INFLUENCE OF VITAMIN D ON ARTERIAL STIFFNESS IN HYPERTENSIVE WITH SPECIAL REFERENCE TO OXYGEN SENSING PROTEIN EXPRESSION.

Dr. AMRIT PODDER

Dissertation submitted to

BLDE (Deemed to be University) Vijayapur, Karnataka

In partial fulfillment of the requirements for the degree of

DOCTOR OF MEDICINE

IN

PHYSIOLOGY

Under the guidance of

Dr.SUMNGALA.PATIL

PROFESSOR

DEPARTMENTOF PHYSIOLOGY

BLDE (Deemed to be University) SHRIB.M.PATILMEDICALCOLLEGE

HOSPITAL & RESEARCH CENTRE, VIJAYAPUR

KARNATAKA

2020

"INFLUENCE OF VITAMIN D ON ARTERIAL STIFFNESS IN HYPERTENSIVE PATIENTS WITH SPECIAL REFERENCE TO OXYGEN SENSING PROTEIN EXPRESSION"

In partial fulfillment of the requirements for the degree of

DOCTOR OF MEDICINE

IN

PHYSIOLOGY

ABBREVATION

Arterial Stiffness	
American Heart Association	
American Stroke Association	
Arterial Stiffness Index	
Augmentation Index	
Analysis of Variance	
Blood Pressure	
Body Mass Index	
beats per minute	
Cardiovascular Diseases	
Calcium Channel Blocker	
centimeter	
Cholesterol oxidase-peroxidase	
Cholesterol	
Chronic Kidney Disease	
Diastolic Blood Pressure	
Diacetyl monoxime	
Deci liter	

Erythropoietin	
Enzyme Linked Immunosorbent Assay	
Glycerol phosphate-oxidase	
Glucose oxidase-peroxidase	
Hypertension	
High Density Lipoprotein	
Hip Circumference	
Indian Hypertension Control Initiative	
International Unit	
Institutional Ethical Clearance	
kilogram	
Left Ventricular Hypertrophy	
Left Brachial ASI	
Left Ankle ASI	
Liter	
Mean Arterial Pressure	
Malondialdehyde	
Myocardial Infarction	
meter square	

mg	milligram
mmHg	millimeter of mercury
NO	Nitric Oxide
ng	nanogram
nm	nanometer
PP	Pulse Pressure
PWV	Pulse Wave Velocity
PWV _{b-a} Right	Right Brachial-Ankle PWV
PWV _{b-a} Left	Left Brachial-Ankle PWV
PWV _{c-f}	Carotid-Femoral PWV
РТН	Parathyroid Hormone
PR	Pulse Rate
РТА	Phosphotungstic acid
pg	pictogram
RAAS	Renin-Angiotensin-Aldosterone System
RCT	Randomized Controlled Trial
R Bra ASI	Right Brachial ASI
R Ank ASI	Right Ankle ASI
RR	Respiratory Rate

ROS	Reactive oxygen species
SBP	Systolic Blood Pressure
SD	Standard Deviation
SPSS	Statistical Package for Social Sciences
Temp.	Temperature
TGL	Triglyceride
UV-A	Ultraviolet-A
UV-B	Ultraviolet-B
VEGF	Vascular Endothelial Growth Factor
VEGFR	VEGF receptor
VDR	Vitamin D Receptor
VSP	VEGF protein synthesis
WHO	World Health Organization
WHR	Waist Hip Ratio
WC	Waist Circumference
μmol	micromol

ABSTRACT

INTRODUCTION: The influences of vitamin D on arterial stiffness in hypertensive patients are still debatable. The role of oxygen sensing proteins in regulation of blood pressure is yet to be explored. In this prospective case control study we aimed to find out the correlation of vitamin D in arterial stiffness, cardiovascular pathophysiologies in hypertensive individuals.

METHODS: 108 age matched participants were taken and divided into three groups according to their hypertension status. Participants having normal blood pressure were considered as control group; group 1 and Stage I hypertensive participants were taken as group 2 and stage II hypertension participants were considered for group 3. All the participants were assessed for their anthropometric, physiological, electrophysiological, biochemical, and molecular parameters according to the study design. Comparison between stage I and stage II hypertension with control group were assessed for all the parameters. A correlation between vitamin D and all the anthropometric, physiological (ASI, PWV), biochemical (MDA, NO) and molecular (EPO, VEGF) parameters were done. The data was analyzed using Microsoft Excel Sheet and SPSS software (version 20).

RESULTS: Arterial stiffness was found to be increased in age matched both the hypertensive groups as compared to the control group. Vitamin D level was also

vi

found to be lower in both the hypertensive group. In stage I and stage II hypertension, EPO was found to be higher whereas VEGF was found to be lower as compared to control group.

CONCLUSION: We conclude by finding that vitamin D influences arterial stiffness, vascular pathophysiology including cardiovascular diseases like hypertension.

KEYWORDS: Arterial Stiffness, Hypertension, Vitamin D, Oxygen sensing proteins, Cardiovascular Diseases.

INDEX

SL. NO.	TITLE	PAGE NUMBER
1	INTRODUCTION	1-2
2	OBJECTIVES	3
3	REVIEW OF LITERATURE	4-18
4	METHODOLOGY	19-24
5	RESULTS	25-68
6	DISCUSSION	69-75
7	CONCLUSION	76
8	SUMMARY	77
9.	BIBLIOGRAPHY	78-88
10.	ANNEXURES	89-98
	I. Consent Form	
	II. Clinical Proforma	
	III. Ethical Clearance Certificate	
	IV. Master Chart	
	V. Photographs	
	VI. Similarity Check Certificate	

LIST OF TABLES

SL.	Tables	PAGE
NO.		NO.
1	Comparison of Age between three groups	25
2	Comparison of Anthropometric Parameters between three groups	26
3	Comparison of Anthropometric Parameters between Genders	26
4	Post hoc test of Anthropometric Parameters between three groups	27
5	Comparison of Physiological Parameters between three groups	28
6	Comparison of Physiological Parameters between Genders	29
7	Post hoc test of Physiological Parameters between three groups	30
8	Comparison of Electrophysiological Parameters between three groups	31
9	Comparison of Electrophysiological Parameters between Genders	32
10	Post hoc test of Electrophysiological Parameters between three groups	33
11	Comparison of Biochemical Parameters between three groups	36
12	Comparison of Biochemical Parameters between Genders	37
13	Post hoc test of Biochemical Parameters between three groups	38
14	Comparison of Molecular Parameters between three groups	39
15	Comparison of Molecular Parameters between Genders	40
16	Post hoc test of Molecular Parameters between three groups	40

LIST OF FIGURES

Figures	PAGE
	NO.
Classification of different stages of hypertension as per	5
American Heart Association	
Causes of Arterial Stiffness	6
Vitamin D metabolism and its relationship with RAAS	10
	Classification of different stages of hypertension as per American Heart Association Causes of Arterial Stiffness

LIST OF PHOTOGRAPHS

Photographs	PAGE
	NO.
UV-Spectrophotometer	95
ELISA Reader and Centrifuge Machine	95
Biochemical Analysis of Nitric Oxide	96
Molecular Analysis of the samples	96
The Process of MDA analysis	97
	UV-Spectrophotometer ELISA Reader and Centrifuge Machine Biochemical Analysis of Nitric Oxide Molecular Analysis of the samples

LIST OF GRAPHS

SL.	Graphs	PAGE
NO.		NO.
1	Correlation between serum vitamin D and SBP	41
2	Correlation between serum vitamin D and DBP	42
3	Correlation between serum vitamin D and PP	43
4	Correlation between serum vitamin D and MAP	43
5	Correlation between serum vitamin D and R Bra ASI	44
6	Correlation between serum vitamin D and L Bra ASI	45
7	Correlation between serum vitamin D and R Ank ASI	45
8	Correlation between serum vitamin D and L Ank ASI	46
9	Correlation between serum vitamin D and PWV _{b-a} Right	47
10	Correlation between serum vitamin D and PWV _{b-a} Left	47
11	Correlation between serum vitamin D and PWV_{c-f}	48
12	Correlation between serum vitamin D and EPO	49
13	Correlation between serum vitamin D and VEGF	49
14	Correlation between SBP and R Bra ASI	51
15	Correlation between SBP and L Bra ASI	51
16	Correlation between SBP and R Ank ASI	52

17	Correlation between SBP and L Ank ASI	52
18	Correlation between SBP and PWV _{b-a} Right	53
19	Correlation between SBP and PWV _{b-a} Left	53
20	Correlation between SBP and PWV _{c-f}	54
21	Correlation between SBP and serum MDA	55
22	Correlation between SBP and serum NO	56
23	Correlation between SBP and serum EPO	57
24	Correlation between SBP and serum VEGF	58
25	Correlation between DBP and R Bra ASI	60
26	Correlation between DBP and L Bra ASI	60
27	Correlation between DBP and R Ank ASI	61
28	Correlation between DBP and L Ank ASI	61
29	Correlation between DBP and PWV _{b-a} Right	62
30	Correlation between DBP and PWV _{b-a} Left	62
31	Correlation between DBP and PWV _{c-f}	63
32	Correlation between DBP and MDA	63
33	Correlation between DBP and NO	64
34	Correlation between DBP and EPO	65
35	Correlation between DBP and VEGF	65

36	Correlation between MAP and MDA	67
37	Correlation between MAP and NO	67
38	Correlation between MAP and EPO	68
39	Correlation between MAP and VEGF	68

INTRODUCTION

Hypertension (HTN), an established major independent risk factor for cardiovascular diseases (CVD), is one of the major rising causes of secondary illness of modern society which can lead to morbidity and mortality in our country. As per World Health Organization (WHO) recent report, the deaths due to non-communicable diseases are nearly 63% in our country and around 27% of all non-communicable deaths are attributed to CVD out of which nearly half of the numbers are coming from the middle aged group. ¹ The present scenario is showing that most of the current population of hypertensive patients may remain undiagnosed and don't seek medical attention. ²

Deficient vitamin D level is a recognized worldwide concern now as it is having role in controlling the risk of different CVD including HTN and when nearly 1 billion people round the globe is either having a insufficient or deficient level of vitamin D, it create a more worse scenario as far as overall world health is concerned. If we compare the scenario of India then the picture is even worse where nearly 40% of the young adults belong to a deficient vitamin D level. ³

The debate regarding role of vitamin D in control of blood pressure (BP) is still ongoing in spite of a number of studies suggesting vitamin D deficiency to be considered as a new risk factor for HTN. Many studies have also shown that vitamin D levels modulate the BP indirectly and there are studies which showed

1

the increase prevalence of HTN during winter and in the areas where the exposure to the sunlight is reduced like in the zones which are far away from the equator. These studies have also shown that there is a rise of 2.5 millimeters of mercury (mmHg) of blood pressure for every 10 degrees of equator deviation. ⁴

Studies has shown that hypertensive patients are having lower levels of serum nitric oxide (NO) and higher oxidative stress and increased free radical production which alter the vascular architecture. ⁵

Serum Erythropoietin (EPO) level is correlated with a rise in blood pressure ⁶ and Vascular Endothelial Growth Factor (VEGF) targeted therapies cause hypertension in 30-80% of patients. ⁷ Although research data from current studies show that EPO have significant role in the physiological maintenance of cardiovascular system but the relationship between serum EPO levels and arterial stiffness (AS) is still yet to be studied. ⁸

In this prospective case control study, we aimed to assess the role of serum vitamin D on cardiovascular pathophysiology in the perspective of oxygen sensing protein (EPO, VEGF) expression in stage 1 and stage 2 hypertensive patients. The Indian Hypertension Control Initiative (IHCI) 2020 is aimed towards reduction of 25% of prevalence of hypertensive patients in our country by 2025. ¹ Our study will act as a bridge between the gaps known in the field of HTN and oxygen sensing molecules (EPO, VEGF) from this part of the country.

OBJECTIVES OF THE STUDY

Primary Objective:

1. To find out the relationship between serum vitamin D and cardiovascular pathophysiology in hypertensive patients.

Secondary Objectives:

- 2. To find out serum vitamin D in relation with arterial stiffness in hypertensive patients (stage 1 and stage 2).
- The influences of vitamin D level and oxygen sensing protein expression (EPO, VEGF) in hypertensive patients.
- 4. To find out the Co-relation between oxygen sensing proteins and arterial stiffness in hypertensive patients.

REVIEW OF LITERATURE

BLOOD PRESSURE (BP):

BP is the lateral pressure exerted by the flowing blood against any unit area of the vessel wall which is measured in mmHg. Unless specified otherwise, BP usually refers to pulsatile systemic arterial pressure. The highest pressure is achieved during systole and the lowest pressure is achieved during diastole of the cardiac cycle. Hence these are referred as Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) respectively. Having different determinants, the SBP and DBP alter differentially. The difference between SBP and DBP is considered as Pulse Pressure (PP) and the average pressure exerted during a cardiac cycle is considered as Mean Arterial Pressure (MAP). ⁹

HYPERTENSION (HTN):

HTN is an epidemic effecting more than one billion people in the world and is the commonest risk factor for death with stroke and CVD. It is one of the major rising causes of secondary illness of modern society which can lead to morbidity and mortality in our country. In the guidelines issued by the American Heart Association (AHA) and American Stroke Association (ASA) in the year 2017, they claimed the normal BP to be defined as "SBP of <120 mmHg and DBP of <80 mmHg where SBP of 120-129 mmHg and DBP of <80 mmHg" ² is to be taken as

elevated BP. According to these guidelines the "SBP of 130-139 or DBP of 80-89 is to be considered as HTN stage 1 whereas stage 2 HTN took the criteria of SBP \geq 140 mmHg or DBP \geq 90 mmHg". ² If the SBP is >180 mmHg and/or DBP is >120 mmHg at any point of time, the person will be in hypertensive crisis. ² The different categories of BP according to AHA and ASA are shown in the Figure 1.

Blood Pressur	es	American Heart Stroke Association	
BLOOD PRESSURE CATEGORY	SYSTOLIC mm Hg (upper number)		DIASTOLIC mm Hg (lower number)
NORMAL	LESS THAN 120	and	LESS THAN 80
ELEVATED	120 - 129	and	LESS THAN 80
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 1	130 - 139	or	80 - 89
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 2	140 OR HIGHER	or	90 OR HIGHER
HYPERTENSIVE CRISIS (consult your doctor immediately)	HIGHER THAN 180	and/or	HIGHER THAN 120

Figure 1: Classification of different stages of HTN as per AHA and ASA.¹²

ARTERIAL STIFFNESS (AS):

AS is a state where arteries become stiff, due to thickening of the wall of arteries which leads to loss of elasticity and it might reflect in the form of compliance and expansibility reduction. Lifestyle modification like daily routine exercise, improvement in the dietary habits can reduce an acute increase in AS. Chronic increase might result into damage of the principal organs like brain, heart and kidney ¹⁰. Heart is affected by AS due to its effect of afterload increase, which becomes a long-standing stress, over a period of time, affecting their ventricular performance which results into the cardiac output inadequacy that might be insufficient in situations where demand is high.

AS make the redistribution of blood in body in such a way that it results into kidney hypoperfusion which might lead to Renin-Angiotensin-Aldosterone System (RAAS) activation, which leads to a permanent state of elevated BP in the body. It should be corrected soon enough, or else it might also lead to kidney hypoperfusion without any rescuing compensatory mechanism.

The parameters used to directly reflect AS, non-invasively are the Arterial Stiffness Index (ASI) and Pulse Wave Velocity (PWV). The causes of AS are summarized in the figure 2.

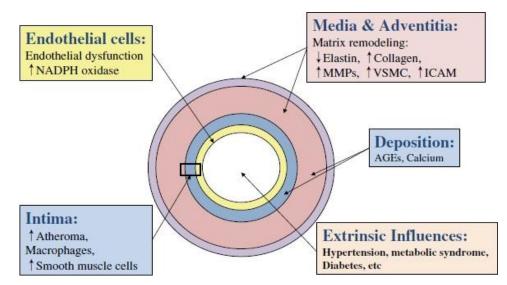


Figure 2: Causes of arterial stiffness (Reference: Lee HY & Oh BH., 2010)

*Pulse Wave Velocity (PWV)*¹¹: It is the wave velocity which precedes the column of blood which is ejected out in a ventricular systole, to reach the peripheries. Therefore, when AS increases, PWV increases because the elasticity of the arterial wall decreases, this is seen in diseases like atherosclerosis, diabetes mellitus, etc.

