"SUBLINGUAL MISOPROSTOL VERSUS INTRACERVICAL DINOPROSTONE GEL FOR INDUCTION OF LABOUR-A RANDOMIZED TRIAL"

By

Dr. POLISETTY S.V.S.N.M.M. LAKSHMI PRIYA

Dissertation submitted to BLDE (Deemed to be University), Vijayapura. In partial fulfilment of the requirements for the award of the degree of

MASTER OF SURGERY

IN

OBSTETRICS AND GYNAECOLOGY

Under the guidance of

Dr. P.B.JAJU

Professor Department of OBSTETRICS AND GYNAECOLOGY

BLDE (DEEMED TO BE UNIVERSITY) SHRI B.M. PATIL MEDICAL COLLEGE, HOSPITAL & RESEARCH

CENTRE, VIJAYAPURA, KARNATAKA.

2019

"SUBLINGUAL MISOPROSTOL VERSUS INTRACERVICAL DINOPROSTONE GEL FOR INDUCTION OF LABOUR-A RANDOMIZED TRIAL"

BLDE (Deemed to be University)

MASTER OF SURGERY IN OBSTETRICS AND GYNAECOLOGY

ABBREVATIONS

S.No	ABBREVATION	EXPANSION	
1	IOL	INDUCTION OF LABOUR	
2	PG	PROSTAGLANDINS	
3	PGE1	PROSTAGLANDIN E1	
4	PGE2	PROSTAGLANDIN E2	
5	WHO	WORLD HEALTH ORGANIZATION	
6	FIGO	INTERNATIONAL FEDERATION OF OBSTETRICS AND GYNAECOLOGY	
7	SL	SUB LINGUAL	
8	IUFD	INTRA UTERINE FETAL DEMISE	
9	FGR	FETAL GROWTH RESTRICTION	
10	PROM	PREMATURE RUPTURE OF MEMBRANES	
11	GDM	GESTATIONAL DIABETES MELLITUS	
12	COPD	CHRONIC OBSTRUCTIVE PULMONARY DISEASE	
13	CPD	CEPHALOPELVIC DISPROPORTION	
14	NST	NON-STRESS TEST	
15	RU 486	ROUSSEL UCLAF DRUG NUMBER 486	
16	ACOG	AMERICAN COLLEGE OF OBSTETRICS AND GYNAECOLOGY	
17	NSAID'S	NON-STEROIDAL ANTI-INFLAMMATORY DRUGS	
18	РРН	POST PARTUM HEMORRHAGE	

LIST OF FIGURES

Fig No	Figure
Figure 1	MISOPROSTOL
Figure 2	THE ROLE OF PROSTAGLANDINS IN CERVICAL
	RIPENING AND THE INDUCTION OF LABOR
Figure 3	AGE DISTRIBUTION BAR CHART
Figure 4	PARITY DISTRIBUTION BAR CHART
Figure 5	POG(WEEKS) DISTRIBUTION BAR CHART
Figure 6	INDICATION FOR INDUCTION BAR CHART
Figure 7	MODIFIED BISHOP'S SCORE AFTER INDUCTION BAR CHART
Figure 8	COLOR OF LIQOUR BAR CHART
Figure 9	MODE OF DELIVERY BAR CHART
Figure 10	PERINATAL OUTCOME BAR CHART
Figure 11	ADVERSE EFFECTS BAR CHART
Figure 12	NO. OF DOSES BAR CHART
Figure 13	INDUCTION TO NORMAL DELIVERY BAR CHART
Figure 14	INDUCTION TO ACTIVE LABOUR BAR CHART

LIST OF TABLES

Table No	Table
Table 1	DISTRIBUTION OF CASES ACCORDING TO MATERNAL AGE IN BOTH THE GROUPS
Table 2	DISTRIBUTION OF PARITY IN BOTH THE STUDY GROUPS
Table 3	POG(WEEKS)
Table 4	INDICATION FOR INDUCTION
Table 5	MODIFIED BISHOP'S SCORE AFTER INDUCTION
Table 6	COLOR OF LIQOUR
Table 7	MODE OF DELIVERY
Table 8	PERINATAL OUTCOME
Table 9	ADVERSE EFFECTS
Table 10	NO. OF DOSES
Table 11	INDUCTION TO NORMAL DELIVERY
Table 12	INDUCTION TO ACTIVE LABOUR
Table 13	DESCRIPTIVES OF SUBLINGUAL MISOPROSTOL
Table 14	DESCRIPTIVES OF INTRACERVICAL DINOPROSTONE

INTRODUCTION

INTRODUCTION

In modern obstetrics, inducing labour in women remains a big challenge. Until recently, fetal death was the only reason for inducing labour. In today's world, the percent of labour induction varies in different nations and is around 20%¹. The ideal agent for this purpose has yet to be identified, despite of multiple researches on the topic.

Natural, mechanical, surgical, and pharmaceutical methods of induction of labour are all available. The preference for a particular procedure has not yet been fully established, and it is dependent on the protocol of each institute. Oxytocin, misoprostol, mifepristone, dinoprostone, and other pharmacological techniques are used. Induction in the presence of an unfavorable cervix is linked to a higher risk of failed induction and caesarean section². As a result, cervical ripening is required to improve the chances of a successful induction and reduce the danger of a caesarean delivery. The use of prostaglandins with or without oxytocin as infusion is a conventional approach for cervical ripening and IOL was generally acknowledged and accepted³. Natural prostaglandins, on the other hand, are cumbersome to use, expensive, and difficult to store because they need to be refrigerated⁴.

Misoprostol is a prostaglandin E1 analogue that has been used as a cytoprotective drug in the stomach since 1988. It was previously used for IOL with a live fetus in 1991, and following multiple studies, it has acquired widespread support for labour induction. Misoprostol has been tested in a variety of ways, including orally, per vaginally, per rectal, buccal route, and sublingually⁵. Vaginal route is the common route of administration of misoprostol for IOL, but it has a greater risk of unwanted side effects, such as uterine hyperstimulation syndrome (UHS), as well as vaginal administration being inconvenient⁶. Studies on the oral route of misoprostol were conducted to avoid this unfavorable effect and the inconvenience of vaginal administration. Many clinical trials have revealed that vaginal misoprostol is more effective than oral misoprostol because the systemic bioavailability of vaginal misoprostol is three times that of oral misoprostol⁷. An alternative technique was sought to overcome the hyperstimulation syndrome and discomfort of vaginal administration of vaginal misoprostol, as well as the lower bioavailability of oral misoprostol. Theoretically, the sublingual route of administration could be an alternative since it combines the increased efficiency of the vaginal route with lower hyperstimulation rates by avoiding a direct influence on the cervix by avoiding gastrointestinal and hepatic metabolism. Sublingual misoprostol has similar advantages to oral misoprostol, such as ease of administration, greater freedom of position following insertion, and less number of vaginal examinations⁸.

With vaginal delivery occurring in 73 percent of cases and hyperstimulation syndrome occurring in 3.6% of women, the first dose of vaginal misoprostol given was 50 µg for every 2 hours to a maximum dose of 600 micrograms^{9,10}. Since then, smaller dosages for induction of labour have been advocated in an attempt to lessen side effects^{6,11}. WHO and FIGO approved a vaginal misoprostol dosage of 25 microgram every 4 hours for a maximum of 6 doses after multiple research¹². Prior to 2001⁸, there were no studies on the use of S.L misoprostol for IOL with a viable pregnancy had been published. A pharmacokinetics study of misoprostol taken by multiple routes revealed

that the sublingual route had higher bioavailability than the vaginal route 5 .

OBJECTIVES

OBJECTIVES

Primary objective:

To evaluate the safety and efficacy of sublingual misoprostol vs intracervical dinoprostone gel for induction of labor.

Secondary objectives:

(1) The induction –delivery interval between the two study groups to be compared.

(2) To compare the intrapartum complication rate between the two study groups.

(3) To compare factors affecting the performance of labour during induction with misoprostol and oxytocin titration.

(4) To compare the maternal and neonatal outcome.

REVIEW OF THE LITERATURE

REVIEW OF THE LITERATURE

INDUCTION OF LABOUR

Definition

Stimulation of uterine contractions before the commencement of spontaneous labour, at any time following fetal viability, with or without membrane breach, in order to achieve delivery vaginally ^{13,14}.

Prerequisite for induction

- Assessment of maternal parameters
 - o Confirm that induction is required.
 - o Rule out contraindications of labour and/or vaginal delivery.
 - o Pelvic assessment
 - o favorability of the cervix
 - o Weigh and explain benefit and risk of induction of labour to patient and

the family

Assessment of fetal parameters

o Period of gestation

o EFW calculation

o Position of the Fetus

o Assess fetal status

Indication¹⁵

Obstetric indication:

- o Post-dated pregnancy
- o Mild and severe preeclampsia, eclampsia
- o Previous history of unexplained IUFD
- o Fetal compromise (Severe FGR, isoimmunization)

o PROM

- o Fetal malformations
- o Polyhydramnios
- o Oligo hydramnios

$\mathsf{o} \: \mathrm{GDM}$

- o Abruptio placentae
- o Chorioamnionitis
- o Intra Uterine Fetal Demise

> Maternal medical conditions

- o Diabetes mellitus Type I/II
- o Chronic renal disease
- o COPD
- o Chronic hypertension

Contraindication¹⁶

- > Absolute
 - o Herpes genitalis active lesions
 - o A serious, long-term medical illness
 - o Contracted pelvis or rhactic pelvis

o CPD

o If lie of the fetus is abnormal [transverse lie, oblique lie]

o Occult cord prolapse

o Placenta previa – grade IIb, III, IV and vasa previa

o Previous classical C-section or other trans fundal uterine surgery

O Contraindication to the inducing drug.

> Relative

- o Carcinoma cervix
- o Overdistension of uterus [twins, triplets, quatraplets, polyhydramnios]
- o Malpresentation [breech]
- o Macrosomia of the Fetus
- o Placenta Low lying
- o Unexplained pv bleeding
- o Presentation Cord
- o Myomectomy involving uterine cavity
- o Non reassuring NST

Methods of Labor Induction¹⁸

Non-pharmacologic methods

• Natural method

- o Relaxation methods
- o Coitus
- o Tactile stimulation of Nipples
- o Enema
- o Cumin Tea
- o Herbs
- o Acupressure

• Mechanical methods

- o Osmotic dilators
 - Laminaria
 - dilapan

o Balloon devices

- Foleys
- Bougie

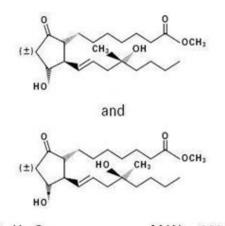
II-Surgical methods

- stripping the membranes
- Amniotomy

III-Pharmacological methods

- Oxytocin
- Prostaglandin
 - o Misoprostol(15deoxy-16hydroxyl-6methyl-prostaglandinE1)
 - o Dinoprostone [E2]
- Mifepristone / RU 486

In a randomized controlled trial, oxytocin coupled with the Foley's catheter for IOL did not appear to reduce delivery time¹⁹. Studies comparing the period from induction to birth with additional amniotic saline given through the Foley catheter vs the Foley catheter with contemporaneous oxytocin administration had inconsistent results²⁰. Discrepancies in findings could be explained by differences in approach. For cervical ripening and initiating labour, the Foley catheter proved a realistic and effective alternative. PGE2 was often utilized intracervical or intravaginal, and it was found to be superior to placebo or no treatment in cervical ripening²¹. PGE1 (misoprostol) was found to be an effective treatment for cervical ripening in several prospective randomized clinical trials and two meta-analyses²². Misoprostol used intravaginally has been shown to be as effective as or better than dinoprostone gel²³ in cervical ripening²¹. PGE1 (misoprostol) was found to be an effective randomized clinical trials and two meta-analyses²². Misoprostol used intravaginally has been shown to be as effective randomized clinical trials and two meta-analyses²². Misoprostol used intravaginally has been then when compared to


dinoprostone gel, vaginal misoprostol was reported to be equally effective or better^{23.} When compared to dinoprostone and oxytocin, vaginal misoprostol was associated with less use of epidural analgesia, more vaginal deliveries within 24 hours, and more uterine tachysystole with or without FHR changes Endpoints as Bishop Score, labour time, total oxytocin use, successful induction, and caesarean delivery rate²⁴ make it hard to compare misoprostol research outcomes. The use of pharmacological cervical ripening treatments had no effect on the likelihood of a caesarean section.

