College,BIJAPUR-586103

Following documents were placed before Ethical Committee for Scrutinization:

1. Copy of Synopsis / Research project

2. Copy of informed consent form

3. Any other relevant documents.

Annexure II

INFORMED CONSENT FOR PARTICIPATION IN DISSERTATION/RESEARCH

I, the undersigned, _______, S/O D/O W/O ______, age ____years, ordinarily resident of _______do hereby state/declare that Dr. _______of _______Hospital has examined me thoroughly on _______ at ______(place) and it has been explained to me in my own language that I am suffering from ________disease (condition) and this disease/condition mimic following diseases. Further Doctor informed me that he/she is conducting dissertation/research titled _______under the guidance of Dr ______requesting my participation in the study. Apart from routine treatment procedure, the pre-operative, operative, post-operative, and follow-up observations will be utilized for the study as reference data.

Doctor has also informed me that during conduct of this procedure like adverse results may be encountered. Among the above complications most of them are treatable but are not anticipated hence there is chance of aggravation of my condition and in rare circumstances it may prove fatal in spite of anticipated diagnosis and best treatment made available. Further Doctor has informed me that my participation in this study help in evaluation of the results of the study which is useful reference to treatment of other similar cases in near future and, also I may be benefited in getting relieved of suffering or cure of the disease I am suffering.

The Doctor has also informed me that information given by me, observations made/ photographs/ video graphs taken upon me by the investigator will be kept secret and not assessed by the person other than me or my legal hirer except for academic purposes.

72

The Doctor did inform me that though my participation is purely voluntary, based on information given by me, I can ask any clarification during the course of treatment / study related to diagnosis, procedure of treatment, result of treatment or prognosis. At the same time, I have been informed that I can withdraw from my participation in this study at any time if I want or the investigator can terminate me from the study at any time from the study but not the procedure of treatment and follow-up unless I request to be discharged.

After understanding the nature of dissertation or research, diagnosis made, mode of treatment, I the undersigned Shri/Smt ______ under my full conscious state of mind agree to participate in the said research/dissertation.

Signature of patient:

Signature of doctor:

Witness: 1.

2.

Date:

Place

Annexure III

PROFORMA

NAME:	OP/IP No.:
AGE:	
SEX: D.O.A:	
RELIGION:	D.O.D:
OCCUPATION:	
RESIDENCE:	
Presenting Complaints	:
Past history	:
Personal history	:
Family history	:
Treatment history :	
General physical examinat	tion:
Pallor	present/absent
Icterus	present/absent
Clubbing	present/absent
Lymphadenopathy	present/absent
Edema	present/absent
Built	poor/average/well
VITALS: PR:	RR:

74

WEIGHT:

SYSTEMIC EXAMINATION:

Cardiovascular system:

Respiratory system:

Per Abdomen:

Central nervous system:

Renal System:

Fundus examination:

Clinical Diagnosis:

INVESTIGATIONS

Parameters	Group 1	Group 2	p-value
Total WBC count(10 ³ /µl)			
Absolute Neutrophil count(10 ³ /µl)			
Absolute Lymphocyte count(10 ³ /µl)			
Absolute Eosinophil count(10 ³ /µl)			
Absolute Monocyte count(10 ³ /µl)			
Absolute Basophil count(10 ³ /µl)			
NLR			
Platelet(10 ³ /µl)			
PLR			
RBC(10 ⁶ /µl)			
Hb(gm%)			
HCT/PCV(%)			

Key to master chart

OP	Outpatient
IP	Inpatient
HbA _{1c}	Glycated Hemoglobin A _{1c} .
NLR	Neutrophil Lymphocyte Ratio
PLR	Platelet Lymphocyte Ratio
WBC	White Blood Cells
RBC	Red Blood Cells
ANC	Absolute Neutrophil Count
ALC	Absolute Lymphocyte Count
AEC	Absolute Eosinophil Count
AMC	Absolute Monocyte Count
ABC	Absolute Basophil Count
PCV	Packed cell volume
S.TG	Serum Triglycerides
S. Chl	Serum Cholestrol
S.HDL	Serum High density lipoprotein
S.LDL	Serum Low density lipoprotein
S.VLDL	Serum Very low density lipoprotein

Master Chart

Case no.	DPDD	Age	Sex	HbA1C	Total WBC	ANC	ALC	AEC	AMC	ABC	NLR	Platelet	PLR	RBC	ЧН	PCV	S. TG	S. Chl Total	S. HDL	S.LDL	S.VLDL
	L	L	L						L	GRO	UP 1			L				L			
1	I-85	45	Σ	6.4	10280	6168	3289.6	308.4	308.4	20.56	1.875	400000	121.5953	3.14	7.6	22.5					
2	I-371	53	Σ	5.9	8930	5625.9	2598.63	312.55	357.2	35.72	2.164948	337000	129.6837	5.17	16.5	47.6	209	144	50	52	42
e	I-43875	33	Σ	6.3	7590	5738.04	1609.08	7.59	227.7	7.59	3.566038	490000	304.5218	3.69	œ	25.9					
4	0-7815	65	ш	6.3	9390	5277.18	2957.85	751.2	347.43	56.34	1.784127	340000	114.9484	4.19	11.4	36.7					
ъ	0-9056	73	Σ	5.9	11630	6024.34	4547.33	558.24	430.31	69.78	1.324808	335000	73.6696	5.22	14.7	44.3					
9	I-1114	45	×	5.9	7050	4949.1	1276.05	310.2	500.55	7.05	3.878453	234000	183.3784	3.22	9.4	28.4					
2	I-1609	34	ω	9	4700	1851.8	1771.9	719.1	347.8	9.4	1.045093	310000	174.9534	4.23	11	33.4					
ø	O-20909	25	Σ	6.3	5560	3424.96	1590.16	250.2	272.44	22.24	2.153846	256000	160.9901	5.41	16.5	47.3	144	162	29	104	29
σ	I-1735	68	Σ	5.7	0006	5526	2601	414	441	18	2.124567	420000	161.4764	3.73	9.4	30.9					