Arterial Stiffness Index (ASI): ASI is estimated by estimating the oscillometric envelopes resulted from the oscillations in the respective arteries (Naidu MUR et al., 2012).

Central Blood Pressure ¹¹: The regular way of BP measurement is with the help of sphygmomanometer which gives BP of the peripheral arteries, most often brachial artery. The measurement of central blood pressure is the unconventional way of BP measurement. The recording of peripheral BP measurement showed discrepancy with that of the aortic BP such that it is higher than the peripheral BP that is measured and relied upon usually in order to categorize the patient into hypertensive or normotensive. It is the central BP, which exerts its influence on the vital organs like heart, brain and kidney. Therefore, if this parameter is used for management of HTN, the trajectory of the disease can be altered for a better picture, in future. As increased arterial stiffness also corresponds significantly with BP level, this parameter can also be used to assess the situation of AS in human body.

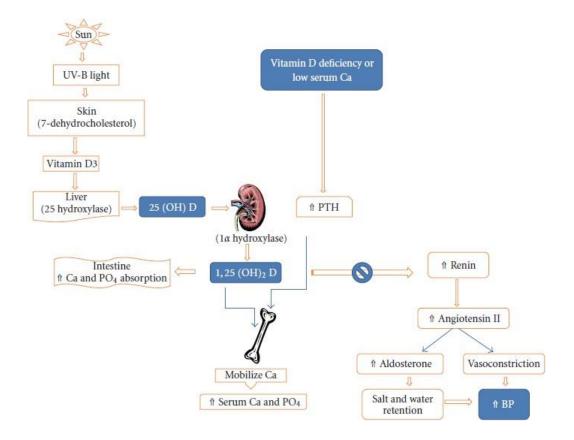
VITAMIN D:

Vitamin D is a fat soluble vitamin which is having role in calcium homeostasis, development of skeletal muscles, smooth functioning of the cardiovascular health. There are two main sources of vitamin D known till now which are as follows:

- 1. Direct sunlight exposure through Ultraviolet-B (UV-B) rays,
- 2. Dietary supplements.

Previtamin D is formed from 7-dehydrocholesterol once UV-B rays of sunlight penetrates the skin which later converts to vitamin D₃. Fish oil like cod liver oil, oily fishes like salmon, egg yolks, fortified milk and yogurt are some examples of dietary sources of vitamin D. Depending on the availability of sunlight exposure, the synthesis of vitamin D from skin may vary. It also varies to the bare skin exposure to available sunlight. On the other hand, pigmentation of the skin is a limiting factor for vitamin D synthesis from the skin. Melanin, the natural sunscreen for the body, reduces the synthesis of vitamin D₃ from skin. ²³

Cutaneous vitamin D is metabolized in liver to 25-hydroxyvitamin D, metabolized in kidney to form 1,25-dihydroxyvitamin D, the active form of


vitamin D. Parathyroid Hormone (PTH), serum phosphorus and calcium closely regulate the production of vitamin D from kidney.²⁴

Vitamin D Receptor (VDR) which is a steroid hormone nuclear receptor that binds to 1,25-dihydroxyvitamin D, is present in many tissues and organs such as vascular smooth muscles, endothelium, skin, heart, and many cells of immune system.²⁴

There are various factors influence vitamin D nutritional status. Following are some examples: ²⁵

- Racial factors: high number of populations of vitamin D deficiency in African American populations due to increase melanin secretion
- Geographical factors: Population of Edmonton, Canada suffer from vitamin D deficiency from October to April every year because it is situated 52 degrees North to the equator.
- 3. Social Factors: Covering the entire body with clothing, applying sunscreen, etc may reduce cutaneous vitamin D production.

The production of vitamin D from skin, its metabolism, regulation and relationship with the RAAS is depicted in the figure 3 which clearly tells about its possibility of regulating BP.

Figure 3: Vitamin D metabolism and its relationship with RAAS (Ullah MI et al. 2010) ²⁶

VTAMIN D AND BLOOD PRESSURE:

There was a time when many healthcare professionals used to think that the complications arising from vitamin D deficiency has been conquered once rickets were taken care of by supplementing vitamin D along with food but till now we came to know that rickets were just tip of an iceberg of deficient vitamin D concentration. Most of the experts believes that a level of <20 ng/ml is a deficient range of vitamin D whereas 20-29 ng/ml is considered as insufficient level and \geq 30

ng/ml is considered as normal vitamin D level for an average adult. It is also to be mentioned that >150 ng/ml is considered as vitamin D intoxication. After we came to know that most of our body cells and tissues have a vitamin D receptor and a number of them also possess the capability of converting 25-hydroxyvitamin D, the primary circulating form to 1,25-dihydroxyvitamin D, the active form, we got a new insight regarding the function of this hormone.

Getting it more intensified 1,25-dihydroxyvitamin D also controls more than 200 genes directly or indirectly, including the genes which are responsible for angiogenesis, cellular proliferation, apoptosis, cell differentiation and so on. It also acts as an immunomodulator and several studies have also shown its importance in reducing the risk of type-1 diabetes in childrens. ³

The relationship between level of serum vitamin D concentration and increased AS in were reported in several studies.

Following studies have been done to show the relationship between vitamin D and AS in normotensive subjects:

Iain Bressendorff, et al. in 2015¹³ did a double blinded randomized Controlled Trial (RCT) to examine the effect of cholecalciferol on AS and BP. In the study 40 healthy normotensive adults were examined for their changes in the peripheral and central BP, 24-hour ambulatory BP, PWV, Augmentation Index (AIx) after receiving oral cholecalciferol 3000 International Unit (IU)/day for 16 weeks. Their results showed no difference in changes in BP and AS between 18 subjects of placebo arm and 22 subjects of cholecalciferol arm. They concluded that BP and arterial stiffness in healthy normotensive adults does not get affected by 16 weeks of treatment with 3000 IU/day cholecalciferol.

AI Mheid I et al. in 2011¹⁴ did a study with 554 healthy subjects aiming to elucidate the relationship between CVD and serum vitamin D and concluded that increase AS in resistance blood vessels is associated with serum vitamin D insufficiency which might indicate towards its mechanism of modulating RAAS.

In a study by Giallauria F et al. in 2012¹⁵ aimed to establish the independent cross-sectional relationship between AS and HTN and concluded that increase in the AS is inversely associated with serum vitamin D level in normotensive population.

Following are the epidemiological studies done to show the relationship between vitamin D and Hypertension:

McCarron DA et al. ²⁷ in 1980 stated in their study that HTN may develop from the disorders of calcium metabolism.

Cooper R et al. ²⁸ found a significant geographical difference of BP among the African population in 1994 suspecting a genetic predisposition of HTN in their study. Zemel MB et al. in 1990 found in their study ^{29,30} that supplementation of calcium in salt sensitive black population may reduce BP but land up into left ventricular hypertrophy (LVH).

Griffith LE et al. in 1999, Allender PS et al. in 1996, Scragg R et al. in 2007 and Judd SE et al. in 2008 concluded their study with the similar finding stating towards the role of vitamin D in regulation of BP. $^{31-34}$

Following studies done to show effect of vitamin D supplementation on BP:

Krause R et al. in their study ³⁵ in 1998 randomly taken 18 hypertensive individuals to receive Ultraviolet-B (UV-B) or Ultraviolet-A (UV-A) light exposure 3 times weekly for 6 weeks in which they found a 162% rise in the vitamin D level among the participants who received UV-B lights along with a significant drop in the SBP and DBP by 6 mmHg. In contrast, the participants who received UV-A light did not show any change in vitamin D concentration or BP.

Another study ³⁶ by Pfeifer M et al in 2001 done on 145 elderly women, showed significant reduction in BP up to 9.3% after 8 weeks on receiving 800 IU of vitamin D_3 and 1200 mg of calcium. They also found a reduction of BP by 4% after treatment with only 1200 mg of calcium for 8 weeks.

Following studies have shown no relationship of vitamin D with HTN:

Forman JP et al. in 2005 concluded their study ³⁷ with no association of deficiency of vitamin D with increase risk of HTN.

A random double blinded study ³⁸ by Margolis KL et al. done to show the effect of 1000 mg of calcium and 400IU of vitamin D_3 daily supplementation on HTN in 2008 concluded with no significant decrease in incidence of HTN after 7 years follow up.

Other studies by Orwoll ES et al. in 1990 and Scragg R et al. in 1995 concluded with similar finding showing no association of vitamin D supplementation in reduction of BP. $^{38-39}$

Following studies have been done to show the relationship between vitamin D and Cardiovascular Pathophysiology:

Osman Kuloglu et al. in 2013 did a study ¹⁶ to know the association of level of serum vitamin D concentration with AS, LVH, and inflammation in 133 hypertensive patients in the year 2012 over a period of 6 months. They showed serum vitamin D is independently related with AS, LVH and inflammation. Vitamin D may play a significant role on pathogenesis of AS and LVH in individuals with freshly diagnosed HTN.

Ji Yeon Kang et al. did a study ¹⁷ in 2015 to find relationships of dietary and serum vitamin D with CVD and AS on 1381 subjects. They made a conclusion that concentration of Serum vitamin D level has a beneficial relationship with High Density Lipoprotein (HDL) cholesterol levels in both men and women, but the same relationship did not founded with other cardiometabolic risk factors such as blood glucose, BP, and other parameters of lipid profiles.

Songcang Chen et al. did a study ¹⁸ on Vitamin D and Essential HTN in 2016 in which they said that if we treat vitamin D-deficient persons or normotensive persons having insufficient levels of vitamin D for a short period results in minimal effects on BP. By supplementing high doses of vitamin D daily in a cohort at the age at risk of Essential HTN, will prevent the development of HTN by eliminating deficiency of vitamin D as a trigger for its development.

Young S. Oh did a study ¹⁹ on AS and HTN in the year 2018 in which it has been showed AS as important arterial phenotype and an excellent indicator of cardiovascular complications and it is an independent predictor of HTN and CVD.

Lata Mullur et. al. in 2019 observed ²⁰ vitamin D level has a beneficial relationship with BP of various types of cardiac diseases.

Ann Burgaz et al. did a meta-analysis ²¹ in 2011 to review the association of vitamin D concentration and BP which concluded as developing a inverse relationship of HTN with serum vitamin D level concentration.

The study ²² of Yan Chun Li in 2003 concluded that vitamin D regulate BP by regulating the RAAS and also suggested to use analogues of vitamin D in purpose of prevention or treatment of high BP.

Following studies have been done to show association of serum NO and BP:

Higashino H et al. showed in their study ⁴⁰ conducted in 2007 that there is a significant higher serum NO level in hypertensive male participants than the normotensive males.

Goch A et al. in their study ⁴¹ in 2009 found no endothelium dysfunction in hypertensive patients unless they have a family history of CVD or having predisposed other cardiovascular risk factors.

Bagali S et al. in their study ⁴² on low oxygen microenvironment and cardiovascular remodeling in 2020 found that treatment with antihypertensive drugs ameliorate endothelial dysfunction and cardiovascular remodeling.

Following studies have been done to show the association of Malondialdehyde (MDA) in AS and HTN:

Ferroni P et al. in their study conducted in 2006 showed that endothelial dysfunction is seen in hypertensive individuals because oxidative stress plays the major role by promoting prothrombic state in vessels. ⁴³

Hou JS et al. in their study ⁴⁴ in 2020 shown that serum MDA greater than 80.33 mg/dl is related to increase AS which might lead to future CVD.

Following studies has been conducted to show the relationship of the Anthropometric parameters on arterial stiffness (AS):

Melo E Silva FV et al. conducted a study ⁴⁵ in 2021 aiming to establish an association of body composition with AS concluded that there is a positive correlation between obesity and AS which may lead to cardiovascular risks such as HTN.

Kanthe PS et al. in 2015 showed in their study ⁴⁶ that adiposity is directly proportional to future development of cardiovascular events such as HTN, atherosclerosis etc.

Following studies has been done to show the association of EPO with BP:

Omer Gedikli et al. did a study ⁴⁷ on Circulating levels of EPO and its relation to AS in patients with HTN in the year 2013 which concluded by founding the level of Serum EPO of hypertensive patients and normotensive patients are comparable.

Vaziri ND in his study ⁴⁸ in 1999 found that there is a positive correlation between EPO and increase BP.

Khodnapur JP in her study ⁴⁹ in 2021 found that EPO is responsible for age associated vascular health and an altered level of EPO may contribute towards alteration in the BP.

Following studies has been done to show the association of VEGF with BP:

Emily S. Robinson et al. did a study ⁵⁰ in the year of 2010 named HTN induced by VEGF Signaling Pathway Inhibition: Mechanisms and Potential Use as

a Biomarker, in which they showed that HTN in VEGF targeted therapies is common and causes significant morbidity but it can be effectively managed.

A study ⁵¹ conducted in 2009 by Papaioannou AI et al. suggested a significant positive correlation between serum VEGF and other CVD such as systemic sclerosis and HTN.

Caletti S et al. did a study ⁵² in 2018 in which they concluded to treat HTN due to VEGF targeted therapies with RAAS inhibitors and calcium channel blocker (CCB).

METHODOLOGY

Source of data: Patients from Department of Medicine, Shri B. M. Patil Medical College, Hospital and Research Centre, B.L.D.E. (Deemed to be University) Vijayapura.

Study Period: 1st July 2021 to 30th June 2022.

Type of study: Prospective case control study.

Study design: A total number of 108 participants have been included in our study, divided into equal numbers in 3 groups. Each group is consisting of 36 participants of both genders as follows:

Group 1: Control group: 36 Participants (18 males and 18 females) "(SBP = <120 mmHg and DBP = <80 mmHg)" ².

Group 2: Stage 1 Hypertension: 36 Participants (18 males and 18 females) "(SBP = 130-139 mmHg or DBP = 80-89 mmHg)"².

Group 3: Stage 2 Hypertension: 36 Participants (18 males and 18 females) "(SBP = \geq 140 mmHg or DBP = \geq 90 mmHg)"².

Methods of collection of data: Institutional ethical clearance (IEC) was obtained (IEC/No-09/2021 Dated 22/01/2021). Voluntary informed written consent was obtained from all the participants. All the anthropometric parameters, physiological parameters, and electrophysiological parameters were recorded in the supine posture after rest for 10 minutes between 9AM to 11AM at room temperature.

After dividing the 108 persons according to the study design mentioned above, the following parameters have been measured.

I. Anthropometric Parameters:

- a. Height: Height has been measured using a device (BIOCONTM) mounted on the wall and was expressed in centimeters (*cms*).
- b. Weight: Weight has been measured using a weighing machine and is expressed in Kilograms (*Kg*).
- c. Body Mass Index (BMI): Body Mass Index has been calculated manually from weight in Kilograms (*Kg*) divided by height in meters square (m^2) and was expressed as Kg/m^2 .
- d. Waist Circumference (WC) in cms (WHO STEPS protocol 2000).
- e. Hip Circumference (HC) in *cms* (WHO STEPS protocol 2000).
- f. Waist Hip Ratio (WHR) (WHO STEPS protocol 2000).

II. Physiological parameters:

- a. Measurement of BP: SBP (mmHg) and DBP (mmHg) was recorded by using mercury sphygmomanometer. ⁵³
- b. Pulse Rate (PR) in beats per minute (bpm) was measured manually.
- c. Respiratory Rate (RR) in cycles per minute was measured manually.
- d. Temperature (Temp.) in degree ferhenhite was measured using a thermometer.

III. Electrophysiological Parameters:

a. ASI: ASI were recorded in right (R Bra ASI) and left (L Bra ASI) brachial arteries, right (R Ank ASI) and left (L Ank ASI) ankle arteries by using Periscope which is a non-invasive automatic device, work on oscillometric method (Periscope, Genesis Medical Systems, India). ^{54, 55} The values were calculated by estimating the oscillometric envelopes, obtained from the oscillations in the respective artery.