The ACOG reiterated their recommendation for the drug's usage in December 2000, citing its demonstrated safety and efficacy²⁵. When compared to intracervical prostaglandin E2 gel, misoprostol tablets administered in the vagina were either superior to or similar in efficacy²⁶. Misoprostol administration may lower the requirement for oxytocin, increase the rate of vaginal birth within 24 hours of induction, as well as reducing the time between induction and delivery Misoprostol costs cheaper than dinoprostone gel and doesn't need to be refrigerated.

Misoprostol - Clinical Pharmacology

Misoprostol is an analogue of prostaglandin E1. Misoprostol has almost equal

proportions of the 2 diastereomers as shown below, and enantiomers are denoted by (\pm) :

 $C_{22}H_{38}O_5$ M.W. = 382.5 (±) methyl 11 α ,16-dihydroxy-16-methyl-9oxoprost-13E-en-1-oate

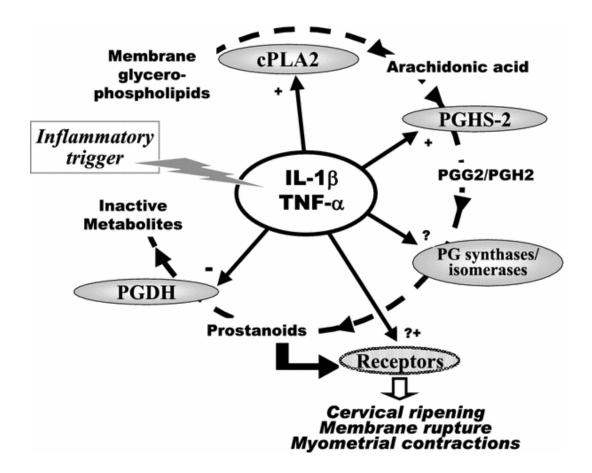
Pharmacokinetics²⁷

Misoprostol is a soluble in water. Unlike the parent molecule²⁸, misoprostol is absorbed rapidly and de-esterified to its free acid (Misoprostolic acid), which provides therapeutic efficacy and is detected in plasma. The alpha side chain is beta oxidized, while the beta side chain is omega oxidized, followed by ketone reduction to produce prostaglandin F analogues. Misoprostol is rapidly absorbed in healthy volunteers, with 19 of 89 a Tmax of Misoprostolic acid being 12 \pm 3 minutes and a terminal half-life of 20–40 minutes.

Route ⁵	Onset ofaction ⁵	Duration of action ⁵
Oral *	8 min	~ 2 h
Sublingual	11 min	~ 3 h
Vaginal	20 min	~ 4 h
Rectal	100 min	~ 4 h

Pharmacodynamics²⁷

Misoprostol prevents gastric acid secretion in animals, and is mucosal protective. P.G synthesis is decreased by NSAIDs; hence they cause mucosal damage due to lack of prostaglandins in the gastric mucosa, which in turn can reduce bicarbonate and mucus secretion, contributing to the mucosal damage induced by these medications. Misoprostol has been demonstrated in humans to enhance bicarbonate and mucus production, but at dosages of 200 micrograms and above, it is also antisecretory.


Uterine Effects

Use of misoprostol in pregnancy is risky as it is known to cause uterine contractions.

Indications and Usage for Misoprostol

- Misoprostol is used to prevent gastric ulcers caused by nonsteroidal anti-inflammatory drugs (NSAIDs), in patients with concomitant disease or those at high risk of developing gastric ulceration, such as those who have had a previous ulcer, such as the elderly, and, such as those who have had a previous ulcer, such as those who have taken aspirin²⁹.
- Mifepristone in combination with misoprostol has been shown to be effective and tolerable in the termination of a pregnancy in its early stages (up to 49 days of amenorrhea).³⁰
- Misoprostol was a fantastically effective and safe method of inducing labour at very low doses.³¹

FIG 2: THE ROLE OF PROSTAGLANDINS IN CERVICAL RIPENING AND THE INDUCTION OF LABOR

Advantages of sub-lingual misoprostol

Pregnancy: Teratogenic effects

Misoprostol use during the first trimester of pregnancy has been linked to skull deformities, cranial nerve palsies, facial malformations, and limb problems in several studies.³³

Nonteratogenic effects

When given to a pregnant woman, misoprostol may put the pregnancy at risk (cause abortion) and hence harm the foetus.³⁴

Labor and delivery

Uterine contractions can either be induced or augmented. Misoprostol has been used as a cervical ripening agent, for induction of labour, and for the treatment of significant postpartum haemorrhage in the presence of uterine atony³⁵, outside of its recognized indications. Hyperstimulation of the uterus, which may proceed to uterine tetany with substantial impairment of uteroplacental blood flow, uterine rupture (requiring surgical repair, hysterectomy, and/or salpingo-oophorectomy), or amniotic fluid embolism, is a major side effect of Misoprostol in obstetrics. Pelvic pain, a retained placenta, acute vaginal bleeding, shock, fetal bradycardia, and fetal and maternal death are some of the symptoms that can occur.²⁷

With the use of greater dosages of misoprostol, there may be an increased risk of uterine tachysystole, uterine rupture, meconium passage, meconium staining of amniotic fluid, and caesarean delivery³⁶ due to uterine hyperstimulation. The risk of uterine rupture increases with advancing gestational ages and with prior uterine surgery, including cesarean delivery.³⁷ Grand multiparity also appears to be a risk factor for

uterine rupture.

Misoprostol when used for cervical ripening or induction of labour, the effect on the child's later growth, development, and functional maturation has yet to be determined. There is no information on the impact of misoprostol on the requirement for forceps delivery or other interventions.

Nursing mothers

Misoprostol should be used with caution in nursing mothers.²⁷

Adverse Reactions

- 1. Diarrhea
- 2. Pain Abdomen
- 3. Nausea
- 4. Flatulence
- 5. Headache
- 6. Dyspepsia
- 7. Constipation
- 8. Vomiting

- 9. Cramps
- 10. Spotting
- 11. Hypermenorrhea
- 12. Dysmenorrhea

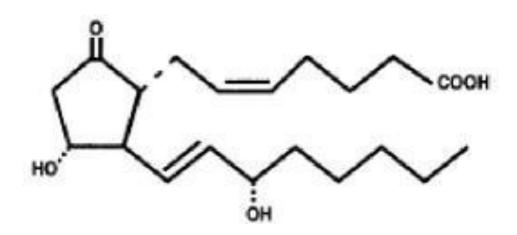
Misoprostol Dosage and Administration³⁸

Indication	Dosage
NSAID's ulcer prophylaxis	200 μg x 4 times
Induced abortion (0-12 weeks)	800 μg vaginally 12-hrly x3
Missed abortion (0-12 weeks)	800 μg vaginal3-hrly <i>or sublingual</i>600mcg 3-hourly
Incomplete abortion (0-12weeks)	600 μg single oral dose
Induced abortion (13-22 weeks)	400 μg vaginally 3-hrly x5
Intrauterine fetal death	13-17 wks: 200 μg pv 6-hrly. 18-26 wks: 100 μg pv 6-hrly. 27+ wks: 25-50 μg pv 4-hrly
Induction of labour	25 μg vaginally 4-hrly <i>or</i> 50 μg orally 4-hrly <i>or</i> 20 μg <u>oral solution</u> 2-hrly
PPH prophylaxis	600 μg orally or sublingually stat
PPH treatment	600 μg orally or sublingually stat
Cervical ripening	400 μg vaginally 3h before procedure

Overdosage

Misoprostol's hazardous dose in humans has yet to be established. Only gastrointestinal discomfort was noted after cumulative total daily dosages of 1600 mcg were given.

Contraindications


To avoid the risk of ulcers caused by non-steroidal anti-inflammatory medicines, pregnant women should not take misoprostol (NSAIDs). Anyone who has ever had a reaction to prostaglandins should avoid misoprostol.

Precautions

Caution should be employed when administering misoprostol to patients with pre-existing cardiovascular disease.

Dinoprostone (PGE₂)- CLINICAL PHARMACOLOGY

Dinoprostone (also known as prostaglandin E2 or PGE2) has the chemical name 11, 15S-dihydroxy-9-oxo-prosta-5Z,13E-dien-1-oic acid and the structural formula is as follows:

Only prostaglandin E2 Dinoprostone (PGE2) is currently approved for labour induction in healthy pregnancies. This prostaglandin is involved in the cervical ripening process as well as the initiation and maintenance of labour. PGE2 is continually released by the foetal membranes and placenta during pregnancy, and it plays a vital role in cervical ripening without altering uterine contractions in the final events prior to labour start. PGE2 increases the formation of PGF2, which then sensitises the myometrium to endogenous or exogenously given oxytocin, which can start uterine contractions in the early stages of labour. This distinction allows cervical ripening and inducement of 27 of 89 labour (typically with the use of oxytocin) to be treated as two different processes.

A dry vaginal pill, a viscous gel, and a nonbiodegradable hydrogel pessary are all commercially available vaginal PGE2 formulations. Treatment plans range from a single dose of the hydrogel pessary 10 mg or viscous gel 1 mg or 2 mg to recurrent treatments of the gel at six-hourly intervals for a maximum of two doses or three doses of the dry tablet 3 mg. In general, intravaginal and intracervical modes of administration have been used. Approximately two-thirds of reported clinical trials approved for commercial use by the Food and Drug Administration employed the intracervical route (FDA).

The dinoprostone gel comprises 0.5 mg of dinoprostone in 2.5 ml of triacetin and colloidal silicon dioxide gel in a prefilled applicator, with maximal absorption rate of 30–45 minutes and repeat doses at 6-hrly, with a maximum 24-hour dose of 1.5 mg dinoprostone. Macer, J., et al., 1984, conducted placebo-controlled experiments and found that intracervical PGE2 treatment more often leads to effective cervical softening and labour induction in patients with equivalent Bishop scores⁴⁰.

A thin, flat, polymeric hydrogel chip (29x9.5x0.8 mm) with rounded edges is commercially available as a sustained-release 10-mg dinoprostone vaginal insert with FDA approval and is inserted in a knitted polyester retrieval pouch. When rehydrated on exposure to the vaginal mucosa, each insert contains 10 mg of dinoprostone in a dry polymer matrix that releases at a controlled rate of 0.3 mg/hour for 12 hours. The insert has been proven to induce cervical ripening in pregnant women who are at or near term, resulting in a Bishop score of at least 3 after 12 hours. This 12-hour period is more likely to result in active labour and vaginal birth, lowering the requirement for oxytocin infusion. Nearly three-quarters of patients only require a single application, according 28 of 89 to Rayburn, W. F., et al., (1992)^{41.} Prior to the FDA's approval of intracervical and vaginal insert dinoprostone preparations, hospital-prepared gel was commonly used as a mixed dinoprostone suppository (Prostin E2) and methylcellulose gel (K-Y Jelly) administered vaginally (2.5–5 mg) or intracervically (0.5 mg). Stempel, J. E., et al., (1997) conducted comparative tests and found no benefit of the FDA-approved product over hospital-prepared gels.⁴²The most common side effects in patients treated with PGE2 for cervical ripening and labour induction have been tachysystole and uterine hyperstimulation, both of which are dose-dependent and very rarely seen in individuals receiving low dosages (0.5 mg). Other risks associated with PGE2 induction include uterine rupture, amniotic fluid embolism, and myocardial infarction, all of which are serious but uncommon consequences.