10	0-21695	52	W	6.2	9210	5986.5	3131.4	92.1	92.1	0	1.911765	289000	92.29099	5.92	15.6	45.3	225	217	78	138	45
11	I-2217	78	W	9	10620	6722.46	2909.88	127.44	796.5	63.72	2.310219	544000	186.9493	3.42	10.6	30.7					
12	I-2227	35	£	9	10280	6168	3048	514	514	205.6	2.023622	308000	101.0499	3.27	9.3	29					
13	I-2310	25	J	5.7	11750	7050	4112.5	352.5	117.5	117.5	1.714286	277000	67.35562	4.1	10.7	31.5					
14	I-2365	09	W	6.1	7910	4746	2373	395.5	237.3	158.2	2	274000	115.4657	3.03	9.8	27.6					
15	0-29151	47	F	5.9	10520	6859.04	2345.96	915.24	326.12	73.64	2.923767	568000	242.1184	4.34	9.8	30.8	100	194	41	133	20
16	O-30993	40	W	6.1	8210	4187.1	3226.53	287.35	500.81	8.21	1.29771	298000	92.35928	5.65	13.8	42.6	107	137	44	72	21
17	0-31196	02	£	6.1	11010	6826.2	3303	440.4	330.33	110.1	2.066667	477000	144.4142	4.17	9.3	29.1					
18	I-2585	40	J	5.8	3300	2148.3	920.7	6.9	211.2	6.9	2.333333	343000	372.5426	3.68	7.8	24.3					
19	I-2578	70	F	6.1	7430	5550.21	1500.86	126.31	222.9	29.72	3.69802	277000	184.5609	4.56	13.2	40.6					
20	I-2328	52	Þ	6.4	6040	3636.08	1739.52	241.6	362.4	60.4	2.090278	301000	173.0362	3.9	9.4	30.7					

21	0-39213	35	F	5.8	9230	4864.21	3821.22	203.06	323.05	18.46	1.272947	249000	65.16244	5.11	13.4	40.6					
22	I-3164	32	Μ	5.8	8520	5810.64	2070.36	93.72	502.68	42.6	2.806584	338000	163.2566	5.32	14.6	43.8					
23	I-3317	88	E	5.7	11660	5247	4081	932.8	1166	233.2	1.285714	506000	123.9892	4.29	11.4	34.3					
24	0-41027	11	Μ	9	11270	5894.21	4541.81	247.94	495.88	90.16	1.297767	465000	102.3821	5.52	16.2	46.4					
25	1-3727	85	W	9	7060	4236	2118	353	211.8	141.2	2	321000	151.5581	4.61	15.5	42.7	101	270	41	607	20
56	0-45852	40	Μ	5.8	13820	10655.22	2694.9	96.74	317.86	55.28	3.953846	266000	98.70496	5.12	13.8	40.2	178	159	29	56	36
27	1-4084	99	Μ	6.3	5930	3807.06	1470.64	302.43	290.57	59.3	2.58871	289000	196.5131	4.26	10	30.8	123	135	33	<i>LL</i>	25
28	I-3888	35	Μ	6.4	5830	4180.11	1317.58	52.47	268.18	11.66	3.172566	223000	169.2497	4.25	9.5	28.6					
29	0-50634	50	F	6.3	7440	4434.24	2477.52	111.6	386.88	29.76	1.78979	208000	83.95492	3.29	6	27.4					
30	I-4892	55	£	6.4	8400	5090.4	2839.2	67.2	386.4	16.8	1.792899	278000	97.91491	5.3	12	36.9	119	274	45	205	24
31	0-66637	37	ц	5.7	6060	3363.3	2327.04	121.2	230.28	18.18	1.445313	307000	131.9273	3.98	10.4	31.4	162	159	43	84	32

32	0-70619	52	Þ	6.4	9680	6776	2226.4	242	406.56	29.04	3.043478	293000	131.6026	5.77	15.4	43.1	277	211	33	122	55
33	1-6087	38	ш	6.1	11780	7068	3534	589	353.4	235.6	2	246000	69.60951	4.24	12.1	37.4					
34	I-6202	54	Σ	6.2	11450	6641	3435	572.5	458	229	1.933333	172000	50.07278	5.23	15.5	43.8					
35	I-6351	77	Σ	6.2	9150	5883.45	2415.6	228.75	549	73.2	2.435606	214000	88.59083	5.06	16.5	49.3					
36	I-6403	45	Σ	6.1	10290	5361.09	2202.06	2315.25	380.73	30.87	2.434579	325000	147.5891	4.56	13.4	40.5					
37	0-76641	54	Ŧ	5.7	5300	3227.7	1558.2	280.9	212	21.2	2.071429	267000	171.3516	4.16	11.6	34.4					
38	I-6872	30	×	9	0068	5793.9	2500.9	62.3	489.5	53.4	2.316726	329000	131.5526	4.54	14.1	40.7					
68	0-81235	09	H	5.7	11600	7145.6	3538	324.8	545.2	46.4	2.019672	359000	101.4698	4.89	13.7	41.3					
40	0-81340	58	н	6.2	8750	4305	3771.25	148.75	498.75	26.25	1.141531	383000	101.5578	4.68	12.3	37.2					
41	O-89844	58	×	6.3	12550	8195.15	3288.1	514.55	514.55	37.65	2.492366	270000	82.11429	5.12	14.2	41.6					
42	0-91709	30	щ	9	7620	4815.84	2476.5	137.16	182.88	7.62	1.944615	261000	105.3907	4.35	11.3	32					

43	7608-I	29	E	6.4	5520	3797.76	1247.52	182.16	281.52	11.04	3.044248	270000	216.4294	3.46	9.2	27.7					
44	0-95674	45	Σ	5.9	7520	3978.08	2917.76	278.24	308.32	37.6	1.363402	277000	94.93584	5.47	17	48.7					
45	0-108934	67	W	5.9	6710	4052.84	1919.06	322.08	369.05	46.97	2.111888	284000	147.9891	5.49	11.6	38.3	137	183	33	122	72
46	0-109270	47	Μ	6.3	8070	4656.39	2929.41	137.19	306.66	40.35	1.589532	211000	72.02816	4.6	13.7	38.7	95	132	25	88	19
47	0-108756	65	W	5.8	6180	4017	1854	61.8	247.2	0	2.166667	232000	125.1348	3.95	13.9	38.1	100	164	31	113	20
48	0-108775	75	Μ	5.7	13250	6890	5644.5	185.5	490.25	39.75	1.220657	221000	39.15316	5.67	16	47.1	152	228	33	165	30
67	0-113587	14	Μ	9	7520	4421.76	2519.2	203.04	338.4	37.6	1.755224	301000	119.4824	2.62	16.3	45.3	261	576	33	190	25
50	0-115241	40	Μ	9	10320	5758.56	3890.64	268.32	371.52	30.96	1.480106	263000	67.59813	5.04	13.8	8.95	183	164	32	56	22
51	0-107431	۲2	Μ	9	8560	3946.16	3424	915.92	256.8	17.12	1.1525	263001	76.81104	5.72	14.2	42.8					
52	0-116965	38	δ	5.7	6700	3061.9	3001.6	341.7	268	26.8	1.020089	254000	84.62154	5.78	16	46	495	263	40	124	66
53	I-10426	25	ч	6.3	10970	6450.36	3674.95	296.19	493.65	54.85	1.755224	170000	46.25913	5.64	10.4	32.9					