"ASI = [Systolic side value of cuff pressure at 80% of maximal oscillation amplitude of cuff] – [Diastolic side value of cuff pressure at 80% of maximal oscillation amplitude of cuff]" $^{54, 55}$.

b. PWV: PWV was measured by using Periscope and reported as Right Brachial-Ankle PWV (PWV_{b-a} Right) and Left Brachial-Ankle PWV (PWV_{b-a} Left) and Carotid-Femoral PWV (PWV_{c-f}). ^{54,55} All recording were done in supine position and operational bias was avoided as this device is fully automated.

IV. Biochemical Parameters:

- a. Serum total vitamin D level analysis (Chemiluminesence Assay)
- b. Serum Triglyceride (TGL): Serum TGL was estimated by glycerol phosphatase-oxidase (GPO-PAP) method (McGowan MW et al., 1983).
- c. Serum Cholesterol (Chol.): Cholesterol was estimated by using cholesterol oxidase-peroxidase (CHOD-PAP) enzymatic method (Allian CC et al., 1974).
- d. HDL Cholesterol: It was be estimated by using phosphotungstic acid (PTA) method (Burstein M et al., 1970).
- e. Serum Creatinine: It was estimated by using Jaff's Method.
- f. Blood Urea: It was estimated by Diacetyl Monoxime (DAM) method.
- g. FBS: It was measured by Glucose oxidase-peroxidase (GOD-POD) method.
- h. Serum Malondialdehyde (MDA): It was measured by using UV Spectrophotometer at 535 nm.
- Serum Nitric Oxide (NO): It was measured by using UV spectrophotometer at 535 nm.

V. Molecular Parameters:

a. Quantitative estimation of Serum VEGF and Serum EPO were done by Enzyme-linked immunosorbent assay (ELISA) method (Alon T et al., 1995).

Sample size: With Anticipated correlation coefficient between Vitamin D and PWV - 0.555^{48} at 95% confidence level and 90 power in the study, the sample size worked out is 36 per group.

Total sample size= 36+36+36=108

Formula used is

$$N = \left[\left(\frac{Z_a + Z_0}{c} \right) \right]^2 + 3$$
$$C = 0.5 * \ln \left[\frac{1 + r}{1 - r} \right] = 0.2758$$

The standard normal deviate for $\alpha = Z_{\alpha} = 1.960$ The standard normal deviate for $\beta = Z_{\beta} = 1.649$

Inclusion criteria:

- Participants with stage 1 and stage 2 HTN of the age group of 35 to 50 years in B.L.D.E. (Deemed to be University), Shri B. M. Patil Medical College, Hospital and Research Centre, Vijaypura have been included in the study group.
- 2. Control group was normotensive participants of same age group.

Exclusion criteria:

- 1. HTN along with Diabetes Mellitus, Thyroid disorder or other endocrine diseases.
- 2. Patients with vascular diseases or with any other chronic diseases.
- 3. Chronic smokers, Alcoholics & Tobacco chewers.

Statistical Analysis:

The data obtained was entered in a Microsoft Excel sheet and statistical analysis was performed using statistical package for the social sciences (SPSS) (Version 20). Data was presented as Mean ± Standard deviation (SD), frequency, percentages and diagrams. Categorical variables were compared by using Chi-square test. Differences between groups of continuous variables were compared using Mann Whitney U test, Analysis of variance (ANOVA) test, Kruskal Wallis test. Spearman's correlation was used to find correlation between the variables of Anthropometric parameters, Physiological parameters, Electrophysiological parameters, Biochemical parameters and Molecular parameters. p<0.05 was considered statistically significant. All statistical tests are performed two tailed.

RESULTS

All the participants (n = 108) examined were age matched. Table 1 shows the comparison of age between different groups of the study which is statistically insignificant by ANOVA test.

Anthropometric Parameters:

Comparison between anthropometric parameters of three groups is shown in Table 2. It is clearly visible that mean values of all the anthropometric parameters (BMI, WC, HC, WHR) of stage I HTN group are significantly greater than the control group (P<0.001). All these anthropometric parameters of stage II HTN group participants were also found to be significantly higher than stage I HTN group participants (P<0.001). When compared between the genders of the anthropometric parameters of all the groups, there were no significant changes observed (Table 3). The detailed Post hoc analysis report is depicted in Table 4.

N=108	Control Group (n=36)		Stage I (n=36)	Stage I HTN (n=36)		Stage II HTN (n=36)		P Value
	Mean	SD	Mean	SD	Mean	SD		
Age (Year)	42.75	5.65	43.11	5.73	44.72	4.79	F=1.35	P=0.26
Statistically	insignific	ant						

 Table 1: Comparison of Age between three groups:

N=108	Control Group		Stage I	Stage I HTN		Stage II HTN		P Value	
	(n=36)		(n=36)	(n=36)		(n=36)			
	Mean	SD	Mean	SD	Mean	SD	Test		
BMI (Kg/m ²)	23.06	1.31	25.81	3.87	27.9	3.21	45.531	< 0.001	
WC (cm)	84.17	1.59	92.14	9.08	97.5	5.68	52.517	< 0.001	
HC (cm)	85.97	2.91	94.08	9.65	97.8	6.59	44.440	< 0.001	
WHR	0.97	0.03	0.98	0.05	0.99	0.04	29.881	< 0.001	
Statistically significant									

 Table 2: Comparison of Anthropometric Parameters between three groups:

Gender	Male (n=	54)	Female (n=54)		Mann-Whitney U	P Value
	Mean	SD	Mean	SD	Test	
BMI (Kg/m ²)	25.65	4.071	25.52	3.039	U=1361.500	0.550
WC (cm)	91.74	9.341	90.80	7.133	U=1457.500	0.998
HC (cm)	92.13	9.051	93.15	7.968	U=1329.000	0.427
WHR	0.9936	0.021	0.992	0.019	U=1448.000	0.940
Statistically in	nsignifican	t				

N=108	Control Group (n=36)		Stage I HT	'N (n=36)	Stage II HTN (n=36)		
	Stage I	Stage II	Control	Stage II	Control	Stage I	
BMI (Kg/m ²)	0.001	0.001	0.001	0.012	0.001	0.012	
WC (cm)	0.012	0.001	0.001	0.001	0.001	0.001	
HC (cm)	0.001	0.001	0.001	0.069	0.001	0.069	
WHR (wc:hc)	0.001	0.001	0.001	1.000	0.001	1.000	

Table 4: Post hoc test of Anthropometric Parameters between three groups:

Physiological Parameters:

While analyzing the physiological parameters between three groups by Kruskal-Wallis test, it showed significant higher values of PR (P<0.001) in the stage II HTN group participants as compared to the control group participants while other physiological parameters like RR, Temp. did not showed any significant difference between all the three groups which is depicted in Table 5. We did not find any significant difference of any of the physiological parameters between the genders by using Mann Whitney U test (Table 6). In case of stage I and stage II HTN group participants, MAP (mmHg) shows 100.2 ± 2.684 and 109.7 ± 4.911 respectively (Table 5). The detailed analysis report of the Post hoc test of the Physiological parameters is shown in Table 7.

N=108	Control	Group	Stage 1	I HTN	Stage]	II HTN	Kruskal	P Value
	(n=36)		(n=36)		(n=36)		-Wallis	
	Mean	SD	Mean	SD	Mean	SD	Test	
Pulse (bpm)	75.08	7.17	73.47	6.566	81.89	7.797	21.550	<0.001*
RR (cpm)	13.25	1.05	13.33	1.146	13.25	1.052	0.135	0.935
Temp. (F)	97.44	0.51	97.56	0.504	97.44	0.504	1.176	0.555
SBP (mmHg)	115.1	3.39	134.2	2.762	148.1	8.342	90.197	<0.001*
DBP (mmHg)	73.28	4.76	83.17	3.621	90.33	6.076	79.440	<0.001*
PP (mmHg)	41.83	5.05	51.00	4.623	57.72	10.33	51.850	<0.001*
MAP (mmHg)	87.22	3.65	100.2	2.684	109.7	4.911	92.191	<0.001*
*Statistica	lly signifi	cant			1	1		

Table 5: Comparison of Physiological Parameters between three groups:

Gender	Male (n=	=54)	Female ((n=54)	Mann-Whitney U	P Value
	Mean	SD	Mean	SD	Test	
PR (bpm)	75.81	8.143	77.81	7.833	U=1210.500	0.127
RR (cpm)	13.44	1.058	13.11	1.076	U=1206.000	0.106
Temp. (F)	97.46	0.503	97.50	0.505	U=1404.000	0.701
SBP (mmHg)	133.3	15.68	131.6	13.53	U=1394.500	0.696
DBP (mmHg)	82.59	9.410	81.93	7.672	U=1382.000	0.639
PP (mmHg)	50.67	9.292	49.70	10.05	U=1344.000	0.482
MAP (mmHg)	99.54	11.09	98.54	8.855	U=1384.500	0.651
Statistically	insignifica	nt	1	1	1	1

Table 6: Comparison of Physiological Parameters between Genders:

N=108	Control	Group	Stage I H	ΓN	Stage I	I HTN		
	(n=36)		(n=36)		(n=36)	(n=36)		
	Stage I	Stage II	Control	Stage II	Control	Stage I		
PR (bpm)	1.000	0.001	1.000	0.001	0.001	0.001		
RR (cpm)	1.000	1.000	1.000	1.000	1.000	1.000		
Temp. (F)	1.000	1.000	1.000	1.000	1.000	1.000		
SBP (mmHg)	0.001	0.001	0.001	0.001	0.001	0.001		
DBP (mmHg)	0.001	0.001	0.001	0.001	0.001	0.001		
PP (mmHg)	0.001	0.001	0.001	0.001	0.001	0.001		
MAP (mmHg)	0.001	0.001	0.001	0.001	0.001	0.001		

Table 7: Post hoc test of Physiological Parameters between three groups:

Electrophysiological Parameters:

After using Kruskal-Wallis test, the report of comparison of all the Electrophysiological parameters between all the three groups are shown in Table 8 where it is clearly visible that all the arterial stiffness parameters like PWV_{b-a} Right, PWV_{b-a} Left, PWV_{c-f}, R Bra ASI, L Bra ASI, R Ank ASI, L Ank ASI were found to be higher in stage II hypertension group as compared to stage I hypertension group (P<0.001). Both the hypertensive groups were also found to be significantly greater than control group (P<0.001). The detailed Post hoc analysis report of the electrophysiological parameters is depicted in Table 10.

N=108	Control Group (n=36)		Stage I (n=36)	HTN	Stage II (n=36)	HTN	Kruskal -Wallis	P Value
	Mean	SD	Mean	SD	Mean	SD	Test	
R Bra ASI (mmHg)	25.44	2.4	24.44	6.1	36.50	4.98	65.34	<0.001
L Bra ASI (mmHg)	26.08	2.7	25.58	6.2	36.17	5.40	59.71	<0.001
R Ank ASI (mmHg)	31.42	4.3	34.11	7.9	46.03	8.85	50.35	<0.001
L Ank ASI (mmHg)	33.79	5.3	37.97	10	47.27	7.34	42.28	<0.001
PWV _{b-a} Right (cm/s)	1170.7	234	1345	152	1544	246	36.24	<0.001
PWV _{b-a} Left (cm/s)	1136.6	107	1288	162	1418	373	28.56	<0.001
PWV _{c-f} (cm/s)	738.73	98	874.2	139	989.7	175	38.19	<0.001
Statistically s	ignificant							

 Table 8: Comparison of Electrophysiological Parameters between 3 groups:

There were no significant differences of all these parameters between Male and Females when compared by using Mann-Whitney U test (Table 9).

 Table 9: Comparison of Electrophysiological Parameters between Genders:

Gender	Male (n=	54)	Female (1	n=54)	Mann-Whitney	P Value
	Mean	SD	Mean	SD	U Test	
R Bra ASI (mmHg)	29.669	7.981	27.926	6.372	U=1333.500	0.443
L Bra ASI (mmHg)	29.120	7.867	29.431	5.991	U=1349.000	0.503
R Ank ASI (mmHg)	37.70	11.28	36.67	7.867	U=1458.000	1.000
L Ank ASI (mmHg)	39.222	9.294	40.135	10.14	U=1432.000	0.873
PWV _{b-a} Right (cm/s)	1397.9	242.4	1309.4	275.9	U=1262.000	0.228
PWV _{b-a} Left (cm/s)	1247.3	173.3	1314.9	333.9	U=1279.000	0.271
PWV _{c-f} (cm/s)	868.11	168.7	866.99	180.5	U=1434.500	0.885
Statistically insi	gnificant	<u>I</u>	1	<u>I</u>	1	1

Table 10: Post hoc test of Electrophysiological Parameters between three

groups:

N=108	Control Group (n=36)		Stage I HT (n=36)	N	Stage II HT (n=36)	ΓN
	Stage I	Stage II	Control	Stage II	Control	Stage I
R Bra ASI (mmHg)	1.000	0.001	1.000	0.001	0.001	0.001
L Bra ASI (mmHg)	1.000	0.001	1.000	0.001	0.001	0.001
R Ank ASI (mmHg)	0.365	0.001	0.365	0.001	0.001	0.001
L Ank ASI (mmHg)	0.082	0.001	0.082	0.001	0.001	0.001
PWV _{b-a} Right (cm/s)	0.002	0.001	0.002	0.001	0.001	0.001
PWV _{b-a} Left (cm/s)	0.027	0.001	0.027	0.077	0.001	0.077
PWV _{c-f} (cm/s)	0.001	0.001	0.001	0.002	0.001	0.002

Biochemical Parameters:

After using Kruskal-Wallis test, the report of comparison of all the biochemical parameters between the three groups is shown in Table 11.

Serum Vitamin D concentration: It is clearly visible that the concentration of serum total vitamin D level found to be lower in stage II HTN group participants as compared to stage I HTN group participants (P<0.001). The serum total vitamin D concentration in both the HTN groups were also found to be significantly lesser than the control group (P<0.001).

Concentration of Renal Profile (Blood Urea and Serum Creatinine) and FBS:

We also found a significant (P<0.05) higher levels of Blood Urea and Serum Creatinine, FBS concentration in stage II hypertensive participants as compared to stage I hypertensive participants. Both the HTN group participants were found to be having significantly greater (P<0.05) FBS, Blood Urea and Serum Creatinine level concentration in comparison to their respective control group (Table 11).

Concentration of Parameters of Lipid Profile (Serum Total Cholesterol, Serum Triglyceride, HDL Cholesterol): Among the parameters of lipid profiles, we found that concentration of serum total chol. and serum TGL are significantly higher (P<0.05) in stage II HTN group participants as compared to stage I HTN group participants and both the HTN group participants were having a significant higher

(P<0.05) values of serum chol. and serum TGL level concentration as compared to control group participants (Table 11). We also found that the concentration of serum HDL cholesterol is significantly lower (P<0.001) in stage II hypertensive participants as compared to stage I hypertensive participants and both the HTN group participants are having significantly lower (P<0.001) serum HDL cholesterol level concentration as compared to control group participants (Table 11).

Parameters of Oxidative stress (Serum MDA) and Endothelial Dysfunction (Serum Nitric Oxide): We also found that the oxidative stress parameter like concentration of serum MDA is significantly higher (P<0.001) in stage II HTN group participants as compared to stage I HTN group participants and both the HTN group participants were having significantly higher (P<0.001) serum MDA concentration as compared to control group participants (Table 11). The concentration of serum NO level, which is a marker for endothelial dysfunction, were found to be significantly lower (P<0.001) in stage II HTN group participants as compared to stage I HTN group participants and both HTN group participants were having significantly lower (P<0.001) levels of serum NO concentration as compared to control group participants (Table 11). There were no significant differences of all these biochemical parameters between the Male and the Females of each group (Table 12).