The American College of Obstetricians and Gynaecologists recommends that the foetal heart rate and uterine activity be electronically monitored for the length of the insert insertion and for 15 minutes after it is removed.

Contraindications: -

Patients who have a known allergy to prostaglandins should avoid PGE2.

- Patients who have a clinical suspicion or definite proof of foetal distress and are about to deliver, as well as those who are currently on I.v oxytocic medications.
- * Pregnant women who have experienced unexplained vaginal bleeding.
- * Multipara with 6 or more previous term pregnancies or primi with high suspicion of substantial cephalopelvic disproportion. Patients who are contraindicated for oxytocic medications or in whom prolonged uterine contractions may be harmful to fetal safety or uterine integrity, such as those who have had a

previous caesarean section or severe uterine surgery.

PGE2 should only be used by trained obstetrical workers in a hospital setting with suitable obstetrical care facilities, according to the warnings.

General Precautions: Because prostaglandins increase the potency of oxytocin, they must be eliminated before oxytocin is given or an amniotomy is performed, and the patient's uterine activity must be closely watched for uterine hyperstimulation. When labour begins, the vaginal insert/gel should be removed if uterine hyperstimulation, fetal distress, or other fetal or maternal adverse responses occur. In patients with ruptured membranes, non-vertex or non-singleton presentation, and a history of previous uterine hypertony, glaucoma, or a history of childhood asthma, even if there have been no asthma attacks in adulthood, caution should be exercised in the administration of PG E2 for cervical ripening. When using the PGE2 vaginal insert/gel, keep a close eye on uterine activity, fetal condition, and the course of cervical dilatation and effacement.

Drug Interactions: PGE₂ has synergistic effect with oxytocin and their concomitant use is not recommended. The successive administration of oxytocin after the removal of the dinoprostone vaginal insert/gel is indicated with a dosage interval of at least 30 minutes.

Teratogenic Effects: Pregnancy Category C.

Recommendations by ACOG Review: Consider induction of labour before ripening the cervix, if the cervix is unfavourable (II-2 A). Prostaglandin gel should be given every six to twelve hourly up to maximum of three doses; however, some studies have indicated further dosages (I- II-3). While ACOG recommends intracervical

administration (in addition to vaginal administration), NICE exclusively recommends vaginal administration and discourages oral, intravenous, extra-amniotic, and intracervical administration of PGE2.

Comparison of available literature:

The availability of literature that compares intra-cervical dinoprostone and sub-lingual misoprostol is limited and is mainly confined to the Indian Sub-continent. While there are numerous reports that look at other modes of administration of these agents such as orally and intra-vaginally, the dearth of a head-to-head comparison of these agents sub-lingually and intra-cervically makes the necessity of the present study all the more important. The available literature is carefully examined and summarized below.

A. The effect of misoprostol delivered via various routes on pregnant uterine contractility was investigated by Aronsson et al⁴³. They noticed an increase in uterine tonus after oral (7.8 min) and sublingual ((10.7±11.5 min) treatment, but it took a lot less time than vaginal (19.4 min) treatment. The time to maximal tonus elevation was also significantly shorter in all three groups (39.5, 47.1±51.7 and 62.2 min for the three groups respectively). After sublingual and vaginal administration, all participants experienced regular uterine contractions, but not after oral administration. After 2 hours, the rise in uterine activity assessed in Montevideo Units was much higher.

31 of 89

- B. Patient satisfaction with two methods of misoprostol for term labour induction was evaluated by AH Nassar et al.⁸. Despite the fact that both groups reported the labour induction as being more painful than expected, the sublingual group reported a considerably lower number of pelvic examinations as being extremely painful (19.7% versus 36.1 percent, relative risk [RR] 0.5, 95 percent CI 0.3–0.9). Both groups had comparable requests for analgesia. Most of the women in the sublingual group felt their labour experience was better than expected (RR 2.0, 95 percent CI 1.2–3.3), wanted induction in subsequent pregnancies (RR 1.6, 95 percent CI 1.1–2.3), and preferred sublingual method in next pregnancies (RR 1.6, 95 percent CI 1.1–2.3), and preferred the same route in subsequent pregnancies (RR 1.6, 95 percent CI 1.1–2.3).
- C. A study by Bartusevicius et al.4 looked at the efficacy and safety of combining 50 g of sublingual misoprostol with 25 g of vaginal misoprostol for term labour induction. They discovered that the time between induction and vaginal birth was significantly shorter in the sublingual group (15.0 3.7 hours, P = 0.03) than in the vaginal group (16.7 4.1 hours, P = 0.03). Although not statistically significant, the sublingual group exhibited a three-fold higher rate of tachysystole than the vaginal group (14 versus 4.3 percent; RR 3.3, 95 percent CI 0.9–11.6). The incidence of hypertonus or hyperstimulation syndrome, mode of delivery, interventions for fetal distress or neonatal outcomes

between the two groups were not significant.

- D. Veena et al [19] from Karnataka in 2015 conducted a randomized control trial on 190 cases where they compared sub-lingual Misoprostol versus intra-cervical Dinoprostone gel for induction of Labour. They found that post-induction mean Bishop's score in misoprostol group was significant. They further found that failed induction rate and need for augmentation were significantly lower with misoprostol when compared to dinoprostone. Significantly higher rates of normal vaginal delivery, lower LSCS rates, and lower incidence of fetal complications were seen with misoprostol. Misoprostol was also significantly more cost effective. Based on these findings, they concluded that sub-lingual misoprostol was a better cervical ripening agent as compared to intra-cervical dinoprostone.
- E.Jha et al ⁴⁴ from Puducherry in 2015 conducted a study on 188 women where they compared the efficacy and safety of sub-lingual misoprostol versus intra-cervical dinoprostone gel for cervical ripening in patients with prelabour rupture of membranes (PROM) after 34 weeks of pregnancy. They found that there was a significantly shorter induction to delivery interval in the sub-lingual misoprostol group versus the intra-cervical dinoprostone. They also found that there was a significantly lower

lower duration of rupture of membrane to delivery interval and a shorter 1st stage of labour in sub-lingual misoprostol group. However, they failed to demonstrate a difference in spontaneous vaginal delivery between misoprostol and dinoprostone. The requirement of oxytocin was significantly higher in the dinoprostone group. Misoprostol was found to have more frequent maternal adverse effects but safety profiles were comparable in neonates.

F.However, Raghavan et al⁴⁵ from Chennai in 2017 conducted a study comparing intra-cervical dinoprostone versus sublingual misoprostol for the pre-induction cervical ripening in 410 cases and they had opposing findings in many regards. They found no significant difference in mean number of doses required with respect to the bishop's score with misoprostol but significant difference with dinoprostone was used. This was in direct contrast contrast to Veena et al's ⁴⁶ findings. Raghavan et al further found that there was no statistically significant difference noted in the induction to active phase interval or induction to delivery interval or in the neonatal outcomes between misoprostol and dinoprostone. In the dinoprostone group, there was however significantly higher failed induction while in the misoprostol group, there was significantly lesser oxytocin requirement. Their main point of interest was in the comparison of cost and they found that that the mean cost was 37.75 times higher when using dinoprostone. They concluded that based on their findings, the biggest advantage of misoprostol over dinoprostone was in terms terms of cost rather than clinical advantages, or rather misoprostol was non-inferior with better cost effectiveness⁴⁷.

G. In 2019, Deepika et al⁴⁸ from Karnataka conducted a comparative comparative study between sub-lingual misoprostol and intra-cervical dinoprostone Gel in labour induction using 200 participants. They found no significant difference in induction to delivery time between the groups. They found that stage II of labor significantly shorter in the misoprostol group. Normal vaginal delivery was higher with misoprostol although not statistically significant. Apgar score (≥7) at 1 min was comparable comparable across both groups. The requirement of labour augmentation by artificial rupture of the membrane was significantly lower with misoprostol as compared to dinoprostone. The need of NICU admission was similar across the groups. They They concluded that misoprostol showed an overall shorter IDI, greater number of vaginal deliveries with fewer cesarean sections sections when compared to the dinoprostone group. Combined with other results, their final conclusion was that misoprostol was more efficacious than dinoprostone.

- H. In 2019 again, Jahangir et al⁴⁹ from Hyderabad conducted a study on sub-lingual misoprostol compared to dinoprostone gel in induction of labour in 100 cases. They found that the average time for labour onset was lower in the misoprostol group. Similarly, similar shorter time intervals in misoprostol use were seen across the induction phase to the active phase and the active phase at the time of administration to delivery. They further found that the rate of LSCS was lower in the misoprostol group. Maternal side effects and the neonatal outcomes were comparable across the two groups. In keeping with the previous reports, they found that the cost was much lower with misoprostol use. They concluded that misoprostol was a safe, economical, and effective agent that was suitable for the induction of labour.
- I. In 2019 again, Panchal et al⁵⁰ from Ahmadabad compared misoprostol sub-lingually with dinoprostone gel intra-cervically for cervical ripening and induction of labour in 200 women. They found shorter induction to delivery time, higher vaginal delivery rate, less requirement of oxytocin augmentation, and lower LSCS in the misoprostol group. However, they also found that the incidence of tachysystole was greater with misoprostol use. Other maternal and neonatal complications were

comparable between misoprostol and dinoprostone. They concluded that lower dose misoprostol was a safe and economical method for labour induction and cervical ripening.

MATERIALS AND METHODS

MATERIALS AND METHODS

STUDY SETTING:

- Patients admitted in Department of OBSTERTICS AND GYNAECOLOGY in B.L.D.E. (DEEMED TO BE UNIVERSITY) Shri B.M.Patil's Medical College Hospital and Research Centre, Vijayapura for induction of labour fulfilling the inclusion exclusion criteria.
- The patients will be informed about study in all respects and informed written consent will be obtained.
- Period of study will be from November 2019- 31stAPRIL 2021.

STUDY DESIGN:

Prospective observational Study

PATIENT SELECTION:

A set of patients, who satisfied the inclusion criteria were selected from the

departments of Obstetrics and Gynaecology. In total, 84 patients were

selected to be part of the study.

INCLUSION CRITERIA

- 1. Singleton pregnancy
- 2. Cephalic presentation
- **3.** BISHOP SCORE<6
- 4. Post maturity
- 5. FGR
- 6. Oligohydromnios and polyhydromnios
- 7. Rh isoimmunization
- 8. Premature rupture of membranes
- 9. IUD

EXCLUSION CRITERIA

- 1. Absolute contracted pelvis and cephalopelvic disproportion
- 2.Pre-Existing Cardiac Disorders
- 3.Malpresentation (breech, transverse, oblique lie)
- 4. Previous lscs or hysterotomy
- 5. Vasa previa, placenta previa
- 6.Acute genital herpes.
- 7.umbilical cord prolapse
- 8.abruptio placenta
- 9.cervical carcinoma

METHODS OF DATA COLLECTION:

Patients will be assigned to a randomized trial using a computer-generated randomization sequence and will be administered sublingual Misoprostol and Intracervical Dinoprostone gel for induction of labour. They will be assessed and Bishop score will be evaluated. Group A: Patients in group A will be given 50micrograms of sublingual misoprostol which is to be repeated at 4hourly interval with 25micrigrams of misoprostol. until uterine activity or favourable score is attained. Participant will be reassessed using the modified bishop's score after 4hours and routine protocol is followed.

Group B: 0.5mg of dinoprostone is administered intracervically under aseptic conditions, and the patient is examined after 6 hours and is to be repeated upto 3 maximum doses. If the bishop's score remains less than 6, routine protocol is followed.

The hospital protocol will be followed if the bishop's score remained 6 following the maximum dosages of sublingual misoprostol or dinoprostone in both groups. The progress and outcome of the labour will be evaluated.