54	I-10497	09	W	6.2	11810	7440.3	3543	472.4	236.2	118.1	2.1	299000	84.39176	4.37	14	39.6					
55	0-121644	63	F	9	4200	2503.2	1478.4	42	168	8.4	1.693182	190000	128.5173	3.46	5.4	18.9					
56	I-11323	43	W	6.1	5960	2914.44	2080.04	238.4	679.44	47.68	1.401146	176000	84.61376	3.31	10.6	29.4					
57	I-12351	98	Μ	5.9	10800	6804	3024	324	216	324	2.25	116000	38.35979	3.02	8.9	27.2					
58	I-19157	09	E	6.4	9540	5609.52	3195.9	257.58	429.3	47.7	1.755224	251000	78.53813	4.3	13.8	41.5	79	243	50	177	16
59	O-19830	46	W	6.1	8020	5213	2406	240.6	80.2	80.2	2.166667	290000	120.532	3.36	15	45.8					
60	I-1325	60	Μ	5.7	13320	7992	4662	399.6	133.2	133.2	1.714286	147000	31.53153	5.83	11.5	36.2					
61	I-3183	55	F	6.3	10090	6659.4	2926.1	302.7	201.8	0	2.275862	325000	111.0693	3.44	8.5	25.8					
62	I-19372	84	F	6.3	5850	3510	2047.5	58.5	175.5	58.5	1.714286	360000	175.8242	3.99	11.7	35.2					
63	I-20690	65	W	6.1	8820	5733	2822.4	176.4	88.2	0	2.03125	230000	81.49093	4.48	9.7	31.2					
64	I-21826	59	Σ	6.3	8810	5550.3	2466.8	176.2	616.7	0	2.25	367000	148.7757	4.13	10.2	34.9	114	83	12	48	23

65	0-14029	54	ш	6.1	4600	2704.8	1541	124.2	207	23	1.755224	200000	129.7859	5.63	10.5	36.3	198	218	39	139	40
66	I-21894	67	¥	6.3	10330	6198	2995.7	516.5	619.8	0	2.068966	218000	72.77097	4.79	14	41.1	124	142	40	77	25
29	I-21055	55	Þ	6.1	5850	3802.5	1872	117	58.5	0	2.03125	225000	120.1923	3.96	11.2	40					
89	I-22638	88	M	6.4	11440	7630.48	3237.52	274.56	274.56	22.88	2.35689	376000	116.1383	2.3	12.7	14					
69	I-23340	09	Þ	6.2	12260	7208.88	4107.1	331.02	551.7	61.3	1.755224	303000	73.77468	5.54	14.6	43.7					
70	I-23677	70	Ŧ	5.8	11290	7530.43	3195.07	270.96	270.96	22.58	2.35689	206000	64.47433	4.42	12.4	39.2					
11	0-20134	85	ω	6.4	10050	4592.85	4502.4	512.55	402	40.2	1.020089	180000	39.97868	4.24	10	31.3					
72	I-21109	09	Σ	5.8	8550	4446	3642.3	119.7	316.35	25.65	1.220657	221000	60.67595	5.67	16	47.1					
23	I-23651	84	ω	6.1	9130	5368.44	3058.55	246.51	410.85	45.65	1.755224	219000	71.60256	4.63	13.9	40.5	192	135	45	22	38
74	I-24228	55	Σ	6.2	11450	7786	3206	229	114.5	114.5	2.428571	282000	87.96007	5.86	17.8	52.5	06	177	31	128	18
75	0-24738	50	Σ	6.1	6650	4189.5	1928.5	199.5	332.5	0	2.172414	290000	150.3759	4.66	13.7	39.7	199	227	40	147	40

76	I-24565	43	Þ	9	14350	9758	4018	430.5	143.5	0	2.428571	198000	49.27825	2.11	œ	22.9					
77	I-24542	28	Σ	6	8680	5381.6	2604	347.2	260.4	86.8	2.066667	182000	69.89247	5.39	16.3	46.8					
82	82627-I	51	M	5.7	10250	0269	2870	307.5	102.5	0	2.428571	198000	68.98955	2.11	12.3	36.9					
62	I-25258	82	F	9	8320	5549.44	2354.56	199.68	199.68	16.64	2.35689	298000	126.5629	3.97	10.6	32.7					
80	I-24987	26	ш	5.8	9580	5077.4	3353	670.6	383.2	95.8	1.514286	268000	79.92842	4.15	9.9	31.6					
81	I-25727	65	ω	5.9	10180	7879.32	1822.22	101.8	356.3	20.36	4.324022	251000	137.7441	4.31	13.6	40.2					
82	I-25865	65	н	6.4	14350	9758	4018	430.5	143.5	0	2.428571	300000	74.66401	3.84	10.1	31.9					
83	I-26085	50	Σ	6	12960	8164.8	4276.8	259.2	129.6	129.6	1.909091	357000	83.47363	4.88	13.6	42.8	109	179	52	105	22
84	0-26516	60	Σ	6	6310	4290.8	1262	63.1	567.9	0	3.4	260000	206.0222	5.43	15.7	46.7					
85	0-01376	38	Þ	6.2	9230	5722.6	2769	369.2	276.9	92.3	2.066667	182000	65.7277	5.39	16.3	46.8					
86	0-26448	65	Σ	6.4	13620	9125.4	4086	272.4	136.2	0	2.233333	223000	54.5766	3.65	9.6	28.4					

87	I-26403	50	Μ	6.2	9300	5859	3255	186	0	0	1.8	162000	49.76959	3.32	8.7	26.5					
88	I-25336	30	F	5.9	9450	6303.15	2674.35	226.8	226.8	18.9	2.35689	298000	111.4289	3.97	10.6	32.7					
68	I-26372	08	W	6.1	3230	1485.8	1356.6	193.8	161.5	32.3	1.095238	138000	101.7249	4.21	11.7	35.4					
06	0-26775	22	Μ	9	8550	5814	2394	256.5	85.5	0	2.428571	198000	82.70677	2.11	12.3	36.9					
16	I-27028	75	W	6.2	12430	7955.2	3729	372.9	248.6	124.3	2.133333	255000	68.38294	4.53	14.1	40.8					
92	0-27663	51	W	5.7	7860	5344.8	2200.8	157.2	78.6	78.6	2.428571	255000	115.867	4.63	12.1	36.9					
93	I-25460	36	Μ	6.1	7250	4785	2030	290	145	0	2.357143	268000	132.0197	3.86	12.5	40.5					
94	I-28001	47	F	6.1	12330	8150.13	3464.73	197.28	394.56	49.32	2.352313	363000	104.7701	5.08	13.6	42.1	76	220	46	159	15
95	0-28602	50	F	6.4	7860	5344.8	2200.8	157.2	78.6	78.6	2.428571	255000	115.867	4.63	12.1	36.9					
96	I-28245	50	F	6.4	6650	4189.5	1928.5	199.5	332.5	0	2.172414	290000	150.3759	4.66	13.7	39.7					
67	I-28668	50	Σ	5.9	12050	7712	3976.5	241	120.5	0	1.939394	368000	92.54369	5.65	14.1	47.1					