N=108		Control Group (n=36)		HTN	Stage II $(n-26)$	HTN	Kruskal -Wallis	P Value
	Mean	II_30) SD	(n=36) Mean	SD	(n=36) Mean	SD	Test	
Total Vit. D (ng/ml)	35.92	4.1	25.41	4.1	17.05	3.51	86.58	<0.001
S. Creatinine (mg/dl)	0.714	0.1	0.944	0.2	1.00	0.17	88.11	<0.001
Blood Urea (mg/dl)	26.58	4.5	27.36	5.6	29.83	6.52	7.92	0.019
FBS (mg/dl)	72.50	8.7	82.42	10	84.17	8.30	25.93	< 0.001
Serum TGL (mg/dl)	118.8	25	137.9	56	148.5	45.8	7.23	0.027
Serum Chol. (mg/dl)	169.9	35	173.1	42	195.4	44.7	7.44	0.024
HDL (mg/dl)	55.25	7.6	47.61	8.2	45.94	9.13	21.30	< 0.001
MDA (µmol/L)	1.014	0.2	1.222	0.4	2.083	0.55	53.09	<0.001
NO (µmol/L)	8.532	1.5	5.694	1.4	3.694	1.16	75.08	< 0.001
Statistically sig	gnificant	I	1	I	1	I	1	1

 Table 11: Comparison of Biochemical Parameters between three groups:

г

Gender	Male (n=	=54)	Female (n=54)		Mann-Whitney	P Value
	Mean	SD	Mean	SD	U Test	
Total Vit. D (ng/ml)	26.15	9.09	26.12	8.31	U=1455.500	0.988
S. Creatinine (mg/dl)	0.904	0.15	0.869	0.23	U=1389.000	0.619
Blood Urea (mg/dl)	29.07	5.58	26.78	5.72	U=1140.000	0.051
FBS (mg/dl)	80.26	11.1	79.13	10.1	U=1366.500	0.574
Serum TGL (mg/dl)	134.6	46.2	135.6	45.8	U=1432.500	0.875
Serum Chol. (mg/dl)	174.6	40.1	184.3	43.9	U=1265.000	0.236
Serum HDL (mg/dl)	49.52	9.51	49.69	8.99	U=1431.500	0.871
MDA (µmol/L)	1.396	0.51	1.484	0.72	U=1448.500	0.952
NO (µmol/L)	5.829	2.27	6.119	2.55	U=1351.500	0.510
Statistically insignificant						

Table 12: Comparison of Biochemical Parameters between Genders:

The detailed Post hoc analysis report of the biochemical parameters is

depicted in Table 13.

N=108	Control (n=36)	Group	Stage (n=36)	I HTN	Stage (n=36)	II HTN
	Stage I	Stage II	Control	Stage II	Control	Stage I
Total Vit. D (ng/ml)	0.001	0.001	0.001	0.001	0.001	0.001
S. Creatinine (mg/dl)	0.001	0.001	0.001	0.364	0.001	0.364
Blood Urea (mg/dl)	1.000	0.048	1.000	0.195	0.048	0.195
FBS (mg/dl)	0.001	0.001	0.001	1.000	0.001	1.000
Serum TGL (mg/dl)	0.214	0.017	0.214	0.954	0.017	0.954
Serum Chol. (mg/dl)	1.000	0.028	1.000	0.068	0.028	0.068
Serum HDL (mg/dl)	0.001	0.001	0.001	1.000	0.001	1.000
MDA (µmol/L)	0.112	0.001	0.112	0.001	0.001	0.001
NO (µmol/L)	0.001	0.001	0.001	0.001	0.001	0.001

Molecular Parameters:

After using Kruskal-Wallis test, the report of comparison of all the Molecular parameters between all the three groups is shown in Table 14.

Concentration of Serum EPO: It is clearly visible that the concentration of Serum EPO is found to be higher in stage II HTN group participants as compared to stage I HTN group participants (P<0.001). Both the HTN group participants were also found to be having significantly greater (P<0.001) level of serum EPO concentration than the control group participants (Table 14).

Concentration of Serum VEGF: It is clearly visible that the concentration of Serum VEGF is found to be lower in stage II HTN group participants as compared to stage I HTN group participants (P<0.001). Both the HTN group participants were also found to be having significantly lesser (P<0.001) level of serum VEGF concentration than their respective control groups (Table 14). There were no significant differences of all these molecular parameters between the genders of all the 3 groups by using Mann-Whitney U test (Table 15).

Control Group		Stage I HTN		Stage II HTN		Kruskal	P Value
(n=36)		(n=36)		(n=36)		-Wallis	
Mean	SD	Mean	SD	Mean	SD	Test	
105.6	25.3	132.6	18.9	151.8	22.1	37.781	< 0.001
410.7	44.1	380.1	26.5	343.3	39.2	34.544	< 0.001
Statistically significant							
	(n=36) Mean 105.6 410.7	(n=36) Mean SD 105.6 25.3 410.7 44.1	$\begin{array}{c ccccc} (n=36) & & & (n=36) \\ \hline Mean & SD & Mean \\ \hline 105.6 & 25.3 & 132.6 \\ \hline 410.7 & 44.1 & 380.1 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(n=36) $(n=36)$ $(n=36)$ MeanSDMeanSDMean105.625.3132.618.9151.8410.744.1380.126.5343.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 14: Comparison of Molecular Parameters between three groups:

Gender	Male (n=54)		Female (n=	=54)	Mann-Whitney	Р	
	Mean	SD	Mean	SD	U Test	Value	
EPO (pg/ml)	133.39	28.614	126.63	29.49	U=1303.500	0.342	
VEGF (pg/ml)	380.24	47.977	375.83	44.76	U=1408.500	0.761	
Statistically insignificant							

 Table 15: Comparison of Molecular Parameters between Genders:

The detailed Post hoc analysis report of the biochemical parameters is

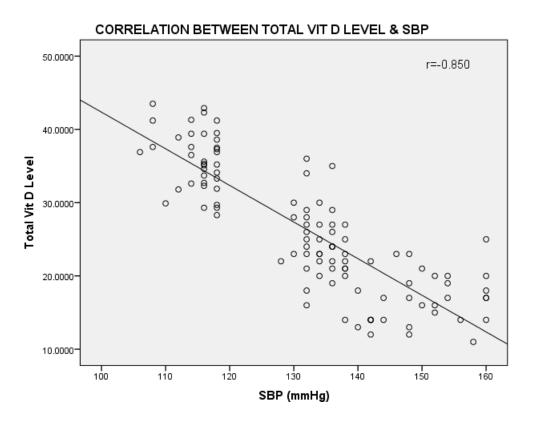
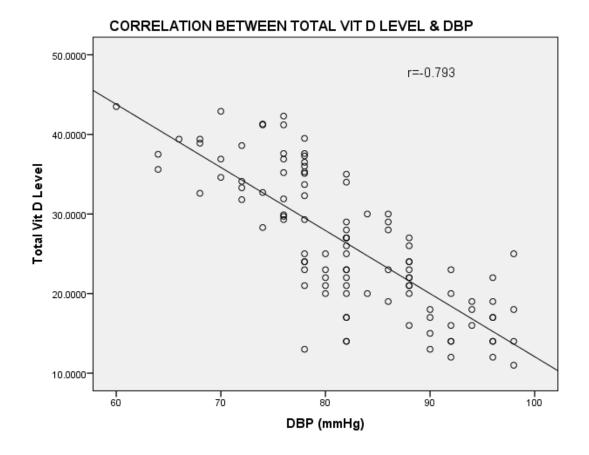
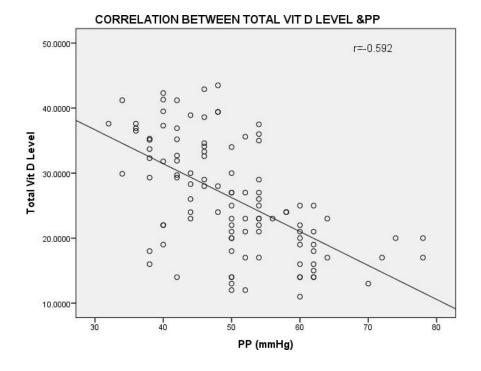

depicted in Table 16.

 Table 16: Post hoc test of Molecular Parameters between three groups:

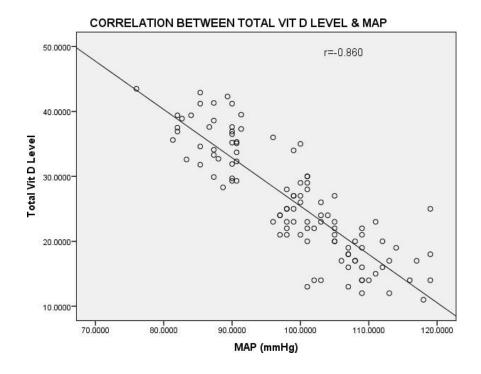

N=108	Control Group (n=36)		Stage I HTN	N (n=36)	Stage II HTN (n=36)		
	Stage I	Stage II	Control	Stage II	Control	Stage I	
EPO (pg/ml)	0.001	0.001	0.001	0.001	0.001	0.001	
VEGF (pg/ml)	0.002	0.001	0.002	0.001	0.001	0.001	

Correlation between serum vitamin D concentration and Blood Pressure:

Graph 1 depicts the correlation between SBP and serum total vitamin D concentration of all the participants of each group. Our results indicate a negative correlation (r = -0.850) between SBP and serum total vitamin D. Graph 2 depicts correlation between DBP and serum total vitamin D concentration of all the participants of each group. Results indicate a negative correlation (r = -0.793) between DBP and serum total vitamin D.

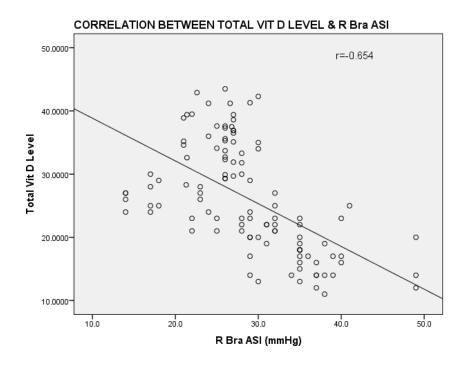


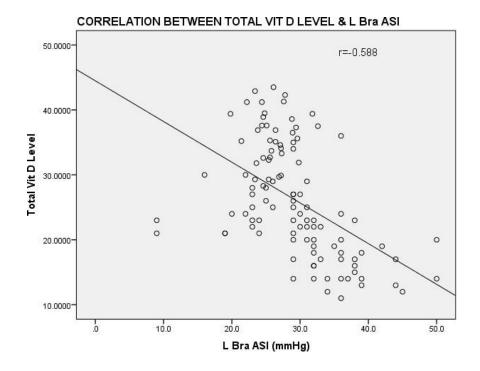
Graph 1: Correlation between serum vitamin D and SBP



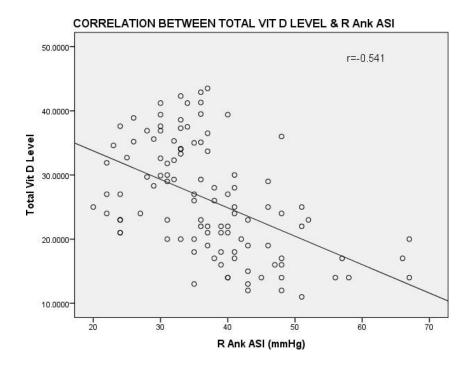
Graph 2: Correlation between serum vitamin D and DBP

Graph 3 depicts the correlation between PP and serum total vitamin D concentration of all the participants of each group. Our results indicate a negative correlation (r = -0.592) between PP and serum total vitamin D. Graph 4 depicts correlation between MAP and serum total vitamin D concentration of all the participants of each group. Results indicate a negative correlation (r = -0.860) between MAP and serum total vitamin D.

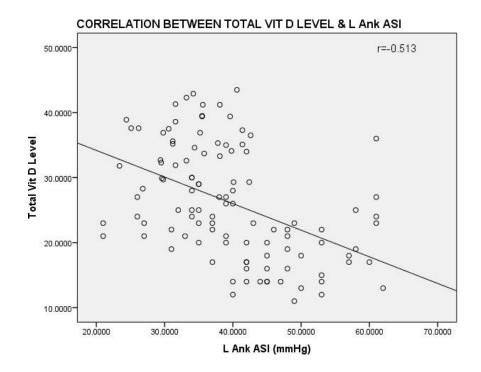

Graph 3: Correlation between serum vitamin D and PP


Graph 4: Correlation between serum vitamin D and MAP

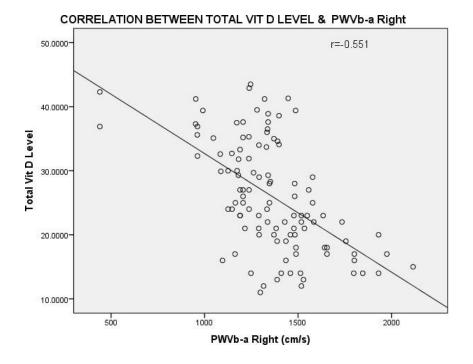
Correlation between serum vitamin D concentration and AS:


Graph 5 depicts correlation between R Bra ASI and serum total vitamin D concentration of all the participants of each group. Results indicate a negative correlation (r = -0.654) between R Bra ASI and serum total vitamin D. Graph 6 depicts the correlation between L Bra ASI and serum total vitamin D concentration of all the participants of each group. Our results are indicating a negative correlation (r = -0.588) between L Bra ASI and serum total vitamin D. Graph 7 depicts the correlation between R Ank ASI and serum total vitamin D concentration of all the participants of each group. Our results are indicating a negative correlation (r = -0.588) between R Ank ASI and serum total vitamin D. Graph 7 depicts the correlation between R Ank ASI and serum total vitamin D concentration of all the participants of each group. Our results indicate a negative correlation of all the participants of each group. Our results indicate a negative correlation (r = -0.541) between R Ank ASI and serum total vitamin D.

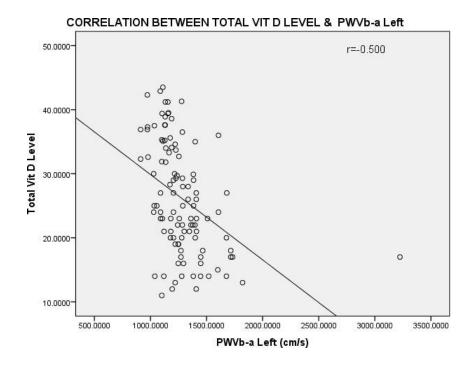
Graph 5: Correlation between serum vitamin D and R Bra ASI



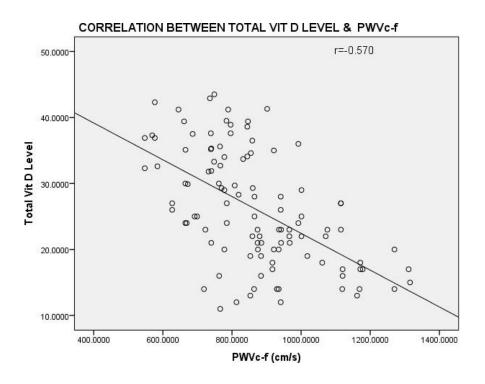
Graph 6: Correlation between serum vitamin D and L Bra ASI



Graph 7: Correlation between serum vitamin D and R Ank ASI

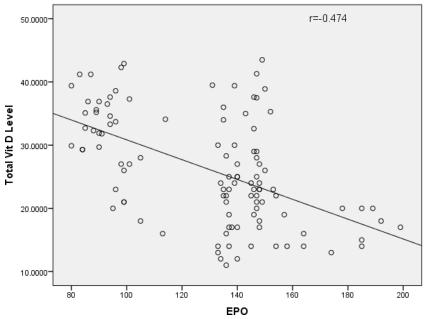

Graph 8 depicts correlation between L Ank ASI and serum total vitamin D concentration of all the participants of each group. Results indicate a negative correlation (r = -0.513) between L Ank ASI and serum total vitamin D. Graph 9 depicts correlation between PWV_{b-a} Right and serum total vitamin D concentration of all the participants of each group. Our results are indicating a negative correlation (r = -0.551) between PWV_{b-a} Right and serum total vitamin D. Graph 10 depicts correlation between PWV_{b-a} Left and serum total vitamin D concentration D concentration of all the participants of each group. Results indicate a negative correlation (r = -0.551) between PWV_{b-a} Left and serum total vitamin D. Graph 10 depicts correlation between PWV_{b-a} Left and serum total vitamin D.