As per the hospital protocol, if the induction of labour fails even after the maximum doses of induction of labour, caesarean section to be considered

DEFINITIONS AND TECHNIQUES

MODIFIED BISHOP SCORE^[25]:

FACTOR		1		3
	0		2	

DILATATION		1-2		5+
	0		3-4	
CERVICAL	>4	2-4		<1
LENGTH			1-2	
STATION	-3 OR	-2	-1,0	
	HIGHER			+1,+2
CONSISTENCY				
	FIRM	INTERMEDIATE	SOFT	
POSITION				
	POSTERIOR	MID	ANTERIOR	

TOTAL SCORE: 13

FAVOURABLE SCORE : 6.

UNFAVOURABLE SCORES : 1-5

STATISTICAL METHODS

SAMPLE SIZE:

• On the basis of a study Braganza e.tal the anticipated Mean±SD of post

induction mean Bishop's score in PGE1 and PGE2 8.59 ± 1.59 and 6.77 ± 2.19 The minimum sample size is 42 per group with 5% level of significance and 95% power.

Formula used is

$$N=2\left[\left(Z\alpha+Z\beta\times S\right)\div d\right]^2$$

- ➤ Level of significance=95%
- \blacktriangleright power of the study=90%
- d=clinically significant difference between two parameters
- SD= Common standard deviation

STATISTICAL ANALYSIS:

- Numerical variables will be presented as Mean ±SD, and categorical variables will be presented as frequency (%) and diagrams
- Comparison of numerical variables between groups will be found using unpaired t test/ Mann
- > Whitney U test, and categorical variables by Chi square or Fisher's Exact test.

RESULTS

RESULTS

A total of 84 patients who met the pre-determined criteria who presented to labour room, BLDE hospital, vijayapura were included in the study.

Analysis was done under following headings:

• Descriptive Statistics

• Clinical details of the patient

AGE WISE DISTRIBUTION

Age(Years)	Sublingual	Misoprostol	Dinoprostone		
	No. of patients	%	No. of patients	%	
	patients		patients		
< 25	21	50.0	18	42.9	
25 - 29	16	38.1	17	40.5	
30+	5	11.9	7	16.7	
Total	42	100.0	42	100.0	

TABLE 1 SHOWS DISTRIBUTION OF CASES ACCORDING TO

MATERNAL AGE IN BOTH THE GROUPS.

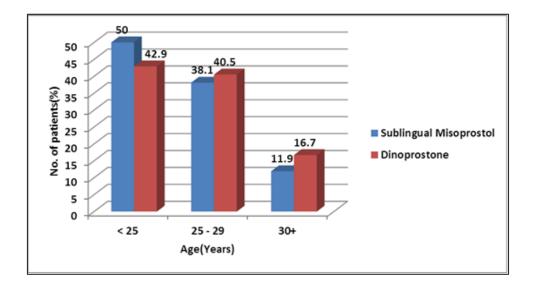
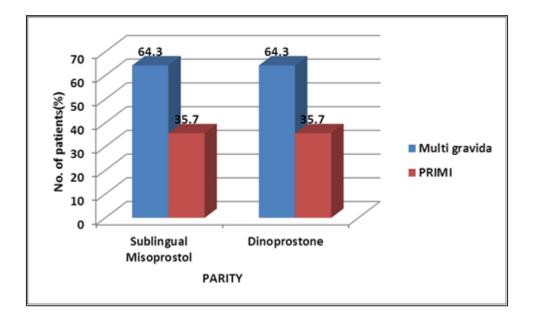



FIGURE1: AGE DISTRIBUTION BAR CHART

TABLE 2: SHOWS DISTRIBUTION OF PARITY IN BOTH THE

STUDY GROUPS

PARITY	Subli Misop		Dinopı	ostone	Chi square	P value	
	No. of patients	%	No. of patients	%	test		
Multi gravida	27	64.3	27	64.3	0.000	1.000	
PRIMI	15	35.7	15	35.7			
Total	42	100.0	42	100.0			
	STATISTICALLY NOT SIGNIFICANT						

FIGURE 2: PARITY DISTRIBUTION BAR CHART

TABLE 3: POG(WEEKS)

POG(week s)	Subli Misop	C	Dinopr	rostone	Chi square	P value
	No. of patients	%	No. of patients	%	test	
< 38	6	14.3	8	19.0	0.5444	0.7677
38 - 40	32	76.2	29	69.0		
41+	4	9.5	5	11.9		
Total	42	100.0	42	100.0		
		STATISTICA	ALLY NOT SIG	GNIFICANT	L	L

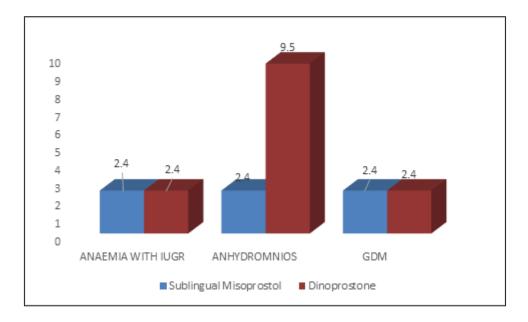
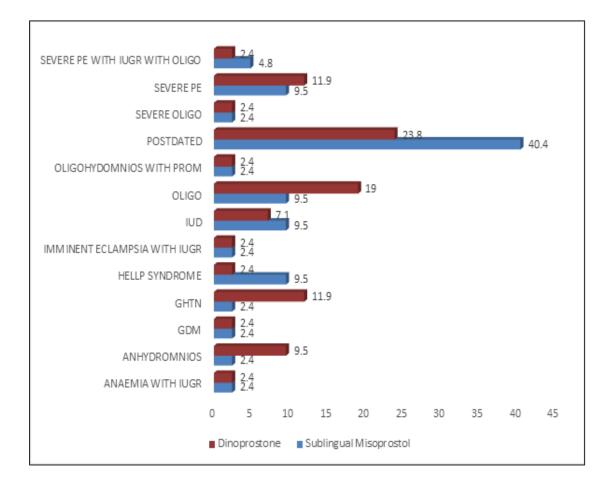



FIGURE 3: POG(WEEKS) DISTRIBUTION BAR CHART

INDICATION FOR INDUCTION	Sublii Misop	U	Dinopr	ostone	Chi square	P value
	No. of patients	%	No. of patients	%	test	
ANAEMIA WITH	1	2.4	1	2.4	10.002	0.6158
ANHYDROMNIO S	1	2.4	4	9.5		
GDM	1	2.4	1	2.4		
GHTN	1	2.4	5	11.9		

TABLE 4: INDICATION FOR INDUCTION

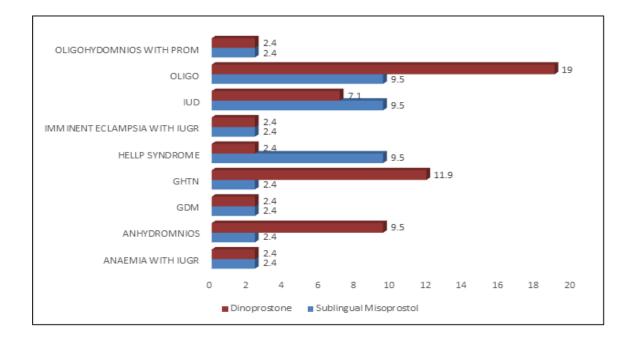

HELLP SYNDROME	4	9.5	1	2.4		
IMMINENT ECLAMPSIA WITH IUGR	1	2.4	1	2.4		
IUD	4	9.5	3	7.1		
OLIGO	4	9.5	8	19.0		
OLIGOHYDOMNI OS WITH PROM	1	2.4	1	2.4		
POSTDATED	17	40.4	10	23.8		
SEVERE OLIGO	1	2.4	1	2.4		
SEVERE PE	4	9.5	5	11.9		
SEVERE PE WITH IUGR WITH OLIGO	2	4.8	1	2.4		
Total	42	100.0	42	100.0		
	STAT	ISTICALLY	I V NOT SIGNI	IFICANT	<u> </u>	

FIGURE 4: INDICATION FOR INDUCTION BAR CHART

TABLE 5: MODIFIED BISHOP'S SCORE AFTER INDUCTION

M.BISHOP' S SCORE	Subli Misop		Dinopr	ostone	Chi square	P value
AFTER INDUCTIO N	No. of patients	%	No. of patients	%	test	
5.	1	2.4	0	0	30.774	0.002
6.	3	7.1	1	2.4		
7.	1	2.4	2	4.8		
8.	20	47.6	13	31.0		
9.	4	9.5	6	14.3		
10.	1	2.4	17	40.5		
11.	1	2.4	2	4.8		
12	0	0	1	2.4		
NOT ASSESSE D	11	26.2	0	0		
Total	42	100.0	42	100.0		
		STATISTI	CALLY SIGN	IFICANT		

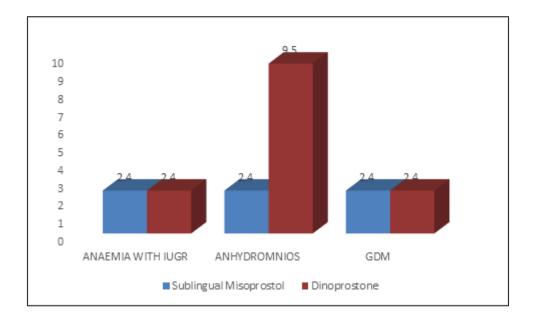


FIGURE 5: MODIFIED BISHOP'S SCORE AFTER INDUCTION

BAR CHART

COLOR OF LIQOUR	Subli Misop		Dinopr	ostone	Chi square	P value
	No. of patients	%	No. of patients	%	test	
CLEAR	12	28.6	32	76.2	21.891	0.0001
DARK BROWN	2	4.8	3	7.1		
MECONIU M	28	66.7	7	16.7		
Total	42	100.0	42	100.0		
	I	STATISTI	CALLY SIGN	IFICANT		

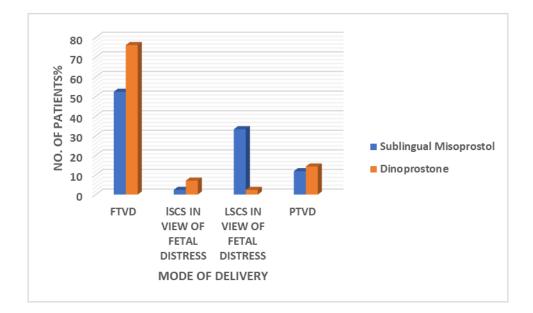

TABLE 6: COLOR OF LIQOUR

FIGURE 6: COLOR OF LIQOUR DISTRIBUTION BAR CHART

COLOR OF LIQOUR	Sublir Misop		Dinopr	rostone	Chi square	P value
	No. of patients	%	No. of patients	%	test	
NVD	27	64.3	38	90.5	14.209	0.0026
LSCS IN VIEW OF FETAL DISTRES S	15	35.7	4	9.5		
Total	42	100.0	42	100.0		
STATISTICALLY SIGNIFICANT						

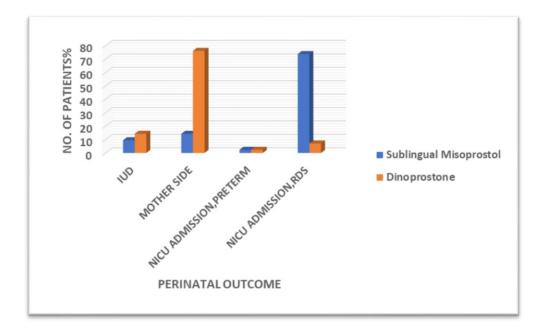

TABLE 7: MODE OF DELIVERY

FIGURE 7: MODE OF DELIVERY BAR CHART

PERINATAL OUTCOME	Sublingual Misoprostol		Dinopro	ostone	Chi square	P value
	No. of patients	%	No. of patients	%	test	
IUD	4	9.5	6	14.3	41.248	0.0001
MOTHER SIDE	6	14.3	32	76.2		
NICU ADMISSION,RDS	32	76.2	4	9.5		
Total	42	100.0	42	100.0		