86	0-28741	71	Ŀ	6.1	5710	2906.39	2489.56	51.39	222.69	39.97	1.167431	295000	118.4948	4.74	13.8	41.6	139	180	46	106	28
66	0-28336	74	Σ	5.9	6120	3672	1836	367.2	183.6	61.2	2	150000	81.69935	3.2	10.1	30.5	111	102	87	22	22
100	I-28397	82	ш	6.3	8060	5424.38	2168.14	88.66	362.7	16.12	2.501859	280000	129.143	4.59	12.6	38.6					

									G	RO	UP	2									
1	I-108	53	Σ	7	8200	6814.2	992.2	90.2	270.6	32.8	6.867769	180000	181.415	4.38	12.5	37.2					
2	I-115	65	Δ	14.2	11140	8154.48	2272.56	33.42	646.12	33.42	3.588235	85000	37.40275	4.8	13.8	40.9					
3	I-267	80	ц	13.3	6480	5417.28	997.92	12.96	38.88	12.96	5.428571	233000	233.4857	5.7	15.7	45.3	388	167	41	108	17
4	I-257	45	ш	9.3	8580	7619.04	789.36	0	171.6	0	9.652174	182000	230.5665	4.02	11.8	32.2					
5	0-3847	50	Σ	10.6	7700	4620	1925	462	462	231	2.4	251000	130.3896	5.31	14.3	42.4					
9	I-452	51	Σ	8.1	4660	3527.62	671.04	321.54	130.48	9.32	5.256944	286000	426.2041	5.04	9.4	32	64	139	32	95	13
7	I-514	45	Σ	11.2	11390	9556.21	1287.07	205.02	318.92	22.78	7.424779	288000	223.7641	6.34	16	48.7					

8	O-7290	66	Σ	10.5	7640	5661.24	1451.6	38.2	450.76	38.2	3.9	273000	188.0683	4.16	12.4	34.9	144	105	30	46	29
6	I-556	50	Σ	7.5	6430	4719.62	1157.4	199.33	321.5	32.15	4.077778	203000	175.3931	4.54	14.9	44.7					
10	0-7969	62	Σ	9.1	7080	4467.48	1677.96	346.91	559.32	28.32	2.662447	383000	228.2534	4	10.6	32.3					
11	I-605	45	Ν	10.1	7720	4987.12	2323.72	77.2	301.08	30.88	2.146179	374000	160.9488	5.38	13.6	41.1					
12	I-5408	68	ш	7.6	9460	7000.4	1598.74	340.56	510.84	9.46	4.378698	286000	178.8909	5.42	14.5	47					
13	O-14045	75	Σ	14	8550	5788.35	1957.95	239.4	495.9	68.4	2.956332	372000	189.9946	3.9	10.8	32.3					
7 1	I-1132	41	Ν	15.3	10040	6807.12	2329.28	130.52	753	20.08	2.922414	225000	96.59637	3.05	8	23.4					
15	I-1371	50	Ч	6.9	5230	4367.05	611.91	31.38	219.66	0	7.136752	70000	114.3959	1.92	5.1	15.5					
16	I-1234	55	Σ	10.6	13340	9818.24	2734.7	200.1	560.28	26.68	3.590244	283000	103.4848	4.76	15.1	43.3					
17	I-1279	66	Σ	10.1	8500	7539.5	918	0	34	8.5	8.212963	245000	266.8845	4.15	11.6	35.7					
18	I-1391	55	щ	7	12190	9069.36	2596.36	85.33	414.46	24.38	3.493106	391000	150.5954	4.82	13.1	39					

19	O-10863	70	Σ	7.4	8220	4389.48	2252.28	1200.12	336.2	41.1	1.948905	176000	78.14304	4.54	12.5	36.2					
20	O-18091	62	Μ	8.4	6890	5139.94	1123.07	158.47	440.96	0	4.576687	307000	273.3578	3.89	11	34	196	62	13	56	39
21	I-1546	77	Σ	10.7	9700	5917	3298	194	291	0	1.794118	261000	79.13887	4.3	11.9	35.2	354	157	22	65	71
22	I-1311	37	Σ	11.2	6770	4732.23	1428.47	230.18	358.81	20.31	3.312796	148000	103.6074	4.27	12.3	35					
23	I-1475	65	×	6.7	8860	6884.22	1497.34	26.58	451.86	0	4.597633	47000	31.389	2.56	7.5	21.7					
24	I-1545	38	Σ	7.2	7100	4260	2627	71	142	0	1.621622	188000	71.56452	4.97	13.9	41.1					
25	I-1817	58	ш	9.2	12710	9481.66	2681.81	114.39	406.72	25.42	3.535545	238000	88.74603	3.18	8.8	26.2					
26	I-1922	62	×	11	7170	5090.7	1340.79	186.42	523.41	28.68	3.796791	243000	181.2364	4.17	14.4	38.8					
27	I-1843	64	Μ	6.6	9500	7001.5	1463	114	912	9.5	4.785714	120000	82.02324	2.22	5.8	18.5					
28	I-1669	74	Σ	6.6	6170	4004.33	1591.86	172.76	382.54	18.51	2.515504	300000	188.4588	5.19	14.3	43.4	182	160	26	86	36
29	0-23556	37	Σ	10.4	7280	4732	1820	364	218.4	145.6	2.6	251000	137.9121	5.79	16.1	43.7	525	222	30	06	105

30	I-550	18	Σ	7.3	12080	8770.08	2343.52	24.16	930.16	12.08	3.742268	155000	66.13982	2.22	ß	16.7					
31	I-1698	55	ц	6.7	13530	11243.43	1461.24	392.37	419.43	13.53	7.694444	385000	263.4749	5.04	13.5	40.2	137	180	39	114	27
32	I-192	42	ш	10.9	13820	7849.76	4215.1	1202.34	525.16	27.64	1.862295	446000	105.8101	4.96	12	38.5					
33	0-24131	46	Σ	8.9	9420	5670.84	3202.8	141.3	386.22	18.84	1.770588	273000	85.23792	4.17	10.4	32.7					
34	I-2206	60	Μ	6.6	11040	0069	2848.32	794.88	474.72	22.08	2.422481	269000	94.44164	5.02	14	41.5					
35	0-27268	62	Μ	11.9	6440	4546.64	1416.8	128.8	309.12	38.64	3.209091	370000	261.1519	4.74	14	40.4	174	206	32	139	35
36	0-23777	64	Ч	7.3	8130	5406.45	2081.28	243.9	357.72	40.65	2.597656	306000	147.0249	4.93	12.2	38.4	192	119	52	29	38
37	0-28337	65	×	8.6	5960	3826.32	1722.44	107.28	292.04	11.92	2.221453	227000	131.7898	4.44	13.4	40.2					
38	I-2372	68	Σ	8	8830	5615.88	2242.82	273.73	679.91	17.66	2.503937	232000	103.4412	4.46	13.5	40.8					
39	I-2329	40	ш	7.2	4480	2746.24	1191.68	112	421.12	8.96	2.304511	282000	236.6407	2.56	8.6	23.7					
40	I-2324	50	щ	6	12850	7350.2	4561.75	424.05	462.6	51.4	1.611268	327000	71.68302	5.54	12.5	40					