Graph 8: Correlation between serum vitamin D and L Ank ASI

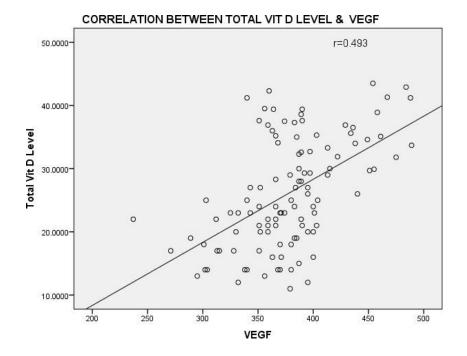


Graph 9: Correlation between serum vitamin D and PWV_{b-a} Right

Graph 10: Correlation between serum vitamin D and PWV_{b-a} Left


Graph 11 depicts correlation between $(PWV_{c-f} \text{ and serum total vitamin D}$ concentration of all the participants of each group. Results indicate a negative correlation (r = -0.570) between PWV_{c-f} and serum total vitamin D.

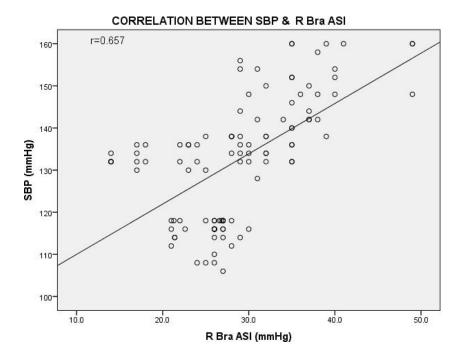
Graph 11: Correlation between serum vitamin D and PWV_{c-f}


Correlation between vitamin D concentration and Molecular Parameters:

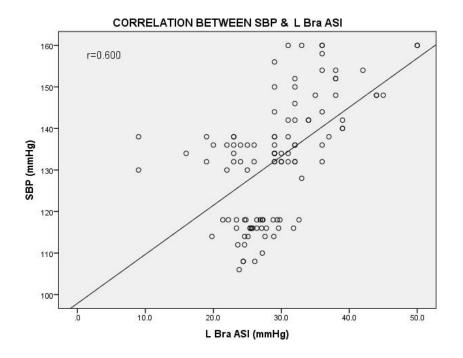
Graph 12 depicts correlation between serum EPO and serum total vitamin D concentration of all the participants of each group. Results indicate a negative correlation (r = -0.474) between EPO and serum total vitamin D.

CORRELATION BETWEEN TOTAL VIT D LEVEL & EPO

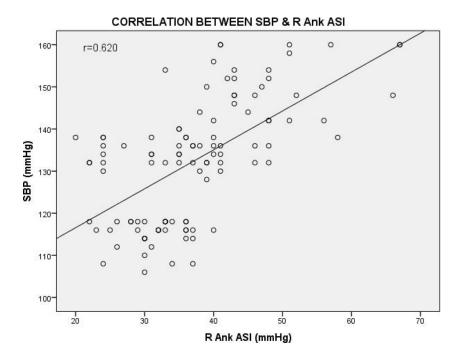
Graph 12: Correlation between serum vitamin D and EPO

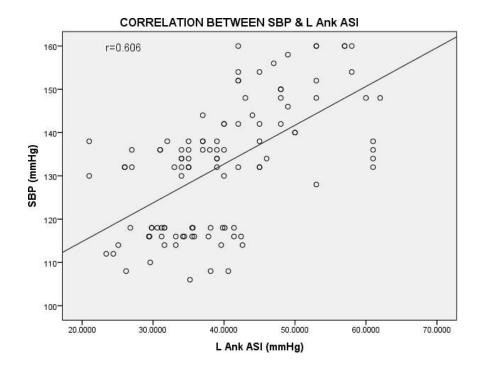


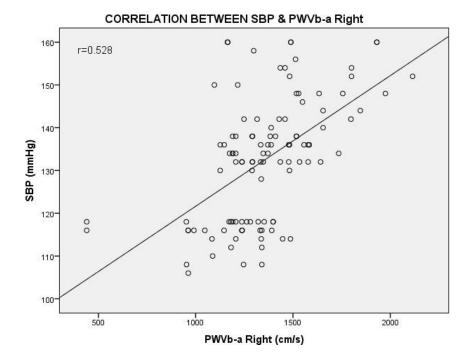
Graph 13: Correlation between serum vitamin D and VEGF

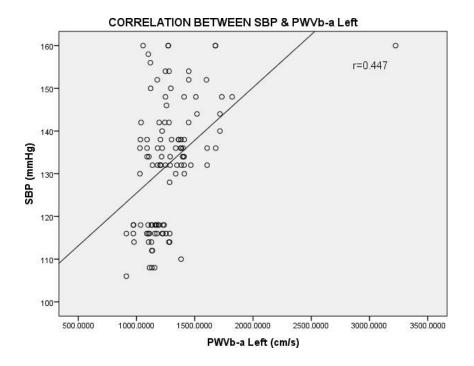

Graph 13 depicts correlation between serum VEGF and serum total vitamin D concentration of all the participants of each group. Results indicate a positive correlation (r = 0.493) between VEGF and serum total vitamin D.

Correlation between SBP and AS:

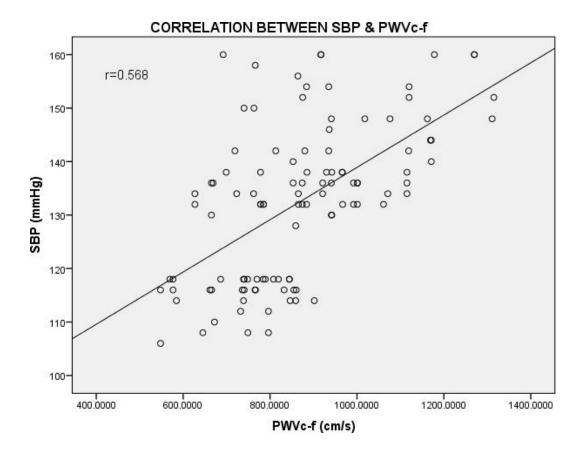

Graph 14 depicts correlation between SBP and R Bra ASI of all the participants of each group. Results indicate a positive correlation (r = 0.657) between R Bra ASI and SBP. Graph 15 depicts correlation between SBP and L Bra ASI of all the participants of each group. Results indicate a positive correlation (r = 0.600) between L Bra ASI and SBP. Graph 16 depicts correlation between SBP and R Ank ASI of all the participants of each group. Results indicate a positive correlation (r = 0.620) between R Ank ASI and SBP. Graph 17 depicts correlation between SBP and L Ank ASI of all the participants of each group. Results indicate a positive correlation (r = 0.606) between L Ank ASI and SBP. Graph 18 depicts correlation between SBP and PWV_{b-a} Right of all the participants of each group. Results indicate a positive correlation (r = 0.528) between PWV_{b-a} Right and SBP.


Graph 14: Correlation between SBP and R Bra ASI


Graph 15: Correlation between SBP and L Bra ASI

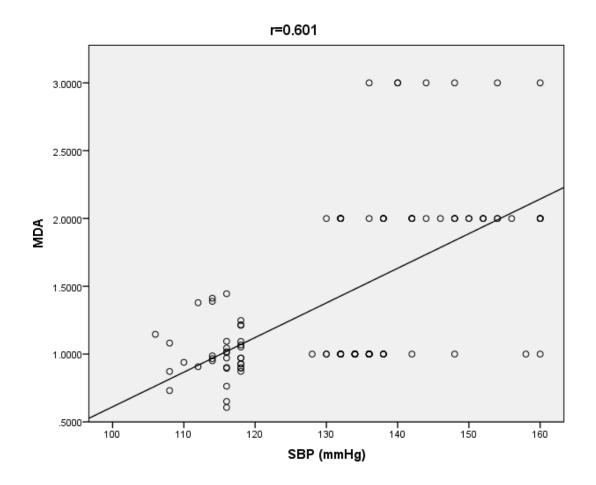

Graph 16: Correlation between SBP and R Ank ASI

Graph 17: Correlation between SBP and L Ank ASI



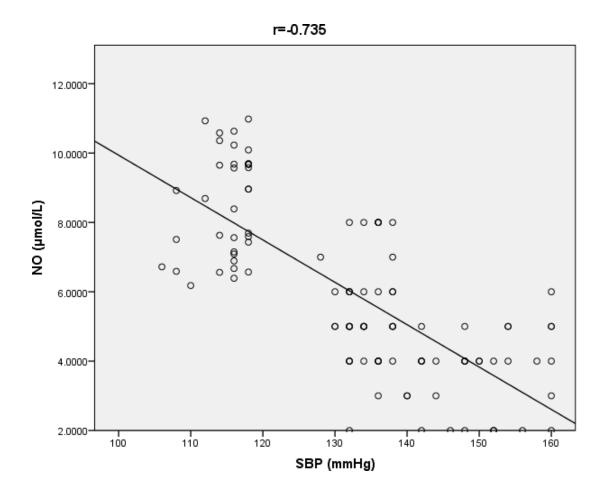
Graph 18: Correlation between SBP and PWV_{b-a} Right

Graph 19: Correlation between SBP and PWV_{b-a} Left


Graph 19 depicts correlation between SBP and PWV_{b-a} Left of all the participants of each group. Results indicate a positive correlation (r = 0.447) between PWV_{b-a} Left and SBP. Graph 20 depicts correlation between SBP and PWV_{c-f} of all the participants of each group. Results indicate a positive correlation (r = 0.568) between PWV_{c-f} and SBP.

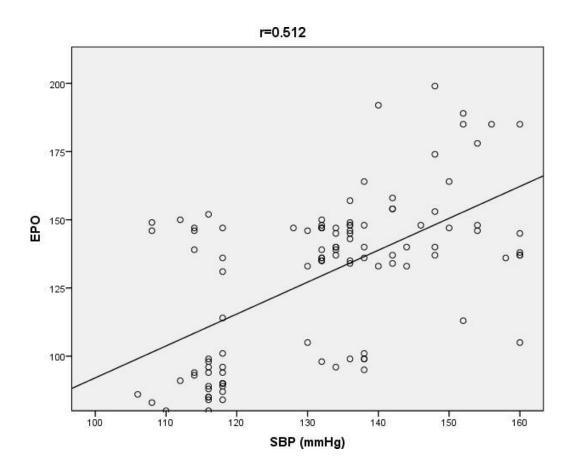
Graph 20: Correlation between SBP and PWV_{c-f}

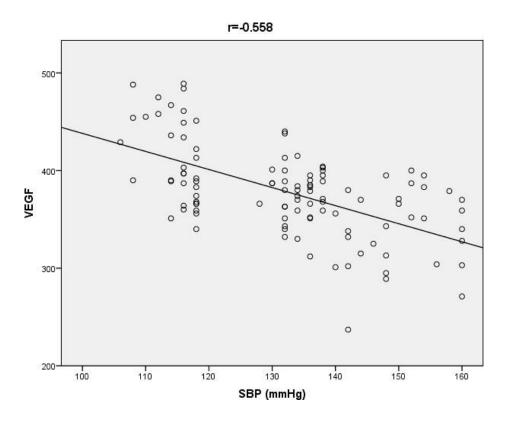
Correlation between SBP and oxidative stress (Malondialdehyde; MDA):


Graph 21 depicts correlation between SBP and serum MDA of all the participants of each group. Results indicate a positive correlation (r = 0.601) between serum MDA and SBP.

Graph 21: Correlation between SBP and serum MDA

Correlation between SBP and the endothelial dysfunction (Nitric Oxide; NO):


Graph 22 depicts correlation between SBP and serum NO of all the participants of each group. Results indicate a negative correlation (r = -0.735) between NO and SBP.


Graph 22: Correlation between SBP and serum NO

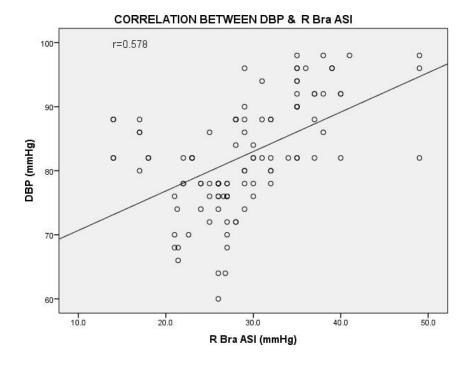
Correlation between Systolic Blood Pressure and Molecular Parameters:

Graph 23 depicts correlation between SBP and Serum EPO concentration of all the participants of each group. Results indicate a positive correlation (r = 0.512) between EPO and SBP. Graph 24 depicts correlation between SBP and Serum VEGF of all the participants of each group. Results indicate a negative correlation (r = -0.558) between VEGF and SBP.

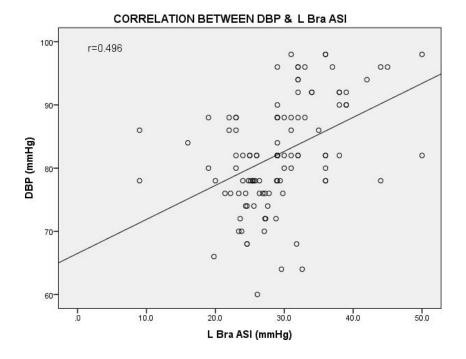
Graph 23: Correlation between SBP and serum EPO

Graph 24: Correlation between SBP and serum VEGF

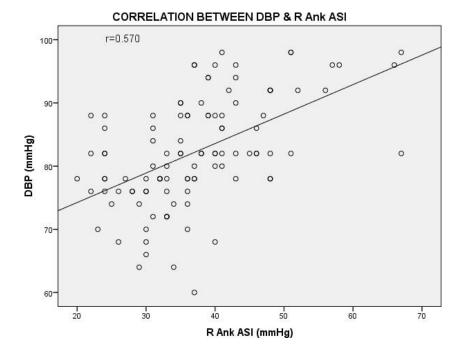
Correlation between Diastolic BP and AS:

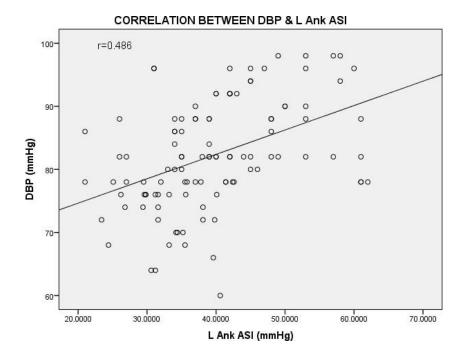

Graph 25 depicts correlation between DBP and R Bra ASI of all the participants of each group. Results indicate a positive correlation (r = 0.578) between R Bra ASI and DBP. Graph 26 depicts correlation between DBP and L Bra ASI of all the participants of each group. Results indicate a positive correlation (r = 0.496) between L Bra ASI and DBP. Graph 27 depicts correlation between DBP and R Ank ASI of all the participants of each group. Results indicate a positive correlation (r = 0.570) between R Ank ASI and DBP. Graph 28 depicts correlation between DBP and L Ank ASI of all the participants of each group. Results indicate a positive correlation (r = 0.486) between L Ank ASI and DBP. Graph 29 depicts correlation between DBP and PWV_{b-a} Right of all the participants of each group. Results indicate a positive correlation (r = 0.447) between PWV_{b-a} Right and DBP. Graph 30 depicts correlation between DBP and PWV_{b-a} Left of all the participants of each group. Results indicate a positive correlation (r = 0.424) between PWV_{b-a} Left and DBP. Graph 31 depicts correlation between DBP and PWV_{c-f} of all the participants of each group. Results indicate a positive correlation (r = 0.424) between PWV_{c-f} of all the participants of each group. Results indicate a positive correlation (r = 0.478) between PWV_{c-f} and DBP.

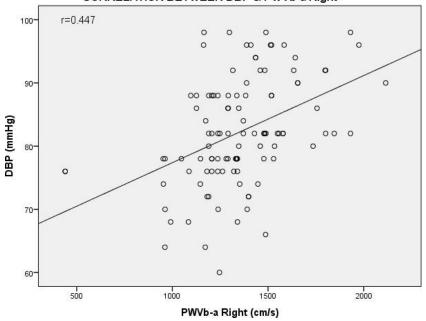
Correlation between DBP and Oxidative Stress (Malondialdehyde; MDA):


Graph 32 depicts correlation between DBP and serum MDA of all the participants of each group. Results indicate a positive correlation (r = 0.565) between serum MDA and DBP.