TABLE 8: PERINATAL OUTCOME

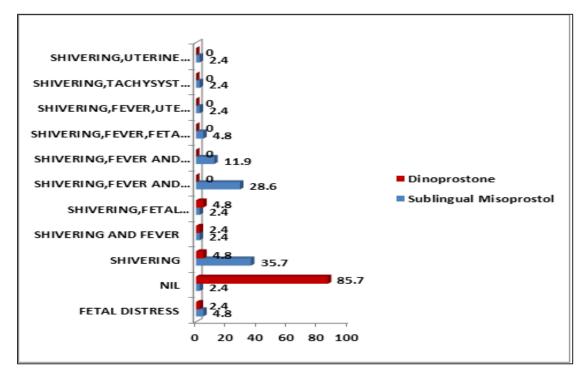


FIGURE 8: PERINATAL OUTCOME BAR CHART

ADVERSE EFFECTS	Sublin Misop No. of patients	C	Dinoprostone No. of % patients		Chi square test	P value
FETAL DISTRESS	2	4.8	1	2.4	65.716	0.0001
NIL	1	2.4	36	85.7		
SHIVERING	15	35.7	2	4.8		
SHIVERING AND FEVER	1	2.4	1	2.4		

TABLE 9: ADVERSE EFFECTS

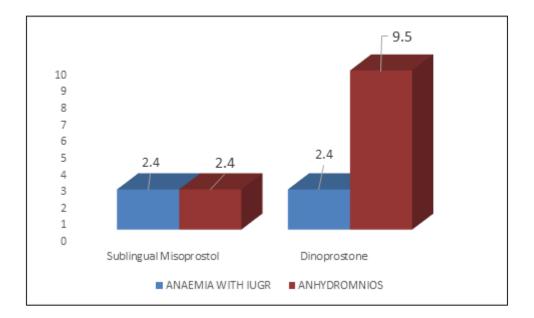

SHIVERING,FETAL DISTRESS	1	2.4	2	4.8		
SHIVERING,FEVER AND FETAL DISTRESS	12	28.6	0	0		
SHIVERING,FEVER AND UTERINE HYPERSTIMULATION	5	11.9	0	0		
SHIVERING,FEVER,FETA L DISTRESS,UTERINE HYPERSTIMULATION	2	4.8	0	0		
SHIVERING,FEVER,UTE RINE HYPERSTIMULATION AND FETAL DISTRESS	1	2.4	0	0		
SHIVERING,TACHYSYST OLE AND FEVER	1	2.4	0	0		
SHIVERING,UTERINE HYPERSTIMULATION	1	2.4	0	0		
Total	42	100.0	42	100.0		
STATISTICALLY SIGNIFICANT						

FIGURE 9: ADVERSE EFFECTS DISTRIBUTION BAR CHART

NO. OF DOSES	Sublingual Misoprostol		Dinoprostone		Chi square	P value
	No. of patients	%	No. of patients	%	test	
<= 1	24	57.1	21	50.0	0.4308	0.5116
2+	18	42.9	21	50.0		
Total	42	100.0	42	100.0		
STATISTICALLY NOT SIGNIFICANT						

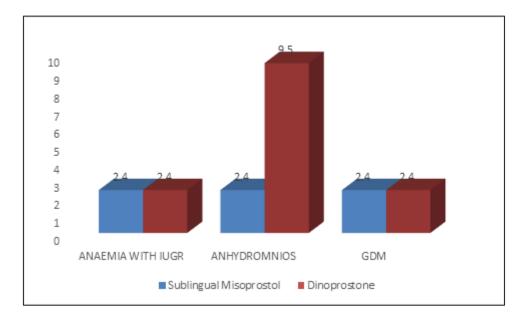

TABLE 10: NO. OF DOSES

FIGURE 10 : NO. OF DOSES DISTRIBUTION BAR CHART

Table 11: INDUCTION TO NORMAL DELIVERY

INDUCTION TO NORMAL DELIVERY	Sublingual Misoprostol		Dinoprostone		Chi square	P value	
	No. of patients	%	No. of patients	%	test		
<= 12	19	45.2	32	76.2	11.380	0.0034	
13+	8	19.0	7	16.7			
LSCS	15	35.7	3	7.14			
Total	42	100	42	100			
STATISTICALLY SIGNIFICANT							

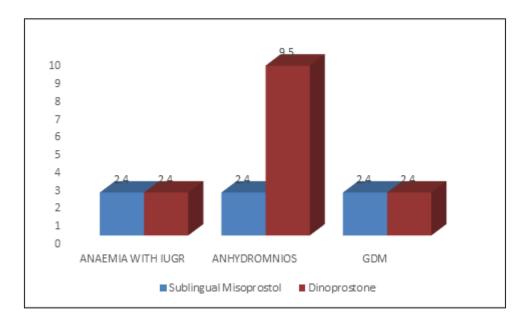


FIGURE 11: INDUCTION TO NORMAL DELIVERY

DISTRIBUTION BAR CHART

INDUCTION TO ACTIVE LABOUR	Sublingual Misoprostol		Dinopro	ostone	Chi square	P value
	No. of patients	%	No. of patients	%	test	
<= 8	18	42.9	28	66.7	13.211	0.0014
9+	13	31.0	14	33.3		
LSCS	11	26.1	-	-		
Total	42	100	42	100.0		
STATISTICALLY SIGNIFICANT						

TABLE 12: INDUCTION TO ACTIVE LABOUR

FIGURE12 : INDUCTION TO ACTIVE LABOUR DISTRIBUTION

BAR CHART

TABLE 13: DESCRIPTIVES OF SUBLINGUAL MISOPROSTOL

Descriptive Statistics	N	Minimum	Maximum	Mean	Std. Deviation
AGE	42	20	35	24.79	3.579
POG	42	29	42	38.50	2.973
M.BISHOP'S AFTER	31	5	11	7.97	1.140

INDUCTION					
INDUCTION TO ACTIVE LABOUR	31	1	20	7.52	5.691
INDUCTION TO	27	2	22	9.78	5.905
NO. OF DOSES	42	1	4	1.86	1.138

TABLE 14: DESCRIPTIVES OF DINOPROSTONE

Descriptive Statistics	N	Minimum	Maximum	Mean	Std. Deviation
AGE	42	19	34	25.15	3.518
POG(weeks)	42	30	42	38.76	2.477
ON ADMISSION M.BISHOP'S	42	6	12	9.10	1.246
INDUCTION TO ACTIVE LABOUR	42	5	16	8.00	2.518
INDUCTION TO	39	8	20	10.69	2.839
NO. OF DOSES	42	1	3	1.55	.593

DISCUSSION

DISCUSSION

Patients were chosen as eligible candidates for our study, and 84 patients were involved.

In our study, there was no difference in age, parity, gestational age, number of dosages, or indication of induction between the two groups. In comparison to those given 25 μ g of sublingual misoprostol, intracervical dinoprostone gel administration

resulted in a good modified bishop's score, significantly shorter duration of induction to active labour, and significantly shorter duration of induction to delivery interval [p0.05], fewer side effects, and fewer pelvic examinations required.

Misoprostol serum peak concentrations were substantially higher after sublingual administration than after oral or vaginal administration, according to Tang et al.^{5.} Furthermore, after sublingual treatment, the area under the curve for plasma levels throughout 4 and 6 hours was significantly higher than after oral or vaginal administration. A recent study42 looked at the effects of misoprostol on uterine contractility when given through various methods of administration. In terms of effects on the myometrium, sublingual misoprostol had the same quick effect on uterine contractility as oral misoprostol, and the bioavailability was similar.

In their investigation, Bartusevicius et al⁴ found the same outcome. In contrast to our investigation, they used 50 μ g of sublingual misoprostol instead of 25 μ g. Our research found that 25 μ g delivered sublingually had the same effect as 25 μ g administered vaginally in terms of induction delivery time and the number of misoprostol tablets used for induction. It has the potential to lower management costs. Vaginal birth rates were 57 percent in the sublingual group and 69 percent in the vaginal group, according to Feitossa et al.43. The sublingual group had 11 occurrences of fetal discomfort, while the vaginal group had four. They had been taking 25 μ g of misoprostol sublingually every 6 hours. Though they found a substantial difference in value between the groups, the percentage of vaginal deliveries was relatively low [57 percent and 69 percent vs 81.7 percent and 75 percent in our study]. It could be because their dosage interval was longer [6 hours vs. 4 hours] than ours.

Tang et al.⁵ discovered that the blood levels of MPA in the vaginal groups were greater at the end of 6 hours than those in the sublingual and oral groups after analyzing the pharmacokinetics of misoprostol in different routes of administration. To achieve significant plasma levels, the sublingual dosing interval should be less than this period. Feitossa et al.43 found a lower percentage of vaginal deliveries, which could be attributed to their longer dose interval [6 hours vs 4 hours]. As a result, we chose a 4-hour repeat dose interval in our research.

Induction active labour interval and delivery interval measurement was shorter in dinoprostone group compared to sublingual misoprostol group and was significant.

The number of pelvic examinations performed prior to delivery was significantly reduced in our study. When the number of pelvic examinations is reduced, the patient feels more at ease. We didn't include a satisfaction metric in our analysis because it was outside of our scope. Nasser et al⁸ looked at patient satisfaction and found that sublingual misoprostol was a better method of delivery than vaginal misoprostol. Because fewer vaginal inspections are required, this form of delivery may lower the risk of infection, especially in PROM patients. Given these facts and our observation of a considerable reduction in the number of pelvic examinations, the sublingual route of misoprostol administration may be a viable option.

There was a significant difference in mode of delivery in our study. When

compared to intracervical dinoprostone gel, the number of lscs in the sublingual misoprostol group increased. The indication for a caesarean delivery did not differ much. In comparison, the dinoprostone group had a higher number of vaginal deliveries.

The benefits (shorter time to delivery) and risks (different routes of misoprostol administration for labour induction) must be carefully balanced (uterine hyperstimulation, adverse neonatal and maternal outcomes). In our investigation, the prevalence of tachysystole, hypertonus, and hyperstimulation syndrome was reported but not statistically significant. Tachysystole was 3 times higher in the 50 μ g sublingual group than in the vaginal group in a recent study⁴. There were no significant changes in the number of women who had hyperstimulation syndrome, the mode of delivery, or the neonatal outcome between the two groups. We found no significant value for tachysystole with an initial dose of 50 μ g and a repeat dose of 25 μ g of sublingual misoprostol in our trial, but due to the small sample size, we cannot infer on an unfavorable effect. As previously stated, excessive uterine activity was not lessened due to the direct effect on the cervix. But, according to our findings, reducing the dose can reduce this risk without jeopardizing our primary goal.

In our trial, the newborn outcomes in the dinoprostone arm were better than the sublingual misoprostol group. When compared to dinoprostone gel, NICU admissions were observed to be higher in the sublingual misoprostol arm. Despite the fact that our study found no substantial prenatal morbidity or mortality. We cannot draw definitive conclusions on the safety of sublingual misoprostol in this setting due to the small sample size of our study.

Sublingual dosage for labour induction is appealing since it is simple to administer, requires less frequent vaginal examination, gives you more flexibility of movement, and can be used even if you have vaginal bleeding or torn membranes. When compared to alternative forms of induction, the cost of management was also cheap. Despite the fact that this was not tested in the current study, we believe that the sublingual route has a greater patient acceptability rate than oral administration when compared to vaginal administration.