41	0-29174	52	Σ	6.5	8270	4515.42	2902.77	421.77	339.07	90.97	1.555556	323000	111.273	4.67	14.1	40.6	235	231	37	147	47
42	O-20059	65	Σ	7.4	6700	5004.9	1259.6	100.5	328.3	6.7	3.973404	285000	226.2623	5.25	14.2	42.6					
43	0-29236	55	Σ	9.6	9290	6372.94	2471.14	83.61	353.02	9.29	2.578947	235000	95.09781	4.65	15.1	41.6					
44	I-2676	59	Σ	10.5	12740	10204.74	1490.58	445.9	573.3	25.48	6.846154	244000	163.6947	4.49	13	37.9	115	78	27	28	23
45	I-2517	68	ш	8.2	9350	7180.8	1299.65	46.75	804.1	18.7	5.52518	261000	200.8233	4.16	10.4	31.7					
46	O-32300	56	ш	7.4	10760	8575.72	1689.32	139.88	33.56	21.52	5.076433	236000	139.7012	4.39	10.8	32.7	100	113	20	73	20
47	I-2602	65	Σ	13.4	8040	5491.32	2042.16	160.8	337.68	8.04	2.688976	177000	86.67293	4.27	13.1	36.8					
48	0-32511	58	ш	7.7	4660	2959.1	1351.4	130.48	209.7	9.32	2.189655	214000	158.3543	4.34	12.7	37.3	159	175	34	108	32
49	O-32953	65	ш	6.6	6690	3746.4	2461.92	160.56	301.05	20.07	1.521739	345000	140.1345	4.54	11.4	34.8	160	215	68	115	32
50	0-32901	60	Ŧ	9.1	9590	5964.98	2483.81	604.17	479.5	57.54	2.401544	306000	123.1978	4.44	12.2	35.4					
51	I-2793	57	щ	13.8	14670	9887.58	4063.59	205.38	484.11	29.34	2.433213	367000	90.31423	4.35	11.2	34.5					

52	0-32940	42	Σ	8.4	12660	8140.38	3823.32	88.62	582.36	25.32	2.129139	251000	65.64975	5.73	16	45.5					
53	I-2651	50	ч	10.9	10110	6895.02	2770.14	11.21	313.41	20.22	2.489051	375000	135.3722	4.16	11	33.9					
54	I-2799	42	Ŧ	10.8	11180	8496.8	1978.86	268.32	424.84	11.18	4.293785	281000	142.001	3.68	9.3	28.6					
55	0-37177	47	ц	6.6	9720	6036.12	2945.16	379.08	311.04	48.6	2.049505	494000	167.7328	4.07	9.5	29.6	112	196	36	137	22
56	I-3117	56	Μ	9.3	8690	5978.72	2042.15	252.01	399.74	17.38	2.92766	176000	86.18368	4.66	13.4	38.2					
57	I-3192	28	ш	15.1	10190	7693.45	1783.25	234.37	448.36	30.57	4.314286	302000	169.3537	5.35	11	36.3					
58	I-3252	23	Μ	15	10850	8300.25	1627.5	130.2	770.35	21.7	5.1	360000	221.1982	4.93	12.3	37.5					
59	0-39887	35	M	13.5	6140	3487.52	1940.24	392.96	288.58	30.7	1.797468	227000	116.9958	5.94	17.6	49.6	380	184	32	76	76
60	0-40323	50	Μ	8	8260	4452.14	2271.5	1098.58	388.22	49.56	1.96	273000	120.1849	60.9	13.7	42.9					
61	0-43550	35	Μ	12.4	10940	7865.86	2724.06	54.7	273.5	21.88	2.88755	340000	124.8137	5.3	15.7	44.7					
62	I-3634	74	Σ	7.7	11630	7292.01	3489	232.6	593.13	23.26	2.09	113000	32.3875	4.48	11.6	35.1	195	107	26	39	43

63	I-3615	45	ш	8.1	9010	5541.15	2730.03	333.37	378.42	27.03	2.029703	277000	101.4641	4.32	10.8	33.2					
64	I-3192	82	Ч	14.8	10190	7693.45	1783.25	234.37	448.36	30.57	4.314286	302000	169.3537	5.35	11	36.3					
65	0-61091	65	Ŧ	6.5	10110	7471.29	2022	232.53	353.85	30.33	3.695	284000	140.455	4.32	12.1	36.4	172	259	50	175	34
99	I-10156	88	Μ	10.6	12890	10028.42	1997.95	425.37	373.81	64.45	5.019355	217000	108.6113	4.61	15.3	42.4					
67	I-10240	22	Ч	13.1	14040	11189.88	2344.68	84.24	393.12	28.08	4.772455	222000	94.68243	3.77	11.5	33.2					
68	I-10258	09	Μ	8.6	11460	7861.56	2876.46	206.28	481.32	34.38	2.733068	399000	138.7122	5	14.3	42.6					
69	I-10363	60	Σ	6.5	6920	5439.12	913.44	69.2	477.48	20.76	5.954545	334000	365.6507	3.73	10.3	30.9	58	149	51	86	12
20	I-10318	75	×	10.1	5190	2719.56	2138.28	171.27	140.13	20.76	1.271845	166000	77.63249	6.01	17.9	49.7	306	144	28	55	61
71	I-10356	25	Μ	11.7	8690	7568.99	842.93	17.38	243.32	17.38	8.979381	183000	217.0999	5.91	16.2	44.9					
72	I-10417	62	Ч	14.1	10830	8349.93	1732.8	43.32	682.29	21.66	4.81875	178000	102.7239	4.12	10.9	31.8					
73	I-10470	66	щ	8.2	9220	6417.12	2406.42	64.54	285.82	46.1	2.666667	343000	142.5354	4.62	11.4	34.2					