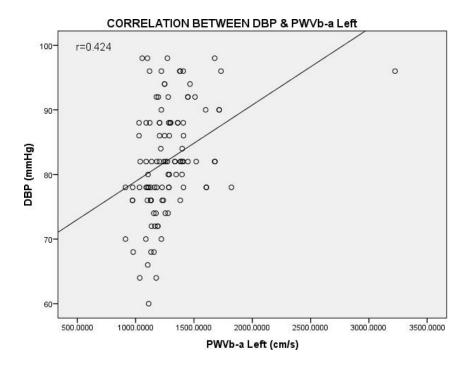
Correlation between DBP and endothelial dysfunction (Nitric Oxide; NO):


Graph 33 depicts correlation between DBP and serum NO of all the participants of each group. Results indicate a negative correlation (r = -0.711) between NO and DBP.

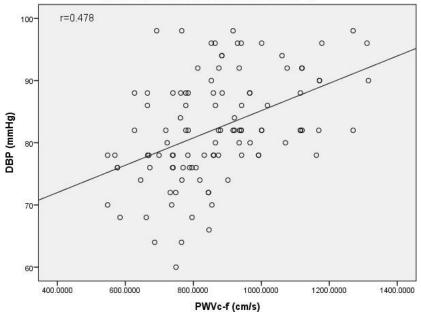

Graph 25: Correlation between DBP and R Bra ASI


Graph 26: Correlation between DBP and L Bra ASI

Graph 27: Correlation between DBP and R Ank ASI

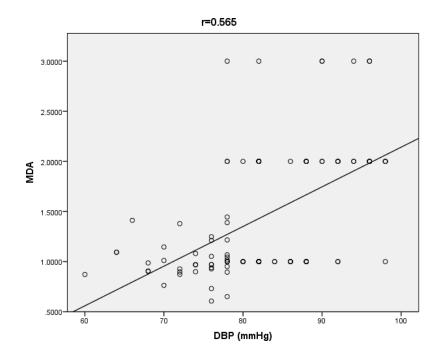


Graph 28: Correlation between DBP and L Ank ASI

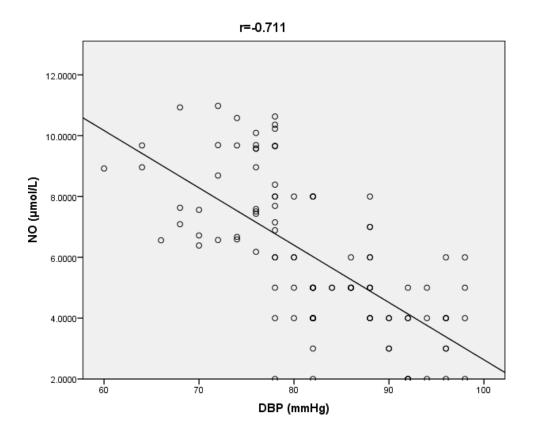


CORRELATION BETWEEN DBP & PWVb-a Right

Graph 29: Correlation between DBP and PWV_{b-a} Right

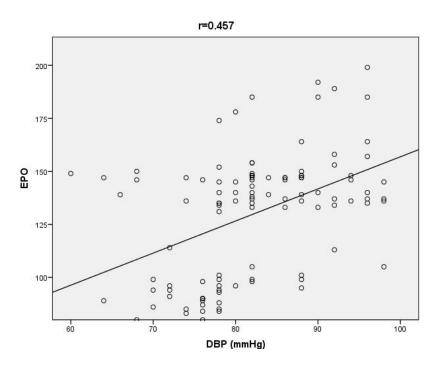


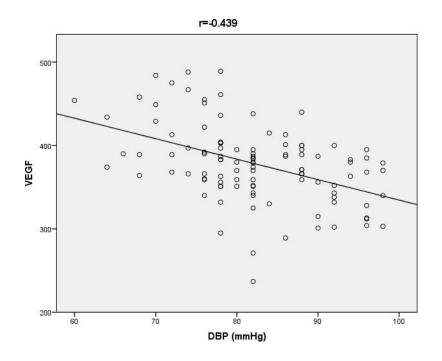
Graph 30: Correlation between DBP and PWV_{b-a} Left



CORRELATION BETWEEN DBP & PWV c-f

Graph 31: Correlation between DBP and PWV_{c-f}


Graph 32: Correlation between DBP and MDA


Graph 33: Correlation between DBP and NO

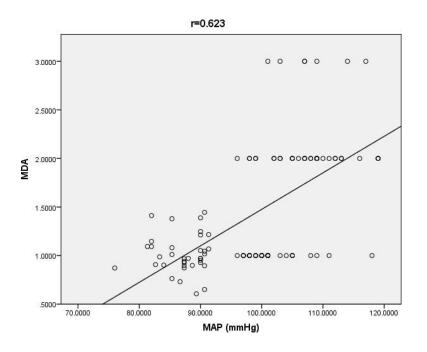
Correlation between DBP and Molecular Parameters:

Graph 34 depicts correlation between DBP and Serum EPO concentration of all the participants of each group. Results indicate a positive correlation (r = 0.457) between EPO and DBP. Graph 35 depicts correlation between DBP and Serum VEGF of all the participants of each group. Results indicate a negative correlation (r = -0.439) between VEGF and DBP.

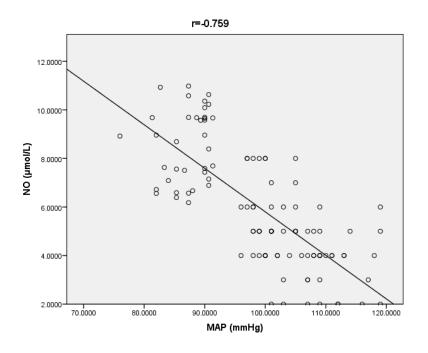
Graph 34: Correlation between DBP and EPO

Graph 35: Correlation between DBP and VEGF

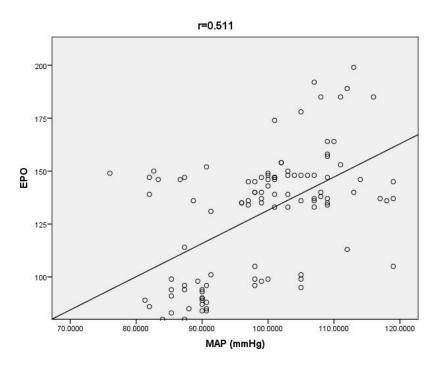
Correlation between MAP and Oxidative Stress (Malondialdehyde; MDA):

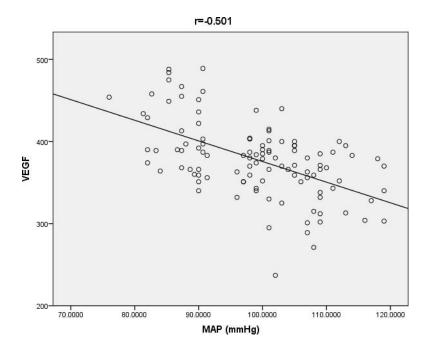

Graph 36 depicts correlation between MAP and serum MDA of all the participants of each group. Results indicate a positive correlation (r = 0.623) between serum MDA and MAP.

Correlation between MAP and endothelial dysfunction (Nitric Oxide; NO):


Graph 37 depicts correlation between MAP and serum NO of all the participants of each group. Results indicate a negative correlation (r = -0.759) between NO and MAP.

Correlation between MAP and Molecular Parameters:


Graph 38 depicts correlation between MAP and Serum EPO concentration of all the participants of each group. Results indicate a positive correlation (r = 0.511) between EPO and MAP. Graph 39 depicts correlation between DBP and Serum VEGF of all the participants of each group. Results indicate a negative correlation (r = -0.501) between VEGF and MAP.


Graph 36: Correlation between MAP and MDA

Graph 37: Correlation between MAP and NO

Graph 38: Correlation between MAP and EPO

Graph 39: Correlation between MAP and VEGF

DISCUSSION

As all the samples from control, stage I HTN and stage II HTN groups showed no significant difference between each other, hence, in this study, all the subjects were found age matched (Table 1).

Comparison of Anthropometric parameters:

Results of anthropometric parameters in this study further showed stage I HTN and stage II HTN group participants were having higher BMI within overweight range as compared to normal subjects. Similarly, significant higher WHR in case of stage I and stage II HTN indicate abdominal obesity influences blood pressure (Table 2, 4). From our observations on physical anthropometry in stage I and stage II hypertensive patients as compared to the normal controls did not show any gender biasness (Table 3). Although in case of female WHR, average is showing above the normal which might be one of the reasons for inducing increase BP. ⁴⁶

Comparison of Physiological parameters:

Although PR in stage II HTN group shows significantly higher values than stage I HTN group and control group but it is within the normal range (60 to 100 bpm). Results also indicate stage I and stage II HTN has no influence on body temperature and RR. Further, increase MAP in stage II and stage I HTN also indicate that the sample selection was following appropriate methodology for

69

inclusion criteria (Table 5, 7). Results also indicate that there is no gender biasness on physiological parameters among the study groups (Table 6).

Comparison of Electrophysiological parameters:

Results of ASI of Right and Left brachial, Right and Left ankle of stage II HTN group were higher as compared to control group (Table 8, 10). Higher ASI in stage II HTN clearly indicates vascular stiffness and pathophysiological changes of vascular system. Results further indicate in case of stage I HTN, the vascular abnormalities are apparently lower but early indication of vascular disintegrity.

Melo E Silva FV et al. conducted a study ⁴⁵ in 2021 to establish an association of body composition with AS concluded that there is a positive correlation between obesity and AS which may lead to cardiovascular risks such as HTN.

AS are also an indicator of early CVD, dementia and possible fatal outcome of individuals. Although ASI reflects ageing but as the subjects included in this study were age matched, hence, ageing factor may not be responsible for increase ASI in the present study. PWV_{b-a} Right, PWV_{b-a} Left, PWV_{c-f} of stage II and stage I HTN group showed significantly higher than control group, which clearly indicate deviation of vascular integrity from normal in both the HTN group. Increase PWV also indicates stiffness of condute arteries which is a prediction of cardiovascular risk.

Kanthe PS et al. in 2015 showed in their study ⁴⁶ that adiposity is directly proportional to future development of cardiovascular events such as HTN, atherosclerosis etc.

The generation of PWV occurs due to contraction of heart. Later, pulse waves travel through the vascular wall with a particular speed which is referred as PWV. If the AS increase, resulted in arterial compliances, leads to increase PWV. Loss of integrity in arterial walls, develop loss of elasticity of the arteries and make arteries become stiff. The more stiffer is the arterial wall, will lead to higher PWV. This pathophysiology changes cardiac functioning and leads to overall dearrangement of cardiovascular system. ⁶⁰ Further, these dearrangements will lead to HTN. Our results found ASI and PWV clearly indicate altered pathophysiology of cardiovascular system. ⁴⁹ Our results are also indicative that PWV is more sensitive and early predictor of severe alteration of vascular pathophysiology as compared to ASI. The decrease elasticity of the arteries make the blood vessels more vulnerable as cardiovascular and Cerebrovascular risk factor. From our observations on electrophysiological parameters in stage I and stage II hypertensive patients as compared to the normal controls did not show any gender biasness (Table 9).

Comparison of Biochemical Parameters:

Results from our study show significant lower vitamin D concentration in both stage I and stage II HTN group participants. Further it is also noticed that vitamin D level in serum decreases more in stage II HTN group participants in comparison to stage I HTN group. The results indicate a clear vitamin D deficiency in stage II HTN (normal range >20 ng/ml). Although stage I HTN is having lower vitamin D in comparison to controls but it is within the normal range. Results clearly indicate a relationship between vitamin D and vascular health. Lower value of vitamin D is well linked with increased risk of HTN. ⁵⁸ Hence, baseline vitamin D level may be considered as a marker for CVD including HTN. An increase relationship between vitamin D and Angiotensin II is already reported. ⁵⁸ Lower vitamin D level is correlated with higher concentration of Angiotensin II which leads to blunted renal plasma protein and over-activation of RAAS, may be one of the reason behind the link between vitamin D and HTN. As endothelial cells contain high concentration of vitamin D receptors and supplementation of vitamin D improve endothelial function and partly regulate BP, hence, lower level of vitamin D probably influences endothelial cell of vascular wall and induces HTN. 57 Further, concentration of vitamin D in blood is related to intracellular calcium homeostasis. Hence, this regulation also positively associated with BP by calcium influx to vascular smooth muscles under the influences of 1,25-dihydroxycholecalciferol. ⁵⁶

The amount of vitamin D produced by the body depending on age, sunlight exposure, color of the skin, seasons, etc. It has been found in winter, UV-B radiation is low, hence, skin produces less vitamin D. Hence, maintenance of vitamin D is very crucial for not only skeletal health but also for vascular health. The risk of myocardial infarction (MI) greatly increased when vitamin D level is found to be <15 ng/ml. Hence, clinicians must notice vitamin D level of any patient of either stage I or stage II HTN. ⁵⁷ Although Serum Creatinine and Blood Urea showed higher values in stage I and stage II HTN group participants but it is within normal range. Similarly FBS and lipid profile also found to be in normal range in stage I and stage II HTN group participants. In case of lipid profile, serum HDL was found to be lesser than normal range in both stage I and stage II HTN. ⁵⁸

Oxidative and nitrosative stress parameter in case of stage I and stage II hypertensive patients were found to be remarkably altered. Increase MDA in both stage I and stage II HTN indicate altered vascular pathophysiology. Excessive MDA in stage I and stage II HTN in our study may be due to generation of more reactive oxygen species (ROS), which is a key factor of HTN pathology by modulating vasomotor system and developing vasoconstriction through Angiotensin II. Lower the NO level in stage I and stage II HTN patients indicate lesser bioavailability of NO, which is a potent vasodilator and extremely dependent

on Redox signaling system. Increase level of ROS in our study probably induced vascular remodeling via oxidative damage. Hence, both MDA and NO result in our study confirm alteration of arterial smooth muscle cells and endothelial cells. The results of NO also to be considered as a degree of HTN, possibly antioxidant status might have changes simultaneously during HTN which we could not assess and we consider it is our limitation. ⁵⁹

Comparison of Molecular Parameters:

Increase level of serum EPO in both stage I and stage II hypertensive patients indicate loss of vascular integrity due to HTN. Although different types of explanations were given for rise of BP or HTN and increased level of EPO probably due to reduced oxygen supply to the tissue in vasoconstriction induced HTN, but, role of altered angiogenesis may not be ruled out for a positive correlation between BP and serum EPO concentration, may be due to decreased angiogenesis.⁶¹ Report also suggested that serum EPO level has a positive correlation with vascular resistance which may also lead to HTN. A possible role of EPO induced hematocrit values and erythrocyte mass alter the integrity of vascular smooth muscles, lead to disregulation of endothelial vasodilatory factors like NO. ⁴⁸ Our results of low NO probably support this observation. It has been noticed that treating with EPO to chronic kidney disease (CKD) patients develop severe arterial HTN. The possible reason of this development may be done to EPO

induced increased blood viscocity and decrease hypoxic vasodilatation. ^{62, 63} The results found serum VEGF decreases in both stage I and stage II HTN. VEGF protein synthesis depends on hypoxia signaling pathway (VSP) regulates arterial smooth muscle pathophysiology. Hence, in alteration of VEGF clearly indicate cardiovascular and cerebrovascular diseases. In our study lower level of VEGF probably influences reduced vasculogenesis and remodel vascular architecture during stage I and stage II HTN. ⁶⁴ Report also found VEGF inhibition leads to HTN as decrease VEGF also reduces NO synthesis, microvascular abnormalities and increase vascular resistance, which leads to development of HTN.⁶⁴ Our results of lower level of NO and VEGF support these findings. Another possible reason of VEGF signaling NO synthesis is VEGF receptor (VEGFR). ⁶⁵ As in our study, we did not assay VEGFR in serum; hence, we cannot explain the role of VEGFR induced HTN. It may be considered as one of the limitation of our study. Although the exact reason behind HTN and VEGF is not clearly defined but serum VEGF need to be considered as one of the important marker for progressive HTN, especially transformation of HTN stage I and stage II.