CONCLUSIONS

CONCLUSIONS

we conclude that 0.5mg of dinoprostone gel administered intacervically every 6th hourly for maximum of 3 doses was more effective for induction of labour than 50 µg of sublingual misoprostol followed by 25micrograms administered every 4th hourly for maximum of 6 doses in terms of shortened induction to active labour interval, colour of liqour, perinatal outcome, mode of delivery and less number of pelvic examinations required. Sublingual misoprostol group had decreased vaginal delivery rate and increased caesarean section producing significant complications like hypertonus, tachysystole and hyperstimulation syndrome, meconium stained liqour than intracervical dinoprostone gel group. NICU admissions were very less in intracervical dinoprostone gel group compared to sublingual misoprostol group. Need of oxytocin augmentation was more with sublingual misoprostol group. Fever with chills was seen in sublingual misoprostol group

BIBLIOGRAPHY

BIBLIOGRAPHY

- Rayburn WF, Zhang J. Rising rates of labor induction: present concerns and future strategies. Obstetrics & Gynecology. 2002 Jul 1;100(1):164-7.
- Hofmeyr GJ. Induction of labour with an unfavourable cervix. Best Pract Res Clin Obstet Gynaecol 2003; 17: 777–94.
- Kelly AJ, Kavanagh J, Thomas J. Vaginal prostaglandin (PGE2 and PGF2a) for induction of labour at term. Cochrane Database Syst Rev 2003; CD003101.
- Bartusevicius A, Barcaite E, Krikstolaitis R, Gintautas V, Nadisauskiene R. Sublingual compared with vaginal misoprostol for labour induction at term: a randomised controlled trial. BJOG 2006; 113: 1431–7.
- Tang OS, Schweer H, Seyberth HW, Lee SW, Ho PC. Pharmacokinetics of different routes of administration of misoprostol. Human Reproduction 2002; 17: 332–6.
- Alfirevic Z, Weeks A. Oral misoprostol for induction of labour (Cochrane Review). In: The Cochrane Library. Oxford, UK; Update Software; 2007.
- Zieman, M., Fong, S.K., Benowitz, N.L., Banskter, D. and Darney, P.D. Absorption kinetics of misoprostol with oral or vaginal administration. Obstet. Gynecol 1997; 90: 88–92.
- 8. Nassar AH, Awwad J, Khalil AM, Abu-Musa A, Mehio G, Usta IM. 72 of 89

A randomized comparison of patient satisfaction with vaginal and sublingual misoprostol for induction of labour at term. BJOG 2007; 114: 1215–21.

- Margulies M, Catuzzi P, Voto LS, Imaz FU. Induccion del trabajo de parto con un analogo de la PgE₁. Prensa Med Argent 1991; 78: 9–13.
- 10.Margulies M, Campos Perez G, Voto LS. Misoprostol to induce labour. Lancet 1992; 339: 64.
- 11.Hofmeyr GJ, Gülmezoglu AM. Vaginal misoprostol for cervical ripening and induction of labour (Cochrane Review). In: The Cochrane Library. Oxford, UK: Update Software; 2007.
- 12.ACOG Committee Opinion. Number 283, May 2003. New U.S. food and drug administration labeling on cytotec (misoprostol) use and pregnancy. Obstet Gynecol 2003; 101: 1049–50.
- 13.William obstetrics, 23rd edition, section 4, chapter 22, labour induction, page number 500.
- 14. Ian donald's Practical obstetric problems, sixth edition, chapter 25, induced labour, page 488.
- 15. Ian donald's Practical obstetric problems, sixth edition, chapter 25, induced labour, page 501.
- 16.Ian donald's Practical obstetric problems, sixth edition, chapter 25, induced labour, page 502.

- 17.Bishop EH: Pelvic scoring for elective induction. Obstet Gynecol 1964; 24: 266.
- 18.Ian donald's Practical obstetric problems, sixth edition, chapter 25, induced labour, page 492-502.
- 19.Bujold E, Blackwell SC, Gauthier RJ: Cervical ripening with transcervical foley catheter and the risk of uterine rupture. Obstet Gynecol 2004; 18: 103.
- 20.Guinn DA, Goepfert AR, Christine M, et al: Extra-amniotic saline infusion, laminaria, or prostaglandin E2 gel for labor induction with unfavorable cervix: A randomized trial. Obstet Gynecol 2000; 96: 106.
- 21.Owen J, Winkler CL, Harris BA, et al: A randomized, double-blind trial of prostaglandin E2 gel for cervical ripening and metaanalysis. Am J Obstet Gynecol 1991; 165: 991.
- 22.Gemund N, Scherjon S, LeCessie S, et al: A randomized trial comparing low dose vaginal misoprostol and dinoprostone for labour induction. Br J Obstet Gynaecol 2004: 111; 42.
- 23.Buser D, Mora G, Arias F: A randomized comparison between misoprostol and dinoprostone for cervical ripening and labor induction in patients with unfavorable cervices. Obstet Gynecol 1997; 89: 581.
- 24. Wing DA, Ham D, Paul RH: A comparison of orally administered

misoprostol with vaginally administered misoprostol for cervical ripening and labor induction. Am J Obstet Gynecol 1999; 180: 1155.

- 25.American College of Obstetricians and Gynecologists: Response to Searle's drug warning on misoprostol. Committee Opinion No. 248, December 2000.
- 26.Wing DA, Jones MM, Rahall A, et al: A comparison of misoprostol and prostaglandin E2 gel for preinduction cervical ripening and labor induction. Am J Obstet Gynecol 1995a; 172: 1804.

27.Drug Information for the Health Care Professional. 16th ed.

- 28. Volume I. Rockville, MD: U.S. Pharmaceutical Convention, Inc. 1996 (Plus updates), p. 2085.
- 29.PDR; Physicians' Desk Reference 50th ed 1996. Montvale,NJ: Medical Economics Co p. 2424 (1996).
- 30.Bugalho A et al; Int J Gynaecol Obstet 49 (2): 149-55 (1995).
- 31.Ashok, P.W., Penney, G.C., Flett, G.M.M. and Templeton, A. (1998) An effective regimen for early medical abortion: a report of 2000 consecutive cases. Hum. Reprod; 13: 2962–2965.

32.Bugalho A et al; Int J Gynaecol Obstet 1995: 49 (2); 149-55.

33.American Medical Association, Council on Drugs. AMA Drug Evaluations Annual 1994. Chicago, IL: American Medical Association, 1994: p. 912. 34.Bos- Thompson, Ann Pharmacother. 2008: Jun 42(6); 888-92.

35. Drug Information for the Health Care Professional. 16th ed.

- 36. Volume I. Rockville, MD: U.S. Pharmaceutical Convention, Inc. 1996 (Plus updates)., p. 2086.
- 37.WHO Clinical Guidelines, Bellagio, Italy in Feb 2007.
- 38.Goyal, Obstet Gynecol. 2009 May; 113(5):1117-23. . A systematic review.
- 39.Alfirevic Z. Oral misoprostol for induction of labour (Cochrane Review). In: The Cochrane Library, Issue 4, 2004.
- 40.Weeks A & Faúndes A. Misoprostol in obstetrics and gynecology. International Journal of Gynecology and Obstetrics 2007: 99; S156–S159.
- 41.McEvoy G.K. (ed.). American Hospital Formulary Service-Drug Information 96. Bethesda, MD: American Society of Health-System Pharmacists, Inc. 1996 (Plus Supplements), p. 2170.
- Macer J, Buchanan DE, Yonekura ML. Induction of labor with prostaglandin E2 vaginal suppositories. Obstetrics and gynecology. 1984 May 1;63(5):664-8.
- 43.Rayburn WF, Wapner RJ, Barss VA, Spitzberg ER, Molina RD, Mandsager NE, Yonekura ML. An intravaginal controlled-release prostaglandin E2 pessary for cervical ripening and initiation of labor at term. Obstetrics and Gynecology. 1992 Mar 1;79(3):374-9.
- 44.Sanchez-Ramos L, Farah LA, Kaunitz AM, Adair CD, Del Valle GO,

Fuqua P. Preinduction cervical ripening with commercially available prostaglandin E2 gel: A randomized, double-blind comparison with a hospital-compound preparation. American journal of obstetrics and gynecology. 1995 Oct 1;173(4):1079-84.

- 45.Veena B, Samal R, Inbaraj LR, et al. Sublingual Misoprostol (PGE1) Versus Intracervical Dinoprostone (PGE2) Gel for Induction of Labour: A Randomized Control Trial. J Obstet Gynecol Ind. 2015; 66(S1): S122-8.
- 46. Jha N, Sagili H, Jayalakshmi D. Comparison of efficacy and safety of sublingual misoprostol with intracervical dinoprostone gel for cervical ripening in prelabour rupture of membranes after 34 weeks of gestation. Arch Gynecol Obstet. 2015; 291(1):39-44
- Raghavan JV, Pillai SK, Meera D. Intracervical dinoprostone versus sublingual misoprostol for preinduction ripening of cervix. Ind J Obstet Gynecol Res. 2017; 4(1): 71-6.
- Deepika TH, Nagabushan H, Manohar R. A comparative study between sublingual misoprostol (PGE1) versus intracervical dinoprostone Gel (PGE2) in the induction of labor:- A prospective observational study. J Pharamcol Pharmacother. 2019; 10(4):132-7.
- Jahangir J, Mohd FZS. Sublingual misoprostol versus dinoprostone gel in labour induction. The New Indian Journal of OBGYN. 2020; 6(2): 127-30.
- 50. Panchal PH, Sheth MH, Shah SR, et al. Comparative Study of Misoprostol Sublingually and Dinoprostone Gel Intracervically for Cervical Ripening and Induction of Labor. IJSR. 2019; 8(11):1336-9.

APPENDIX

CONSENT FORM

<u>B.L.D.E. (DEEMED TO BE UNIVERSITY)</u> <u>SHRI B.M.PATIL MEDICAL COLLEGE HOSPITAL AND</u> <u>RESEARCH CENTER, VIJAYAPURA-586103</u> <u>INFORMED CONSENT FOR PARTICIPATION IN</u> <u>DISSERTATION/RESEARCH</u>

I, the undersigned, ______, S/O D/O W/O ______, aged _____years, ordinarily resident of ______ do hereby state/declare that Dr. POLISETTY S.V.S.N.M.M. LAKSHMI PRIYA of Shri. B. M. Patil Medical College Hospital and Research Centre has examined me thoroughly on ______ at ______ Further Dr. POLISETTY S.V.S.N.M.M. LAKSHMI PRIYA informed me that he/she is conducting dissertation/research titled "A Randomized trial of sublingual misoprostol versus intracervical dinoprostone gel for induction of labour" under the guidance of Dr. P.B.JAJU requesting my participation in the study. According to this I will be assigned to a parallel randomized trial. I will be administered either of the drugs and evaluated for the induction of labour and outcomes of the pregnancy. Further Doctor has informed me that my participation in this study help in evaluation of the results of the study which is useful reference to treatment of other similar cases in near future.

The Doctor has also informed me that information given by me, observations made/ photographs/ video graphs taken upon me by the investigator will be kept secret and not assessed by the person other than me or my legal hirer except for academic purposes.

The Doctor did inform me that though my participation is purely voluntary, based on information given by me, I can ask any clarification during the course of treatment / study related to diagnosis. At the same time, I have been informed that I can withdraw from my participation in this study at any time if I want or the investigator can terminate me from the study at any time from the study but not the procedure of treatment and follow-up unless I request to be discharged.

After understanding the nature of dissertation or research, diagnosis made, mode of treatment. I am giving consent for the blood investigations and also for the follow up.

I the undersigned Shri/Smt ______ under my full conscious state of mind agree to participate in the said research/dissertation.

Signature of patient:

Signature of doctor:

Witness: 1.

2.