47	I-10502	40	ш	14.3	11620	8563.94	2463.44	46.48	522.9	23.24	3.476415	565000	229.3541	4.3	12.2	34.7					
75	0-120640	42	ш	9.1	10160	7559.04	1940.56	416.56	223.52	20.32	3.895288	320000	164.9009	3.63	10.2	29.9					
76	I-10618	65	Σ	6	6670	5482.74	1007.17	0	160.08	20.01	5.443709	169000	167.7969	4.8	13.7	40.1					
<i>LL</i>	0-121130	60	M	10.1	7260	5641.02	1110.78	43.56	442.86	21.78	5.078431	237000	213.3636	4.81	14.4	41.8					
78	0-121089	48	Ч	2	6830	3415	2868.6	307.35	218.56	20.49	1.190476	252000	87.84773	5.24	13.1	39.4	332	205	08	108	99
62	I-10776	40	Σ	6.9	12510	10933.74	1150.92	75.06	337.77	12.51	9.5	155000	134.6749	4.92	15.1	41.5					
80	I-11036	50	M	14.1	8810	6924.66	1312.69	96.91	458.12	17.62	5.275168	368000	280.3404	3.91	11.3	31.5					
81	I-11053	42	×	7.3	11390	9795.4	1480.7	0	113.9	0	6.615385	121000	81.71811	2.85	8.2	24.4					
82	0-123519	56	ш	6.9	0668	7120.08	1438.4	152.83	242.73	35.96	4.95	257000	178.6707	4.52	8.8	27.5					
83	I-11095	55	Σ	8.5	11080	9296.12	975.04	354.56	409.96	44.32	9.534091	186000	190.7614	4.57	13.2	36.6					
84	0-124003	40	ш	ø	7960	6368	1194	238.8	79.6	79.6	5.333333	292000	244.5561	4.23	13.6	37.6					

85	I-11142	23	ш	6.9	13000	8983	3224	182	585	26	2.78629	226000	70.09926	3.81	11	32.9					
86	I-11310	22	Ч	9.5	6230	5121.06	940.73	0	149.52	18.69	5.443709	232000	246.617	4.56	12.2	33.4					
87	I-11333	47	×	7.3	5600	4435.2	896	95.2	151.2	22.4	4.95	175000	195.3125	4.05	15	40.4					
88	0-125075	52	Μ	9.8	9580	4952.86	3774.52	421.52	411.94	19.16	1.312183	328000	86.89847	4.63	13.1	39	178	183	37	110	36
68	I-11467	60	Μ	7.7	13240	8036.68	3204.08	1244.56	662	92.68	2.508264	257000	80.21023	4.68	12.4	37.6					
06	I-11463	65	ц	7.9	9570	7282.77	1464.21	354.09	430.65	38.28	4.973856	203000	138.6413	4.05	11.6	33.3					
91	I-11816	30	Ч	7.3	9210	7331.16	1399.92	248.67	221.04	9.21	5.236842	280000	200.0114	4.6	10.4	32	122	174	45	105	24
92	I-11921	61	×	8.1	10500	7276.5	2908.5	73.5	315	52.5	2.501805	361000	124.119	4.65	12.8	38.4					
63	0-127124	42	Ч	8.6	6560	4618.24	1679.36	19.68	229.6	13.12	2.75	216000	128.6204	4.06	12.9	35.2					
94	I-11928	50	Σ	6	13100	11475.6	1296.9	0	327.5	0	8.848485	410000	316.1385	2.58	7.6	23.1					
95	0-127958	45	щ	6.9	10070	7552.5	2114.7	201.4	201.4	0	3.571429	255000	120.5845	3.95	9.5	35.7	140	148	59	61	28

100	66	86	26	96
0-20496	0-23070	I-21806	0-22151	I-12215
50	67	35	60	36
Σ	×	ш	Σ	ц
6.6	8.2	10.3	9.5	13.1
6670	9570	5330	11440	11900
5482.74	7282.77	4210.7	7630.48	9079.7
1007.17	1464.21	799.5	3237.52	2558.5
0	354.09	106.6	274.56	0
160.08	430.65	213.2	274.56	261.8
20.01	38.28	0	22.88	0
5.443709	4.973856	5.266667	2.35689	3.548837
169000	203000	174000	376000	552000
167.7969	138.6413	217.636	116.1383	215.7514
4.8	4.05	5.19	5.3	3.96
13.7	11.6	12.6	12.7	9.8
40.1	33.3	36	41	31.2
332	249			
197	145			
27	33			
104	62			
66	50			

									(GRO	UP	3							
τ	I-3	30	ш	4.5	11170	8209.95	2468.57	44.68	424.46	22.34	3.325792	119000	48.20604	4.68	13.2	40.7			
2	I-55	44	Σ	4.4	6220	4291.8	1399.5	118.18	391.86	18.66	3.066667	311000	222.222	3.19	10.5	30.7			
3	I-242	60	Σ	4.7	3840	2726.4	806.4	0	153.6	0	3.380952	46000	57.04365	2.65	7.7	21.9			
4	I-278	48	ш	5.3	6440	3220	2576	322	193.2	128.8	1.25	308000	119.5652	4.08	12.9	37.8			
5	I-196	34	Σ	5.2	8720	4534.4	3627.52	139.52	392.4	26.16	1.25	250000	68.91761	3.5	10.5	36.6			

9	I-596	60	Σ	5.1	6370	3185	2548	318.5	254.8	63.7	1.25	299000	117.3469	4.18	12.5	37.9					
7	I-636	28	ш	5.2	11620	5810	4648	348.6	581	232.4	1.25	229000	49.2685	3.35	10	28.8					
8	O-15396	25	ш	4.6	11830	2098	3785.6	354.9	354.9	236.6	1.875	253000	66.83221	4.43	13.1	37.5					
6	I-1601	88	ц	5.3	6500	3445	2795	130	65	65	1.232558	156000	55.81395	3.98	9.3	29.3					
10	0-21302	42	Μ	5.1	6230	3893.75	1968.68	87.22	261.66	18.69	1.977848	232000	117.8455	5.62	16.8	47.6	326	128	26	36	65
11	I-2178	30	ч	5.6	8700	5976.9	2148.9	313.2	252.3	8.7	2.781377	332000	154.4976	4.45	11.4	34.4					
12	0-27590	29	Μ	4.6	5120	3056.64	1602.56	220.16	220.16	20.48	1.907348	147000	91.72823	2.54	16.3	47.2					
13	0-28151	61	×	5.3	7880	3869.08	3081.08	543.72	338.84	47.28	1.255754	205000	66.53511	4.71	15.1	41.5	136	187	43	118	27
14	0-31386	23	Ч	5.4	12580	6290	5661	377.4	125.8	125.8	1.111111	325000	57.41035	4.56	13	33					
15	0-31305	65	Σ	5.4	12840	6420	5778	256.8	256.8	128.4	1.111111	319000	55.20942	5.55	16.9	48.4					
16	I-2747	30	Σ	5.6	13070	6535	5881.5	392.1	261.4	130.7	1.111111	289000	49.13712	5.26	14.2	41					