CONCLUSION

Our study has been assigned to understand the role of vitamin D and its impact on stage I and stage II hypertension. The findings of the present study are suggestive that there is a beneficial role of vitamin D in maintenance of an optimal cardiovascular health by delaying the arterial stiffness and hypertension at any stage. Hence, it is suggested that each middle aged individual should be assessed for level of vitamin D concentration if suspected for any cardiovascular risk and vitamin D supplementation may be advised to prevent or treat cardiovascular diseases such as hypertension. Our findings are also suggestive of altered anthropometric parameters as risk factors for vascular stiffening and future adverse cardiovascular diseases such as hypertension. Hence, we suggest parameters to assess arterial stiffness to be considered for screening of patients who are suspected to have future cardiovascular events. We also found that oxidative stress and endothelial function is altered in hypertensive individuals. Overall finding from our results indicate significant impact of vitamin D in relation to hypertension as blood pressure, arterial stiffness, EPO negatively correlate and VEGF positively correlate with vitamin D. So, vitamin D can be considered as one of the strongest markers in hypertension at any stage.

SUMMARY

- Most of the current population of hypertensive patients may remain undiagnosed and don't seek medical attention. The debate regarding the role of vitamin D in control of BP is still ongoing. Many studies showed increase prevalence of hypertension during winter and in the areas where the exposure to the sunlight is reduced.
- Our study was undertaken to understand the role of vitamin D and its impact on stage I and stage II hypertension.
- We found a beneficial role of vitamin D in prevention of hypertension and other cardiovascular diseases. Optimal vitamin D concentration is helpful in delaying arterial stiffness. Arterial stiffness is positively correlated with hypertension. Oxidative stress, endothelial functions get altered if arteries become stiffer. Oxygen sensing proteins such as EPO positively and VEGF negatively influence blood pressure and arterial stiffness.
- All persons who are suspected for future cardiovascular risks may regularly screened for their vascular status and serum vitamin D concentration.
- Altered anthropometric parameters may be considered as risk factors for altered vascular status and should be screened for future cardiovascular pathophysiological events.

BIBLIOGRAPHY

- 1. <u>https://www.who.int/india/health-topics/hypertension</u>
- Kumari R, Rai N, Sharma HB, Kailashiya J. Impact of american heart association's new hypertension guidelines (2017) on disease burden and association with obesity indices. Indian J Physiol Pharmacol. 2020;64(1): 17-26.
- 3. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357: 266-281.
- Mehta V, Agarwal S. Does vitamin D deficiency lead to Hypertension?. Cureus. 2017 Feb; 9(2).
- Armas-Padilla MC, Armas-Hernández MJ, Sosa-Canache B, Cammarata R, Pacheco B, Guerrero J, et al. Nitric oxide and malondialdehyde in human hypertension. Am J Ther. 2007 Mar-Apr;14(2): 172-176.
- Vaziri ND. Mechanism of erythropoietin-induced hypertension. Am J Kidney Dis. 1999 May;33(5): 821-828.
- Robinson ES, Khankin EV, Humphreys BD. Hypertension Induced by VEGF Signaling Pathway Inhibition: Mechanisms and Potential Use as a Biomarker. Semin Nephrol. 2010 Nov; 30(6): 591-601.
- Gedikli O, Kiris A, Karahan C. Circulating levels of erythropoietin and its relation to arterial stiffness in patients with hypertension. Int J Clin Exp Med. 2013; 6(8): 706-711.

- 9. Hall JE, In: Hall ME, Vaz M, Kurpad A, Raj T. Guyton and Hall Textbook of Medical Physiology, Third South Asia edition. Elsevier; p. 259-64
- 10. Takashi Taruni, Muhammad Ayaz Khan Jie Lin et al. Cerebral Haemodynamics in Normal Ageing:Central Arterial Stiffness, wave reflection, and Pressure pulsatility. Journal of Cerebral blood flow and Metabolism. 2014;34: 971-978.
- 11.Harrington F, Saxby BK, Mckeith IG, Wesnes K, Ford GA. Cognitive performance in hypertensive and normotensive older subjects. Hypertension. 2000 Dec 1; 36(6): 1079-82.
- 12.<u>https://newsroom.heart.org/news/high-blood-pressure-redefined-for-first-time-in-14-years-130-is-the-new-high</u>.
- 13. Bressendorff I, Brandi L, Schou M, Nygaard B, Frandsen NE, Rasmussen K, et al. The Effect of High Dose Cholecalciferol on Arterial Stiffness and Peripheral and Central Blood Pressure in Healthy Humans: A Randomized Controlled Trial. PLoS ONE. 2016;11(8): e0160905.
- 14. AI Mheid I, Patel R, Murrow J, et al. Vitamin D status is associated with arterial stiffness and vascular dysfunction in healthy humans. J Am Coll Cardiol. 2011;58: 186-192.

- 15.Giallauria F, Milaneschi Y, Tanaka T, et al. Arterial stiffness and vitamin D levels: the Baltimore longitudinal study of aging. J Clin Endocrinol Metab. 2012;97: 3117-3123.
- 16.Kuloglu O, Gur M, Seker T, Kalkan GY, Sahin DY, et al. Serum 25hydroxyvitamin D level is associated with arterial stiffness, left ventricular hypertrophy, and inflammation in newly diagnosed hypertension. J Investig Med 2013; 61: 989-994.
- 17.Kang Y J, Kim K M, Jung S, Shin J, Choi Y B. The cross sectional relationships of dietary and serum vitamin D with cardiometabolic risk factors: Metabolic components, subclinical atherosclerosis, and arterial stiffness. ELSEVIER Nutrition. 2016 Feb; 32: 1048-1056.
- 18.Chen S, Sun Y, Agarwal DK. Vitamin D deficiency and essential hypertension. J Am Soc Hypentens. Author manuscript. 2015 November; 9(11): 885-901.
- 19.0h YS. Arterial stiffness and hypertension. Clin Hypertens. 2018; 24(17).
- 20.Mullur L, Das KK, Biradar MS, Alteration of Serum vitamin D in patients of myocardial infarction and ischemic heart diseases. Indian Journal of Public Health Research and Development 2019;10: 475-478.

- 21. Burgaz A, Orsini N, Larsson S, et al. Blood 25-hydroxyvitamin D concentration of hypertension: a meta-analysis. J Hypertens. 2011; 29: 636-645.
- 22. Li YC. Vitamin D regulation of the rennin-angiotensin system. J Cell Biochem. 2003; 88: 327-331.
- 23. Clemens TL, Henderson SL, Adams JS, Holick MF. Increase skin pigment reduces the capacity of skin to synthesise vitamin D₃. The Lancet. 1982; 1 (8263): 74-76.
- 24. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. The American Journal of Clinical Nutrition. 2004; 6(80): 1689-1696.
- 25. Rostand SG. Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension. 1997; 30(2): 150-156.
- 26. Ullah MI, Uwaifo GI, Nicholas WC, Koch CA. Does vitamin D deficiency cause hypertension? current evidence and clinical studies and potential mechanisms. International Journal of Endocrinology. 2010; 1-11.
- 27. McCarron DA, Pingree PA, Rubin RJ, Gaucher SM, Molitch M, Krutzik S. Enhanced parathyroid function in essential hypertension: a homeostatic response to a urinary calcium leak. Hypertension. 1980; 2(2): 162-168.

- 28. Cooper R, Rotimi C. Hypertension in population of West African origin: is there a genetic predisposition? Journalof Hypertension. 1994; 12(3): 215-227.
- 29. Zemel MB, Zemel PC, Bryg RJ, Sowers JR. Dietary calcium induces regression of left ventricular hypertrophy in hypertensive non-insulindependent diabetic blacks. American Journal of Hypertension. 1990; 6(3): 458-463.
- 30. Zemel MB, Gualdoni SM, Sowers JR. Reduction in total and extracellular water associate with calcium induced natriuresis and antihypertensive effects of calcium in blacks. American Journal of Hypertension. 1988; 1(1): 70-72.
- 31. Griffith LE, Guyatt GH, Cook RJ, Bucher HC, Cook DJ. The influence of dietary and nondietary calcium supplementation on blood pressure: an updated metaanalysis of randomized controlled trials. American Journal of Hypertension. 1999; 12(1): 84-92.
- 32. Allender PS, Cutler JA, Follmann D, Cappuccio FP, Prayer J, Elliott P. Dietary calcium and blood pressure: a metaanalysis of randomized controlled trials. Annals of Internal Medicine. 1996; 124(9): 825-831.
- 33. Scragg R, Sowers M, Bell C. Serum 25-hydroxyvitamin D, ethnicity and blood pressure in the Third National Health and Nutrition Examination Survey. American Journal of Hypertension. 2007; 20(7): 713-719.

- 34. Judd SE, Nanes MS, Ziegler TR, Wilson PWF, Tangpricha V. Optimal vitamin D status attenuates the age-associated increase in systolic blood pressure in white Americans: Results from the Third National Health and Nutrition Examination Survey. The American Journal of Clinical Nutrition. 2008; 87(1): 136-141.
- 35. Krause R, Buhring M, Hopfenmuller W, Holick MF, Sharma AM. Ultraviolet B and blood pressure. The Lancet. 1998; 9129(352): 709-710.
- 36. Pfeifer M, Begerow B, Minne HW, Nachtigall D, Hansen C. Effect of a short term vitamin D₃ and calcium supplementation on blood pressure and parathyroid hormone levels in elderly women. The Journal of Clinical Endocrinology and Metabolism. 2001; 86(4): 1633-1637.
- 37. Forman JP, Bischoff-Ferrari HA, Willwtt WC, Stampfer MJ, Curhan GC. Vitamin D intake and risk of incident hypertension: results from three large prospective cohort studies. Hypertension. 2005; 46(4): 676-682.
- 38. Orwoll ES, Oviatt S. Relationship of mineral metabolism and long-term calcium and cholecalciferol supplementation to blood pressure in normotensive men. The American Journal of Clinical Nutrition. 1990; 52(4): 717-721.

- 39. Scragg R, Khaw KT, Murphy S. Effect of winter oral vitamin D₃ supplementation on cardiovascular risk factors in elderly adults. European Journal of Clinical Nutrition. 1995; 49(9): 640-646.
- 40. Higashino H, Miya H, Mukai H, Miya Y. Serum nitric oxide metabolite (NO_x) levels in hypertensive patients at rest: A comparison of age, gender, blood pressure and complications using normotensive controls. Clinical and Experimental Pharmacology and Physiology. 2007; 34(8): 725-731.
- 41. Goch A, Banach M, Mikhailidis DP, Rysz J, Goch JH. Endothelial dysfunction in patients with noncomplicated and complicated hypertension.Clinical and Experimental Hypertension. 2009; 31(1): 20-30.
- 42. Bagali S, Nerune SM, Reddy RC, Yendigeri SM, Patil BS, Naikwadi AA, et al. Low oxygen microenvironment and cardiovascular remodeling: Role of dual L/N. type Ca²⁺ channel blocker. Indian Journal of Pharmacology. 2020; 52(5): 383-391.
- 43. Ferroni P, Basili S, Paoletti V, Davi G. Endothelial dysfunction and oxidative stress in arterial hypertension. Nutrition, Metabolism and Cardiovascular Diseases. 2006; 16(3): 222-223.
- 44. Hou JS, Wang CH, Lai YH, Kuo CH, Lin YL, Hsu BG, et al. Serum Malondialdehyde-Modified Low-Density Lipoprotein is a risk factor for

central arterial stiffness in maintenance hemodialysis patients. Nutrients. 2020; 12(7): 2160.

- 45. Melo E Silva FV, Almonfrey FB, Freitas CMN, Fonte FK, Sepulvida MBC, Almada-Filho CM, et al. Association of Body Composition with Arterial Stiffness in Long-lived People. Arq Bras Cardiol. 2021 Sep;117(3): 457-462.
- 46. Kanthe PS, Bagali S, Shaikh GB, Patil SM, Patil BS, Aithala MR. Different Anthropometric Adiposity Measures and their Association with cardiovascular Disease Risk Factors in Middle Aged Women. Indian J Physiol Pharmacol 2015; 59(1): 57–62.
- 47. Gedikli O, Kiris A, Karahan C. Circulating levels of erythropoietin and its relation to arterial stiffness in patients with hypertension. Int J Clin Exp Med. 2013; 6(8): 706-711.
- 48. Vaziri ND. Mechanism of erythropoietin-induced hypertension. Am J Kidney Dis. 1999 May;33(5): 821-828.
- 49. Khodnapur JP, Das KK. Age-associated changes in vascular health and it's relation with erythropoietin. Indian J Physiol Pharmacol 2021; 65(2): 119-126.

- 50. Robinson ES, Khankin EV, Humphreys BD. Hypertension Induced by VEGF Signaling Pathway Inhibition: Mechanisms and Potential Use as a Biomarker. Semin Nephrol. 2010 Nov; 30(6): 591-601.
- 51. Papaioannou AI, Zakynthinos E, Kostikas K, Kiropoulos T, Koutsokera A, Ziogas A, et al. Serum VEGF levels are related to the presence of pulmonary arterial hypertension in systemic sclerosis. BMC Pulm Med. 2009; 9(18): 1471-2466.
- 52. Caletti S, Paini A, Coschignano MA, Ciuceis CD, Nardin M, Zulli R, et al. Management of VEGF-Targeted therapy-induced hypertension. Curr Hypertens Rep. 2018; 29(20): 68.
- 53. Pickering D, Stevens S. "How to measure and record blood pressure." Community eye health vol. 26,84 (2013): 76.
- 54. Naidu MU, Reddy BM, Yashmaina S, Patnaik AN, Rani PU. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: a pilot study. Biomed Eng Online. 2005 Aug 23;4: 49.
- 55. Naidu MU, Reddy CP. Non-Invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry. Indian J Pharmacol. 2012;44: 230-3.

- 56. Eong HY, Park KM, Lee MJ, Yang DH, Kim SH, Lee SY. Vitamin D and Hypertension. Electrolyte Blood Press. 2017 Sep; 15(1): 1-11
- 57. Shan J, Resnick LM, Lewanczuk RZ, Karpinski E, Li B, Pang PK. 1,25-Dihydroxyvitamin D as a cardiovascular hormone: effects on calcium current and cytosolic free calcium in vascular smooth muscle cells. Am J Hypertens. 1993; 6: 983-988.
- 58. Johanna M. Geleijnse, Vitamin D and the Prevention of Hypertension and Cardiovascular Diseases: A review of the current evidence, American Journal of Hypertension. 2011 March; 24(3): 253-62.
- 59. Rodrigo R, Gonzalez J, Paoletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res. 2011 Apr; 34(4): 431-40.
- 60. Das KK. Vascular physiology: A bridge between health and disease. Indian J Physiol Pharmacol 2022; 66:155-6.
- 61. Brar SK, Perveen S, Chaudhry MR, AlBabtain S, Amreen S, Khan S. Erythropoietin-induced Hypertension: A review of pathogenesis, Treatment, and Role of Blood Viscosity. Cureus. 2021 Jan 20; 13(1):e12804.
- 62. Raine AEG, Roger SD: Effects of erythropoietin on blood pressure. Am J Kidney Dis. 1991; 18 (suppl 1): 76-83.
- 63. Panzacchi G, Pieruzzi F, Castoldi G, Busca G, Bolla GB, Buccianti G, et al. Effects of erythropoietin administration on blood pressure and urinary

albumin excretion in rats, American Journal of Hypertension. 1997; 10(7): 772-778.

- 64. Touyz RM, Herrmann SMS, Herrmann J. Vascular toxicities with VEGF inhibitor therapies-focus on hypertension and arterial thrombotic events. Journal of the American Society of Hyperetnsion. 2018; 12(6): 409-425.
- 65. Boursiquot BC, Zabor EC, Glezerman IG, Jaimes EA. Hypertension and VEGF Receptor Tyrosine kinase inhibition: Effects on Renal Function. Hyperetnsion. 2017 Jul 24.