Date:

Place

PROFORMA

Name:	IPNo:	
Age:		
Case.no:		
Address:		
Occupation:		
DOA:		
Contact no: 1.		
DO	S	Study:
Mobile no : 2.		
1.Obstetric History :		

1. ML:

2.Obstetric score: G P L A

2.MENSTRUAL HISTORY:

1: LMP:

2: EDD:

3: POG:

2.Past History:

3.Family Hisory

4.PERSONAL HISTORY:

5.GENERAL PHYSICAL EXAMINATION

PR: RR:

BP: TEMPERATURE:

SYSTEMIC EXAMINATION

CVS:

RS:

P/A:

P/S:

P/V:

DIAGNOSIS:

INDICATION FOR INDUCTION OF LABOUR:

STUDY PARAMETERS :

INDUCTION TO ACTIVE LABOUR INTERVAL

BISHOPS SCORE

- 1. On admission:
- 2. After induction:

AUGMENTATION WITH OXYTOCIN OR ARM

INDUCTION TO DELIVERY INTERVAL

COLOR OF LIQOUR

. MODE OF DELIVERY:

- Vaginal delivery:
- Instrumental delivery:
- LSCS: Indication:

<u>9.PERINATAL OUTCOME:</u>

- Mother side:
- NICU:

• Mortality:

10.<u>FOLLOWUP:</u>

CBC:

11.ADVERSE EFFECTS:

SHIVERING

FEVER

UTERINE HYPERSTIMULATION

FETAL DISTRESS

MATERNAL INFECTION

REMARKS:

MASTERCHART

NGROUP	NAME	IP NO	AGE	DOA	PAR	POG	CERVICAL	ON ADMISSION	INDICATION	INDUCTION TO	M.BISHOP'S SCORE	EDUCTION 'NO.	OF COLOUR OF LIQOUR	MODE OF	PERINATAL	ADVERSE EFFECTS
								M BISHOP'S SCO	FOR INDUCTION	ACTIVE LABOUR	AFTER INDUCTION	N DELIVERY DO	SES	DELIVERY	OUTCOME	
1 S.L MISOPRPSTOL	MEENAXI	43708	27	28-12-2019	G4P3L3	35W 1D	3CM	3	OLIGOHYDOMNIOS	1HR	8	4HRS	1 CLEAR	PTVD	NICU ADMISSI	SHIVERING
															LOW BIRTH W	EIGHT
2 S.L MISOPRPSTOL	. BHARATI	3731	22	31-01-2020	PRIMI	42WKS	3CM	2	POSTDATED WITH O	NON REACTIVE	NOT ASSESSED	LSCS	1 CLEAR	LSCS IN VI	NICU ADMISSI	SHIVERING, FETAL D
																DISTRESS
3 DINOPROSTONE	LAXMI SAVADI	41749	25	01-02-2020	G2P1L1	35WKS	3CM	4	IUD WITH SEVERE P	E 6HRS	10	10HRS	1 DARK BROWN	PTVD	IUD	NIL
4 DINOPROSTONE	BAGAMMA	43776	20	02-02-2020	PRIMI	39WK 10	3CM	3	OLIGO	10HRS	9	12HRS	2 CLEAR	FTVD	MOTHER SIDE	NIL
5 DINOPROSTONE	GAYATRI	979	32	08-02-2020	G3P2L2	41WK 20	3CM	4	POSTDATED WITH O	6HRS	8	8HRS	1 CLEAR	FTVD	MOTHER SIDE	NIL
6 DINOPROSTONE	NEELAMMA	1382	30	12-02-2020	G2P1L1	. 35WK 40	3CM	3	IUD	9HRS	8	11HRS	2 CLEAR	PTVD	IUD	NIL
7 S.L MISOPRPSTOL	VEENA RAMESH	41047	25	14-02-2020	PRIMI	40WKS	4CM	0	POSTDATED	10HRS	8	12HRS	2 CLEAR	FTVD	NICU ADMISSI	SHIVERING, FEVER
																TACHYSYSTOLE
8 DINOPROSTONE	LAXMI ALABAL	4141	23	16-02-2020	PRIMI	39WK 60	3CM	3	SEVERE PE	6HRS	10	8HRS	1 CLEAR	FTVD	MOTHER SIDE	NIL
9 S.L MISOPRPSTOL	. REKHA	40974	25	18-02-2020	G3P2L2	40WK 50	3CM	4	POSTDATED WITH O	2HRS	9	4HRS	1 MECONIUM	FTVD	NICU ADMISSI	SHIVERING, FEVER
10 S.L MISOPRPSTOL	. MAHANANDA	41185	24	18-02-2020	G2P1L1	38WKS	4CM	4	SEVERE PE	2HRS	9	4HRS	1 MECONIUM	FTVD	NICU ADMISSI	SHIVERING, UTERIN
11 S.L MISOPRPSTO	CAVUTA		22	01-01-2020	DDIAU	2014/8/17	2014	5	IUD	5HRS	11	6HRS	1 DARK BROWN	FTVD	IUD	HYPERSTIMULATIO SHIVERING.FEVER
11 S.L WISOPRESTO	. SAVITA	2	22	01-01-2020	PRIM	23 MAY 11	2011	2	100	DIRO	11	опко	I DARK DROWN	FIVD		UTERINE HYPERSTI
12 S.L MISOPRPSTOL	. LAILABEEMULL/	42266	30	20-02-2020	G3P2L2	38WKS	2CM	5	IUD	10HRS	8	12HRS	3 DARK BROWN	FTVD		SHIVERING, FEVER
																UTERINE HYPERSTI
13 DINOPROSTONE	NAGAMMA	4614	22	17-02-2020	PRIMI	40WK 50) 3CM	3	POSTDATED WITH O	6HRS	9	8HRS	1 CLEAR	FTVD	MOTHER SIDE	NIL

		~				~								v 1 4		9	
14 S.L	MISOPRPSTOL	MAYAVVA	3591	20	21-02-2020	PRIMI	40WKS	4CM	0	POSTDATED WITH O	12HRS	6	14HRS	3 MECONIUM	FTVD	NICU ADMISSI	SHIVERING, FEVER UTERINE HYPERSTIN
15 DIN	IOPROSTONE	BHAGYASHREE	5375	27	22-02-2020	PRIMI	33WK	4CM	0	IUD	16HRS	9	20HRS	3 DARK BROWN	PTVD	IUD	SHIVERING AND FEV
16 S.L	MISOPRPSTOL	LAXMI MINAJA(5394	30	24-02-2020	G3P2L2	41WK 20	3CM	3	POSTDATED	2HRS	8	4HRS	1 MECONIUM	FTVD	NICU ADMISSI	SHIVERING, FEVER
17 DIN	IOPROSTONE	MAHANANDA	5380	26	26-02-2020	G2P1L1	40WK 50	4CM	4	POSTDATED WITH C	6HRS	10	8HRS	1 CLEAR	FTVD	MOTHER SIDE	FETAL DISTRESS NIL
18 5 1	MISOPRPSTOL	KAVERI	4094	26	03-03-2020	G2P1L1	40WK 30	4CM	2	POSTDATED WITH P	E2HRS	5	LSCS	1 MECONIUM	LSCS IN V	I NICU ADMISSI	SHIVERING
19 S.L	MISOPRPSTOL	SHALUBAI	4855	32	08-03-2020	G3P2L2	39WK 10	4CM	3	HELLP SYNDROME	NON REACTIVE	NOT ASSESSED	LSCS	1 MECONIUM	LSCS IN V	INICU ADMISSI	SHIVERING, FEVER FETAL DISTRESS
20 DIN	IOPROSTONE	ASMA NADAF	6634	20	10-03-2020	PRIMI	40WK 30	4CM	4	POSTDATED	7HRS	9	10HRS	2 MECONIUM	LSCS IN V	INICU ADMISSI	SHIVERING
21 S.L	MISOPRPSTOL	MALLAMMA	6571	22	12-03-2020	PRIMI	41WK 20	4CM	0	POSTDATED	NON REACTIVE	NOT ASSESSED	LSCS	1 MECONIUM	LSCS IN V	I NICU ADMISSI	SHIVERING, FEVER FETAL DISTRESS
22 DIN	IOPROSTONE	VIJAYALAXMI	7022	19	26-03-2020	G2P1L1	30WKS	4CM	1	SEVERE IUGR WITH	(6HRS	7	8HRS	1 CLEAR	PTVD	NICU ADMISSI	SHIVERING, FEVER
23 DIN	IOPROSTONE	DEEPA	6998	24	25-03-2020	G2P1L1	38WKS	2CM	5	GDM	8HRS	10	12HRS	2 CLEAR	FTVD	MOTHER SIDE	FETAL DISTRESS
24 S.L	MISOPRPSTOL	LAXMI MALAPP	7025	26	26-03-2020	G3P2L2	39WK 10	3CM	2	SEVERE OLIGO	NON REACTIVE	NOT ASSESSED	LSCS	1 MECONIUM	LSCS IN V	I NICU ADMISSI	SHIVERING, FEVER
25 DIN	IOPROSTONE	UEMA	7171	24	28-03-2020	C20111	4114/4 20	2014	4	POSTDATED WITH C		10	LSCS	1 MECONIUM			FETAL DISTRESS
26 S.L	MISOPRPSTOL	ANJALI	7213	25	29-03-2020	G3P2L2	40WKS	4CM	1	POSTDATED	4HRS	8	7HRS	1 CLEAR	FTVD	NICU ADMISSI	SHIVERING, FEVER FETAL DISTRESS
27 DIN	IOPROSTONE	CHAYA	7282	27	29-03-2020	G2P1L1	40WKS	2CM	2	IUGR,HELLP	6HRS	10	8HRS	1 CLEAR	FTVD	MOTHER SIDE	NIL
28 DIN	IOPROSTONE	SUNITA	7212	26	29-03-2020	G2P1L1	39WK 10	3CM	2	SEVERE PE	6HRS	8	8HRS	1 CLEAR	FTVD	MOTHER SIDE	NIL
29 DIN	IOPROSTONE	GODAVARI	7285	28	30-03-2020	G2P1L1	38WK 60	2CM	5	IUD	6HRS	10	8HRS	1 CLEAR	FTVD	IUD	NIL
30 S.L	MISOPRPSTOL	AMBIKA	7793	28	30-03-2020	G3P2L2	40WKS	4CM	3	GHTN	3HRS	8	LSCS	1 MECONIUM	LSCS IN VI	MOTHER SIDE	NIL
31 S.L	MISOPRPSTOL	BHUVANESHWA	7824	22	31-03-2020	PRIMI	38WKS	4CM	4	OLIGO	NON REACTIVE I	NOT ASSESSED	LSCS	1 CLEAR	LSCS IN VI	NICU ADMISSI	FETAL DISTRESS
32 DIN	IOPROSTONE	ANITA	8780	23	05-04-2020	G2P1L1	39WK 1D	3CM	2	GHTN	5HRS	6		1 MECONIUM	LSCS IN VI	MOTHER SIDE	SHIVERING, FEVER
	MISOPRPSTOL				06-04-2020					SEVERE PE	6HRS		8HRS	2 CLEAR			FETAL DISTRESS
34 DIN	IOPROSTONE	BASAMMA	8192	25	07-04-2020	G2P1L1	40WK 3D	4CM	0	POSTDATED WITH O	8HRS	10	12HRS	2 CLEAR	FTVD	MOTHER SIDE	NIL
35 S.L	MISOPRPSTOL	SHAHEEN	7607	22	08-04-2020	G2P1L1	36WK	3CM	2	HELLP SYNDROME	NON REACTIVE I	NOT ASSESSED	LSCS	1 MECONIUM	LSCS IN VI		SHIVERING, FEVER
36 S.L	MISOPRPSTOL	RADHIKA	8399	25	09-04-2020	G3P2L2	40WK 3D	3CM	3	POSTDATED WITH O	4HRS	8	6HRS	1 MECONIUM	FTVD		SHIVERING, FEVER FETAL DISTRESS
37 DIN	IOPROSTONE	MAMTAZ	8403	20	10-04-2020	PRIMI	34WKS	4CM	0	SEVERE PE WITH AN	10HRS	10	12HRS	2 MECONIUM	PTVD	NICU ADMISSI	
38 DIN	IOPROSTONE	ASHWINI	8540	23	10-04-2020	G3P2L2	40WK 3D	3CM	2	POSTDATED WITH G	6HRS	7	LSCS	1 MECONIUM	LSCS IN VI	MOTHER SIDE	NIL
39 DIN	IOPROSTONE	BHARATI	8598	24	15-04-2020	G2P1L1	39WK 1D	3CM	3	SEVERE PE	8HRS	8	12HRS	2 CLEAR	FTVD	MOTHER SIDE	NIL
		SANDYA RAHUI			17-04-2020					POSTDATED WITH O	0100		11HRS	2 CLEAR	FTVD	MOTHER SIDE	
41 S.L	MISOPRPSTOL	SUCHITRA	10831	29	04-05-2020	PRIMI	40WKS	3CM	2	POSTDATED WITH O	6HRS	7	10HRS	2 CLEAR	FTVD	MOTHER SIDE	SHIVERING
42 S.L I	MISOPRPSTOL	VIDYASHREE	10866	28	05-05-2020	G2P1L1	41WKS	3CM	3	POSTDATED	2HRS	6	4HRS	2 MECONIUM	FTVD	NICU ADMIS	SI FETAL DISTRESS
43 DIN	OPROSTONE	SOUMYA	10923	23	06-05-2020	PRIMI	39WK 10	D 3CM	2	OLIGO	10HRS	8	12HRS	2 CLEAR	FTVD	MOTHER SID	E NIL
44 S.L I	MISOPRPSTOL	REAYANA NADA	10990	29	07-05-2020	PRIMI	38WK 60	0 4CM	0	SEVERE PE	NON REACTIVE	NOT ASSESSED	LSCS	1 MECONIUM	LSCS IN	VI MOTHER SID	E SHIVERING
		ANITA BIRADAR							4	POSTDATED WITH (8	SHRS	1 MECONIUM	FTVD		E SHIVERING
	OPROSTONE				10-05-2020				1	ANAEMIA WITH IU		8	8HRS	1 CLEAR	FTVD	MOTHER SID	
47 S.L I	MISOPRPSTOL	RAJESHRI	11050	28	12-05-2020	G3A2	38WKS	4CM	2	GDM	14HRS	6	LSCS	3 MECONIUM	LSCS IN AND NP		FETAL DISTRESS
48 51 7	MISOPRPSTOL	SHRIDEVI	11067	25	13-05-2020	G3P2L	34WKS 3	3CM	4	SEVERE PE WITH IU	IG SHRS	9	5HRS	2 MECONIUM	PTVD		E'SHIVERING
	OPROSTONE				14-05-2020				3	POSTDATED	10HRS	10	12HRS	2 CLEAR	FTVD	MOTHER SID	E NIL
50 S.L I	MISOPRPSTOL	INDURANI	11112	30	15-05-2020	G4P2L	2 39WK2D	3CM	3	OLIGO	NON REACTIVE	NOT ASSESSED	LSCS	1 MECONIUM	LSCS IN	VI MOTHER SID	E SHIVERING
51 S.L I	MISOPRPSTOL	SIDDAMMA	11233	22	16-05-2020	G2P1L1	L 39WKS 5	4CM	0	ANAEMIA WITH IU	G 2HRS	8	5HRS	1 MECONIUM	FTVD	NICU ADMIS	SICSHIVERING, FEVER
52 S.L I	MISOPRPSTOL	PRIYANKA	11283	20	17-05-2020	PRIMI	39WKS 5	3CM	3	OLIGO	12HRS	8	16HRS	4 MECONIUM	FTVD	NICU ADMIS	SI SHIVERING, FEVER
53 S.L I	MISOPRPSTOL	NEELAMMA	11278	26	18-05-2020	PRIMI	39WK2D	3cm	2	OLIGO	NON REACTIVE	NOT ASSESSED	LSCS	1 mECONIUM	ISCS IN 1	/IEnICU ADMISS	FETAL DISTRESS
54 DIN	OPROSTONE	BHAGYASHREE	11183	23	20-05-2020	PRIM	39WK 20	0 4CM	0	GDM	10HRS	8	14HRS	2 CLEAR	FTVD	MOTHER SID	E NIL
55 S.L.I	MISOPRPSTOL	RESHIVIA	11282	20	22-05-2020	PRIMI	39WK 10	J 3CM	2	HELLP SYNDROME	OHRS	8	8HRS	2 MECONIUM	FTVD	MOTHER SID	ESHIVERING