17	0-35462	67	ш	5.4	7710	5127.15	1811.85	416.34	346.95	7.71	2.829787	270000	149.019	4.37	12	36.2					
18	O-42020	46	Σ	5.5	9940	5834.78	2803.08	815.08	417.48	69.58	2.08156	276000	98.46312	4.44	16.1	43.6	170	178	35	109	34
19	I-3545	45	Σ	4.8	4430	3101	1138.51	39.87	141.76	8.86	2.723735	229000	201.1401	3.58	13.6	37.4					
20	I-3853	60	×	5.3	8630	5505.94	2571.74	172.6	353.83	25.89	2.14094	217000	84.37867	4.52	16	42.1	187	171	33	100.6	37.4
21	I-4213	32	Σ	4.8	7370	5033.71	1842.5	198.99	257.95	36.85	2.732	245000	132.9715	ß	15.4	43.6					
22	0-51557	65	ц	5.2	3010	1802.99	848.8	159.53	168.56	30.1	2.124164	83000	97.78511	4.07	12.8	38	172	171	44	93	34
23	0-57174	41	ц	5.2	8200	5313.6	2296	131.2	451	8.2	2.314286	228000	99.30314	3.75	11.6	32.8					
24	0-59426	35	Σ	5.6	4370	1896.58	1931.54	218.5	301.53	21.85	0.9819	249000	128.9127	5.37	12	37.9					
25	I-5204	12	ц	5.3	9880	5266.04	3299.92	790.4	494	29.64	1.595808	413000	125.1545	3.94	10.9	32.4					
26	I-5841	18	н	5.4	5160	2667.72	1991.76	417.96	82.56	0	1.339378	235000	117.9861	3.25	8.1	25.1					
27	0-69091	45	Σ	5.2	7030	3072.11	2418.32	1159.95	337.44	42.18	1.270349	222000	91.79927	5.68	16.5	46.6	119	185	36	125	24

28	0-69041	45	Σ	5.4	9660	4781.7	3788.42	647.22	415.38	77.28	1.262188	352000	92.91472	4.74	15.2	44.1	157	169	41	97	31
67	0-70571	45	Μ	5.4	7160	4482.16	1969	350.84	307.88	50.12	2.276364	274000	139.1569	5.48	13.8	41.3	308	160	29	68	62
30	I-6095	26	Ŧ	5.2	11670	8694.15	2345.67	256.74	338.43	35.01	3.706468	293000	124.911	4.07	11.4	34.1					
31	I-6561	32	Μ	5.6	10160	7396.48	2255.52	81.28	406.4	20.32	3.279279	206000	91.33149	5.53	16.9	48.1	252	204	38	116	20
32	I-6751	75	Ч	5.5	9050	6298.8	2398.25	36.2	307.7	9.05	2.626415	181000	75.4717	5.1	14.4	41.2					
33	I-6757	60	ш	4.5	4230	2000.79	1730.07	139.59	351.09	8.46	1.156479	80000	46.2409	2.85	8.5	25.2					
78	O-89740	37	Μ	5.2	5240	3164.96	1257.6	628.8	178.16	10.48	2.516667	206000	163.8041	3.28	11.1	31.8					
35	I-7651	69	Ч	5.1	770	5216.76	1919.52	193.5	387	23.22	2.717742	256000	133.3667	3.88	10.5	32.5					
36	O-88652	40	н	5.2	10730	5901.5	3755.5	643.8	321.9	107.3	1.571429	448000	119.2917	4.91	10.9	35					
37	0-94039	44	Σ	5.6	9830	5406.5	3440.5	393.2	393.2	196.6	1.571429	301000	87.48728	5.53	16.7	47.2	182	239	39	163	36
38	0-41173	35	Σ	5.1	11770	5885	4708	588.5	588.5	0	1.25	435000	92.39592	5.66	17.1	47.5					
68	I-8831	52	Ŧ	5.6	8600	5762	3182	86	430	0	1.810811	488000	153.3627	4.74	12.6	35					
----	----------	----	---	-----	-------	---------	---------	--------	--------	-------	----------	--------	----------	------	------	------	-----	-----	----	-----	----
40	0-102030	41	Μ	5.2	6740	3370	3033	202.2	134.8	0	1.111111	199000	65.61161	5.19	16.5	45.9					
41	0-105290	36	Σ	4.3	6890	3830.84	2390.83	303.16	358.28	6.89	1.602305	289000	120.8785	4.73	15.4	39.8	74	148	45	88	15
42	0-108929	52	Σ	5.5	6780	3532.38	2847.6	88.14	271.2	40.68	1.240476	220000	77.25804	5.24	15.4	42.8	172	182	30	117	34
43	0-108921	29	ц	5.2	10190	5095	4076	713.3	305.7	0	1.25	322000	78.99902	5.3	15.5	42.7	225	220	35	140	45
74	0-108913	47	Ν	5.3	6800	4073.2	2318.8	149.6	231.2	27.2	1.756598	285000	122.9084	4.67	15.2	43.3	276	234	39	140	55
45	0-108597	45	ш	5.5	6710	3737.47	2449.15	288.53	208.01	26.84	1.526027	260000	106.1593	4.08	12	34.3					
46	0-109797	45	Ч	5.1	0966	7021.8	2380.44	129.48	398.4	29.88	2.949791	252000	105.8628	4.99	15.1	41.6					
47	I-9448	35	£	5.5	9350	4675	3740	467.5	280.5	187	1.25	259000	69.25134	4.15	10.4	32.2					
48	0-113347	47	Μ	4.8	7030	3515	2812	351.5	281.2	70.3	1.25	191000	67.92319	5.81	18.7	52.6					
49	1-9872	78	Σ	Ū	11430	6835.14	3794.76	594.36	194.31	11.43	1.801205	70000	18.44649	1.38	4.4	11.7					

50	0-114935	32	Σ	5.3	4730	2199.45	2019.71	241.23	250.69	18.92	1.088993	202000	100.0144	5.08	15.8	43.6	215	177	26	109	43
51	0-117043	30	Ч	5.1	9440	5314.72	3417.28	283.2	396.48	28.32	1.555249	371000	108.5659	4.85	13.3	39.1					
52	I-10218	26	Ŧ	5	10770	4631.1	4846.5	646.2	538.5	107.7	0.955556	278000	57.36098	4.21	11.5	35.2					
53	I-9740	06	Μ	4.5	6910	2971.3	3040.4	483.7	276.4	138.2	0.977273	230000	75.64794	3.39	11.4	31.6					
54	0-121404	25	Ŧ	5.1	9820	4566.3	4193.14	500.82	520.46	39.28	1.088993	335000	79.8924	4.33	8.5	26.2					
55	I-11067	35	Ч	5.4	9230	5639.53	3276.65	18.46	286.13	9.23	1.721127	266000	81.18047	4.97	13.5	39.7					
56	I-10961	24	Ч	5.4	8440	4836.12	3156.56	126.6	320.72	0	1.532086	194000	61.45931								
57	I-11376	86	×	5.6	8230	3538.9	3785.8	411.5	411.5	82.3	0.934783	218000	57.5836								
58	0-125610	50	Σ	5.5	6580	4323.06	1960.84	78.96	197.4	19.74	2.204698	234000	119.3366	5.75	14.8	43.3	115	186	33	130	23
59	0-125840	30	ш	ъ	8230	3826.95	3514.21	419.73	436.19	32.92	1.088993	378000	107.5633	4.49	13.1	38.6					
60	I-11457	32	щ	4.9	5070	3229.59	1510.86	141.96	187.59	0	2.137584	237000	156.8643	3.91	10.8	31					