56 S.L MISOPRPSTOL	RAJASHRI	11343	24	24-05-2020	G2P1L:	1 38WKS	4CM	0	IMMINENT ECLAMP	NON REACTIVE I	NOT ASSESSED	LSCS	1 CLEAR	LSCS IN VI	NICU,RDS,PRE	SHIVERING
57 DINOPROSTONE	KAVITA	11367	28	25-05-2020	G2P1L:	1 40WK 10	3CM	3	POSTDATED	6HRS	10	8HRS	1 CLEAR	FTVD	MOTHER SIDE	NIL
58 s.L MISOPRPSTOL	laxmibai	11352	21	26-05-2020	G2P1L:	1 39WK 20	3CM	3	SEVERE PE WITH IU	16HRS	8	LSCS	4 CLEAR	LSCS IN VI	NICU,RDS,PRE	SHIVERING, FEVER
59 DINOPROSTONE	RESHMA	11469	26	30-05-2020	PRIMI	40WK 10	3CM	2	POSTDATED WITH C	14HRS	11	16HRS	3 CLEAR	FTVD	MOTHER SIDE	FETAL DISTRESS SHIVERING
60 DINOPROSTONE	PRIYANKA	11458	22	31-05-2020	PRIMI	41WKS	4CM	1	POSTDATED	8HRS	10	10HRS	2 CLEAR	FTVD	MOTHER SIDE	NIL
61 S.L MISOPRPSTOL	SARASWATI	11474	21	12-06-2020	PRIMI	30WKS	4CM	0	ANHYDROMNIOS	20HRS	8	22HRS	4 CLEAR	PTVD	NICU,RDS,PRE	SHIVERING, FEVER
62 S.L MISOPRPSTOL	ROOPA	11498	24	14-06-2020	G4P2L	2 40WK 50	3CM	4	POSTDATED WITH C	3HRS	9	6H	1 MECONIUM	FTVD	NICU ADMISSI	SHIVERING
63 DINOPROSTONE	LAXMI	11433	21	15-06-2020	PRIMI	42WKS	4CM	2	POSTDATED WITH C	12HRS	10	15HRS	2 MECONIUM	FTVD	MOTHER SIDE	NIL
64 S.L MISOPRPSTOL	SHRIDEVI	11582	25	16-06-2020	G3P1D	1 38WKS 6	3CM	3	SEVERE PE	NON REACTIVE I	NOT ASSESSED	LSCS	1 MECONIUM	LSCS IN VI	NICU ADMISSI	SHIVERING
65 DINOPROSTONE	SUMITRA	11816	30	20-06-2020	G4P2L	2 38WKS 6	3CM	3	IUD	6HRS	11	8HRS	1 DARK BROWN	FTVD	IUD	NIL
66 S.L MISOPRPSTOL	PARVATI	11849	21	21-06-2020	G2P1L:	1 39WK 20	3CM	2	HELLP SYNDROME V	12HRS	8	16HRS	3 MECONIUM	FTVD	NICU ADMISSI	SHIVERING
67 S.L MISOPRPSTOL	VANUJA	11863	24	21-06-2020	G2P1L:	1 40WK 10	4CM	0	POSTDATED	16HRS	8	20HRS	4 MECONIUM	FTVD		SHIVERING, FEVER
68 S.L MISOPRPSTOL	RESHMA	11838	24	21-06-2020	PRIMI	29WKS	4CM	0	IUD	16HRS	8	20HRS	4 CLEAR	PTVD	IUD	FETAL DISTRESS SHIVERING, FEVER
69 S.L MISOPRPSTOL	CHANNAMMA	11872	22	22-06-2020	G2P1L:	1 28WK 40	4CM	1	IUD	12HRS	8	14HRS	3 CLEAR	PTVD	IUD	FETAL DISTRESS SHIVERING, FEVER FETAL DISTRESS

70 DINOPROSTONE	SHALIN	11890 3	34YR 2	22-06-2020	G5P4L	40WK 50	3CM	4	POSTDATED	10HRS	12	14HRS	2 CLEAR	FTVD	MOTHER SIDE	NIL
71 DINOPROSTONE	PARREEN	11901	27 2	23-06-2020	G3P2L2	39WKS 6	3CM	4	GDM	8HRS	10	12HRS	2 CLEAR	FTVD	MOTHER SIDE	NIL
72 S.L MISOPRPSTOL	SHASHIKALA	12037	23 2	24-06-2020	G2P1L1	40WK 50	4CM	0	POSTDATED	10HRS	8	12HRS	3 MECONIUM	FTVD	NICU ADMISSI	SHIVERING, FEVER
73 DINOPROSTONE	VIDYASHREE	12071	25 2	25-06-2020	G3P1L	39WK 20	3CM	3	SEVERE PE	6HRS	8	8HRS	1 CLEAR	FTVD	MOTHER SIDE	
74 S.L MISOPRPSTOL	LAXMI	12110	21 2	26-06-2020	PRIMI	40WK 10	3CM	3	POSTDATED	16HRS	10	18HRS	4 MECONIUM	FTVD		SHIVERING, FEVER
75 DINOPROSTONE	SAVITRI	12154	27 2	28-06-2020	G4P3L	40WK 50	3CM	3	POSTDATED	6HRS	10	8HRS	1 CLEAR	FTVD	MOTHER SIDE	
76 DINOPROSTONE	SUNITA	12135	32 2	28-06-2020	PRIMI	35WK	4CM	0	IUD	6HRS	8	8HRS	1 CLEAR	PTVD	IUD	NIL
77 DINOPROSTONE	KAVITA	12185	28 2	28-06-2020	G3P1L:	39WK 20	3CM	2	OLIGO	12HRS	8	14HRS	2 CLEAR	FTVD	MOTHER SIDE	NIL
78 S.L MISOPRPSTOL	AMENABABU	12292	26 (01-07-2020	G3P2L2	40WK 10	3CM	3	POSTDATED WITH C	1HRS	8	2HRS	1 MECONIUM	FTVD	NICU ADMISSI	SHIVERING
79 DINOPROSTONE	TARABAI	12323	25 (02-07-2020	G2P1L1	40WK 50	3CM	1	POSTDATED	11HRS	9	13HRS	2 MECONIUM	FTVD	MOTHER SIDE	NIL
80 DINOPROSTONE	MAMTAZ LONI	12354	22 (03-07-2020	PRIMI	40WK 10	4CM	0	POSTDATED WITH C	6HRS	8	8HRS	1 CLEAR	FTVD	MOTHER SIDE	NIL
81 DINOPROSTONE	SHEELA	12554	34 (04-07-2020	G4P3L	37WK	3CM	2	GDM	10HRS	8	12HRS	2 CLEAR	FTVD	MOTHER SIDE	NIL
82 DINOPROSTONE	TANYA	12654	22 (04-07-2020	G2P1L1	41WK	3CM	2	POSTDATED WITH C	6HRS	9	11HRS	1 CLEAR	FTVD	MOTHER SIDE	NIL
83 DINOPROSTONE	SOWMYA	12754	30 (04-07-2020	G3P1L	35WK	4CM	1	SEVERE PE	10HRS	10	12HRS	2 CLEAR	FTVD	MOTHER SIDE	NIL
84 DINOPROSTONE	RAMYA	12884	25 (04-07-2020	PRIMI	40WK 50	3CM	2	POSTDATED	6HRS	8	8HRS	1 CLEAR	FTVD	MOTHER SIDE	NIL