61	I-12129	25	ш	5.5	7400	3182	3404	370	370	74	0.934783	215000	63.16099	1.96	4.5	14.5					
62	0-129815	53	Σ	4.6	9290	5165.24	3446.59	306.57	315.86	55.74	1.498652	308000	89.36369	4.48	15.7	44.6					
63	I-12359	22	ш	4.5	9840	4526.4	4231.2	492	393.6	98.4	1.069767	251000	59.32123	3.71	10.9	30.7					
79	I-19399	20	Ν	4.6	12840	6856.56	5097.48	359.52	487.92	38.52	1.345088	518000	101.6188	2.25	8.6	24.9					
65	I-19494	88	Σ	3.9	11310	4750.2	5089.5	678.6	565.5	226.2	0.933333	176000	34.581	2.79	10.1	27.3					
66	I-20089	48	Σ	5.1	11090	6166.04	4114.39	365.97	377.06	66.54	1.498652	228000	55.41526	4.49	14.4	43.5					
67	I-21133	27	Σ	5.6	10660	6108.18	3986.84	159.9	405.08	0	1.532086	283000	70.98354	5.43	14.8	46.8	94	171	65	87	19
68	0-21602	60	Σ	5.4	6100	3843	1708	244	244	61	2.25	156000	91.33489	4.65	13.9	39					
69	I-15038	65	Σ	4.6	5820	3666.6	1920.6	116.4	116.4	0	1.909091	225000	117.1509	3.95	13.4	36.1					
70	0-22585	38	Σ	5.6	6880	5022.4	1720	68.8	68.8	0	2.92	360000	209.3023	5.19	15.7	46.5	201	232	43	149	40
71	0-23056	46	Σ	5.2	7300	4577.1	1949.1	481.8	270.1	21.9	2.348315	235000	120.5685	4.2	13.5	39.7					

72	I-22735	18	Μ	5.3	7880	4980.16	2537.36	78.8	260.04	23.64	1.962733	233000	91.82773	5.17	13.2	40.6					
73	I-21914	56	Σ	5.5	8200	5248	2870	82	0	0	1.828571	195000	67.94425	4.93	12.1	37.8					
74	0-23376	28	Ŧ	IJ	11390	4783.8	5125.5	683.4	569.5	227.8	0.933333	329000	64.18886	4.2	12.3	36.7					
75	0-23228	82	Э	5.3	9820	4566.3	4193.14	500.82	520.46	39.28	1.088993	335000	79.8924	4.33	8.5	36.2					
26	O-20053	67	H	5.6	8320	5432.96	2337.92	116.48	399.36	33.28	2.323843	394000	168.5259	5.62	14.4	45.8					
<i>LL</i>	0-24118	99	W	5.3	6870	2954.1	3435	274.8	206.1	0	0.86	395000	114.9927	5.18	12.3	45.6					
82	I-23664	08	Э	5.5	10550	6119	3692.5	422	211	105.5	1.657143	284000	76.91266	3.06	6.6	39					
62	I-23352	75	Э	5.6	5820	2444.4	2502.6	349.2	465.6	58.2	0.976744	365000	145.8483	4.93	7.7	45.6					
08	I-24605	09	W	5.3	14250	7125	6127.5	570	285	142.5	1.162791	248000	40.47328	4.87	12.5	38.2	02	158	31	113	14
81	I-24460	67	Σ	4.3	11080	6648	3878	332.4	221.6	0	1.714286	122000	31.45952	4.63	6	30.1	38	55	21	26	8
82	0-24679	19	щ	4.6	6940	4372.2	2359.6	138.8	69.4	0	1.852941	271000	114.85	4.33	12.9	36.2					

83	I-24625	55	Σ	5.4	11760	6115.2	5409.6	0	235.2	0	1.130435	351000	64.88465	4.85	13.3	40.3	151	266	51	185	30
84	I-25596	92	Σ	5.5	8110	4460.5	3244	243.3	162.2	0	1.375	372000	114.6732	3.31	8.2	36.9					
85	0-09670	75	Σ	5.1	10400	5408	3120	728	936	208	1.733333	296000	94.87179	5.08	15.4	46					
98	0-25761	70	Ν	5.1	6870	2748	3778.5	274.8	68.7	0	0.727273	395000	104.5388	5.18	12.3	45.6					
87	I-26736	40	M	5.6	9660	3767.4	5313	386.4	193.2	0	0.709091	272000	51.19518	4.86	15.3	44.6					
88	I-26713	43	Σ	5.4	14090	5636	6058.7	986.3	1268.1	140.9	0.930233	236000	38.95225	4.81	15.6	43.3	81	138	36	86	16
89	I-26462	87	ш	5.4	11760	6115.2	5409.6	0	235.2	0	1.130435	351000	64.88465	4.85	13.3	40.3					
06	0-27153	27	Ч	5	13830	6776.7	5532	829.8	553.2	138.3	1.225	328000	59.2914	3.44	10	30					
16	0-27306	50	Μ	5.6	6620	3773.4	2184.6	19.86	529.6	13.24	1.727273	243000	111.2332	4.98	15.7	45.5					
92	I-27646	27	щ	4.8	13440	7257.6	5376	403.2	268.8	0	1.35	180000	33.48214	2.11	5.2	36.3					
63	0-27677	42	щ	5.6	9840	4526.4	4231.2	492	492	98.4	1.069767	251000	59.32123	3.71	10.9	30.7					

94	I-26726	44	Σ	5.2	8650	4238.5	3719.5	432.5	173	86.5	1.139535	248000	66.67563	4.87	12.5	38.2					
95	0-28017	51	Σ	4.8	5220	2829.24	1738.26	370.62	229.68	52.2	1.627628	254000	146.1231	4.86	14.9	43.8	142	138	61	49	28
96	I-28339	76	Σ	5.5	7110	3981.6	2559.6	355.5	213.3	0	1.555556	206000	80.48133	3.17	11	30.7	109	138	38	78	22
97	I-30340	25	ш	5.5	14180	10890.24	2467.32	269.42	496.3	56.72	4.413793	361000	146.3126	3.98	10.6	32.2					
98	I-30404	42	Σ	5.5	7020	4141.8	2667.6	140.4	70.2	0	1.552632	259000	97.09102	6.37	16.6	50.3					
66	I-28267	70	Ŧ	5	10870	4348	4891.5	326.1	217.4	0	0.888889	303000	61.94419	4.29	13.2	37.8	120	170	43	103	24
100	I-1004	26	ш	ъ	3450	1380	1828.5	0	241.5	0	0.754717	240000	131.2551	4.91	12.7	38.7					