ANNEXURE-I

CONSENT FORM

INFORMED CONSENT FOR PARTICIPATION IN DISSERTATION/RESEARCH

1, the	e undersi	gnea,						_, 5/0 D	/0 w/0
			, aged	year	s, ordinaril	y resident	of		do
hereby state	declare	that Dr				of			
Hospitalha	s examin	edme tho	roughly o	n	at	(pla	ice) and it ha	s been er	xplained
to me in m	y own lai	nguage th	at I am s	ufferin	g from				
disease (co	ndition)	and this	disease/	conditi	on mimic	following	g diseases .	Further	Doctor
informed	me	that	he/she	is	conducti	ing di	ssertation/re	search	titled
						_	under	the guid	ance of
Dr					request	ing my pa	articipation i	n the stu	idy.

Doctor has also informed me that during conduct of this procedure adverse result may be encountered. Among the above complications most of them are treatable but are not anticipated hence there is chance of aggravation of my condition and in rare circumstances it may prove fatal in spite of anticipated diagnosis and best treatment made available. Further Doctor has informed me that my participation in this study will help in evaluation of the results of the study which is useful reference to treatment of other similar cases in near future, and also I may be benefited in getting relieved of suffering or cure of the disease I am suffering.

The Doctor has also informed me that information given by me, observations made/ photographs/video graphs taken upon me by the investigator will be kept secret and not assessed by the person other than me or my legal hirer except for academic purposes.

The Doctor did inform me that though my participation is purely voluntary, based on information given by me, I can ask any clarification during the course of treatment / study related to diagnosis, procedure of treatment, result of treatment or prognosis. At the same time I have been informed that I can withdraw from my participation in this study at any time if I want or the investigator can terminate me from the study at any time from the study but not the procedure of treatment and follow-up unless I request to be discharged.

After understanding the nature of dissertation or research, diagnosis made, mode of treatment, I the undersigned Shri/<u>Smt</u>______under my full conscious state of mind agree to participate in the said research/dissertation.

Signature of Patient:

Signature of Doctor:

2.

Witness: 1.

ANNEXURE-II

CLINICAL PROFORMA

NAME :		OP/IP No.:
AGE:	GENDER:	D.O.A:
RELIGION :		D.O.D:
OCCUPATION :		
RESIDENCE :		
Presenting Complaints :		
Past history :		
Personal history :		
Treatment history :		
General physical examination :		
VITALS: PR:	RR:	WC: HC:
BP:	TEMPERATUR	RE: BMI:
SYSTEMIC EXAMINATION:		
Cardiovascular system:		
Other Systems:		
Clinical Diagnosis:		

INVESTIGATIONS:

Parameter	Group-1	Group-2	Group-3
Total Vitamin D level			
Serum lipid profile			
Serum Creatinine			
Blood Urea			
Fasting Blood Sugar			
MDA			
NO			
EPO			
VEGF			
PWV			
ASI			

ANNEXURE-III

ETHICAL CLEARANCE CERTIFICATE

B.L.D.E. (DEEMED TO BE UNIVERSITY) Date-22/01 (Declared vide notification No. F.9-37/2007-U.3 (A) Dated. 29-2-2008 of the MHRD, Government of India under Section 3 of the UGC Act, 1956) The Constituent College SHRI, B. M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE

INSTITUTIONAL ETHICAL CLEARANCE CERTIFICATE

The Institutional ethical committee of this college met on 11-01-2021 at 11-00 am to scrutinize the synopsis of Postgraduate students of this college from Ethical Clearance point of view. After scrutiny the following original/corrected and revised version synopsis of the Thesis has been accorded Ethical Clearance

Title: Influence of Vitamin D on Arterial Stiffness in Hypertensive patients with special reference to Oxygen sensing protein expression.

Name of PG student: Dr Amrit Podder, Department of Physiology

Name of Guide/Co-investigator: Dr Sumangala Patil, Professor & HOD of Physiology

Co - Guide : Dr Sharan Badiger, Professor & HOD of Medicine

DR S CHAIRMAN, IEC Institutional Ethical Committee B L D E (Document to ... University) Shri C. J. College, VIJAYAPUR-536103 (Kamataka)

ANNEXURE-IV

MASTER DATA

App App App App App <th></th> <th></th> <th></th> <th>Gen</th> <th></th> <th></th> <th></th> <th>Waist</th> <th>Pul</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>R</th> <th>T</th> <th>R</th> <th>L</th> <th>PWV</th> <th>PWV</th> <th>PWV</th> <th></th> <th>Tota</th> <th>Seru</th> <th>Blo</th> <th></th> <th></th> <th>Seru</th> <th>HDI</th> <th></th> <th></th> <th></th> <th></th>				Gen				Waist	Pul							R	T	R	L	PWV	PWV	PWV		Tota	Seru	Blo			Seru	HDI				
Nor Nor Nor Nor Nor			Age		BMI	wc	HC			RR	Te	SBP	DBP	PP	MAP		Bra A										FR	Ser						
1 1 0		Name	(Yrs		(kg/	(cm	(cm			(cp	mp.	(mm	(mm	(mm	(mm								Group					um			MDA	(μ m	EPO	VEGF
2 9 1 9 1 9 1 1 9 0	1)	•	m2)))		•••	m)	(F)	Hg)	Hg)	Hg)	Hg)					- T. J		• •					Ĭ	TGL.				ol/L)		
3 3		voti Khodna	38	•	22.5	86	88	•	•	13	97	116	78	38	90.67		•			• •	•		Control				68	137			1 017	7 15	85.5	461.3
9 9 8 8 8 1 1 9 8 2 7 4 90 1 4 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0																		_											_	_				
Socketter Socketter Socketter Socketter <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																																		
9 Per 2 8 9 1 8 9 1 1 8 9 1 8 5 0 1 8 5 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		-																																
1 Normal bar 0 2 3 0 0 0 0																																		
S Absolution 4 M 24. 6 5 7 1 7 11 7 4 9 9 7 10 7 6 7 1 10 7 1 7 1 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10				F																														
9 9	_																													_				
In Super-space See 0.																																		
11 12 A 1 4 5 1 5 1 1 5 1 <th1< th=""> 1 1 1</th1<>																																		
12 M 02 M 21 M 04 05 05 05 05 05 <td></td>																																		
10 Candrika 0 F 23.9 8 67 97.7 74 10 76 40 83.3 10 20 110 770 100 100 97.2 97.7 74 10 77.7 97.0 97.0 100<																																		
14 Sona Tejaowi 47 F 23.8 85 90 50 12 73 40 13 74 10 97 116 76 72 12 13 110 13 110																		-											_					
15 Arath Veel 0 F 21. 0 4 0 7 110 7 4 0 7 110 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 100 7 100 100 7 100 100 7 100 100 7 100 100 7 100 100 100 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																																		
16 Samrage Nee 49 6 20 24 8 6 9 10 14 14 74 40 73 23 24 120 120 14 10 14 74 40 9 33 49 51 10 14 74 40 9 33 25 74 50 Control 40 10 45 11 74 40 10 33 41 25 74 50 10 14 75 11 75 10 75 10 75 10 75 10 75 10 75 10 75 10 75 10 75 97 10 75 97 10 75 97 10 75 97 10 75 97 10 75 97 10 75 97 10 75 97 10 75 97 10 75 97 10 10 <																																		
17 Lata Mullur 49 F 23.6 84 1012 88 15 98 114 74 40 73.3 29 93 14 55.7 57 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 <td></td>																																		
B Amrit Pordele 35 M 23.8 84 94 1 66 13 97 18 78 40 91.33 26 93 41 952. 78 590 control 37 08 29 38 01 17.0 780 20 21 25 80 90 97 18 78 40 91.23 20 21 20 21 20 21 20 20 21 20 21 20 20 21 21 21 25 21 21 21 21 20 21 21 21 20 21																																		
19 Manchalper 45 F 23. 86 90 67 13 71 16 44 20 29 11 176 765 Control 32 6 11.04 94.8 94.1 1.044 94.8 94.2 14.3 14.3 14.0 176 762 170 12 11.0 17.0 74 150 17.0 17 18 17 17 18 17 17 18 17 18 17 18 17 18 18 14 17 18 17 18 18 14 18 18 18 18 18 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																																		
20 ayashree N 38 F 20. 86 90 75 15 76 42 90 27 90 21 30 40 900 70 20 30 70 20 30 101 400 000 20 65 90 11 70 20 50 101 400 000 70 20 50 100 70 20 65 90 11 70 10 70								0.966																										
11 Sharta Hirer 25 F 23.7 85 88 0.96 70 12 97 14 78 40 91.33 22 93 16 100 78 00 12 65 13 95 <td></td>																																		
22 Ganapart V P 4 M 2.3 8 9.3 1.3 9.3 2.2 2.5 3.6 1.61 7.8 2.0 1.61 7.8 2.0 1.61 7.8 2.0 1.61 7.8 2.0 1.61 7.8 2.0 1.61 7.8 2.0 1.61 7.8 2.0 1.61 7.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <t< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	_																																	
23 Ram Singhan 42 M 23.4 83 31 75 14 98 116 78 38 90.67 26 23 2 120 1120 140 120 116 78 38 90.70 26 37 131 120 83 120 83 120 83 120 83 120 83 120 83 120 83 120 140 140 140 140 140 140 140 140 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																																		
24 Ravi Siddant 34 94 9.	23 R	am Singhan	42	М	23.4	83	83	1	75	14	98	116	78	38	90.6	/ 26	25	32	42	1340	128	5 86	0 Contro	1 29	0.9	9 2	9 6	9 10	7 167	/ 59) 0.89!	5 6.8	9 84.2	2 396.6
25 Ana dnage 28 M 20 28 1 100 7 16 78 38 90.7 26 37 36 33 20 28 83 10 20 63 33 10 30 30 30 53 104 53 104 53 104 53 104 53 104 53 104 54 104 54 100 30 53 10 10 104 104 <th< td=""><td>24 R</td><td>avi Siddanth</td><td>38</td><td>М</td><td>23.5</td><td>81</td><td>84</td><td>0.964</td><td>70</td><td>12</td><td>97</td><td>112</td><td>72</td><td>40</td><td>85.33</td><td>28</td><td>24</td><td>31</td><td>23</td><td>1182</td><td>1136</td><td>5 73</td><td>2 Contro</td><td>32</td><td>2 0.8</td><td>3 2</td><td>3 7</td><td>3 109</td><td>153</td><td>65</td><td>5 1.379</td><td>9 8.69</td><td>9 91.4</td><td>1 474.9</td></th<>	24 R	avi Siddanth	38	М	23.5	81	84	0.964	70	12	97	112	72	40	85.33	28	24	31	23	1182	1136	5 73	2 Contro	32	2 0.8	3 2	3 7	3 109	153	65	5 1.379	9 8.69	9 91.4	1 474.9
25 Ana dnage 28 M 20 28 1 100 7 16 78 38 90.7 26 37 36 33 20 28 83 10 20 63 33 10 30 30 30 53 104 53 104 53 104 53 104 53 104 53 104 54 104 54 100 30 53 10 10 104 104 <th< td=""><td>25 Y</td><td>ashpal Srika</td><td>42</td><td>М</td><td>23.1</td><td>84</td><td>89</td><td>0.944</td><td>80</td><td>15</td><td>97</td><td>116</td><td>70</td><td>46</td><td>85.33</td><td>21</td><td>27</td><td>23</td><td>34</td><td>1391</td><td>1220</td><td>85</td><td>5 Contro</td><td>35</td><td>i 0.6</td><td>5 3:</td><td>1 7</td><td>7 108</td><td>3 159</td><td>61</td><td>1 0.763</td><td>3 7.56</td><td>5 94</td><td>449</td></th<>	25 Y	ashpal Srika	42	М	23.1	84	89	0.944	80	15	97	116	70	46	85.33	21	27	23	34	1391	1220	85	5 Contro	35	i 0.6	5 3:	1 7	7 108	3 159	61	1 0.763	3 7.56	5 94	449
28 Convindeged 50 M 23.2 8 9 4.4 9 1.4 6 48 8 2 2 0 0 1.01 1.01 0.10 2.5 1.01 1.01 1.01 0.0 1.01	26 A	Anand Ingale	38	М	21.2	82	81	1.012	70	14	97	116	78	38	90.6	26	26	37	36	1331	1226	-			0.0	5 2	8 8	3 114	4 203	67	2 0.65	1 10.6	5 95.f	i 489.3
28 Convindeged 50 M 23.2 8 9 4.4 9 1.4 6 48 8 2 2 0 0 1.01 1.01 0.10 2.5 1.01 1.01 1.01 0.0 1.01	27 S	uryakanth	36	М	22.9	83	83	1	78	12	98	114	68	46	83.33	21	25	30	33	1084	978.4	1 584	4 Contro	1 33	0.5	5 2	9 8	7 15:	L 209	61	0.98	7 7.63	3 146	388.8
29 8 Parii 46 M 24 83 86 9.56 62 14 98 118 76 42 90 7 22 30 36 121 1133 789 Control 41 0.6 24 61 103 128 50 0.97 7.4 87.4 94.1 30 Chandrasekh 43 M 21.6 7 1.5 97 116 70 46 85.3 23 24 135 108 7.6 12 10.1 63.9 9.0 85 11.0 70 46 85.3 23 24 131 172 1035 666 13 91 151 12 92 10.4 86.9 93.9 92.2 87.3 92.0 133 93.9 92.2 137.3 93.9 92.2 137.0 130 90.9 14 90.9 14.9 90.9 14.9 90.9 14.9 90.9 14.9 90			50	М	23.2	84	89	0.944	75	12	97	114	66	48	82	2 21	20	30	40	1487	1104	1 84	6 Contro	39	0.9	3	5 8	7 108	3 143	48	3 1.41	2 6.56	5 139	390
30 Chandrasekh 43 M 21.6 86 81 1.06 95 15 97 118 74 44 88.67 21 25 27 153 117 819 Control 28 8.7 75 15 91 10.6 70 116 70 16 70				м		83	86	0.965			98	118	76	42	90	27					1133	-		-	0.6	5 24	4 6							
31 Rajasekar A 50 M 23.9 85 81 1.049 75 15 97 116 70 46 85.3 23 36 34 123 1088 73 Control 43 0.7 77 68 155 211 47 1.011 6.39 92.9 433.3 32 Megun Bcha 35 M 24 85 89 0.955 81 12 98 168 78 20 33 34 31 172 1035 66 Control 43 0.5 32 79 126 10 81 93 83 83 83 83 93 92 93.8 93.9 92.2 57.7 Control 43 0.7 26 9 9 1.04 90 93.9	_			М											88.6																			
32 Meghu B Cha 35 M 24 85 89 9.55 81 12 98 118 64 54 82 27 33 34 31 1172 1035 685 control 38 0.5 32 79 126 210 48 1.003 8.68 0.75 54 173 733 33 Sridevi Singh 66 F 23.9 83 86 0.65 84 12 98 116 78 38 90.7 26 20 972.2 577 control 37 36 69 97 157 59 1248 9.69 85.9 35.9 35 Singa Mines 40 F 23.9 83 86 91 94 118 76 26 28 30 97.2 577 control 38 0.7 26 79 46 73.9 75 79 46 73.9 75 79 86 70 10.4 84 70.7 71.6 78 79 79 86 60 61.0 <																																		
33 Sindex Single 46 F 2.3 83 86 9.6 84 12 98 16 78 98 96.2 92.3 92.4 548 Curce 32 0.6 81 91 151 212 5.2 1.04 10.2 88.4 95.9 34 Jackshee 50 F 2.3.5 86 91 151 212 57 50 57 50 56 9 151 212 53 0.05 16 9 16 97 25 10.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td></t<>											-				-									-	-	-			-	-				
34 Javashree K 50 F 2.3. 86 83 1.03 72 1.4 97 1.8 76 4.2 90 27 26 83 97.2 577 Curron 37 0.7 23 69 97 1.57 59 1.24 9.69 9.57 9.57 9.57 0.010 38 0.7 23 69 97 1.57 50 1.24 9.69 9.57 9.57 0.010 38 0.7 25 67 94 169 57 0.51 1.04 94 95.3 97.3 97.3 0.010 38 0.7 25 67 94 169 57 0.51 1.04 94 95.3 97.3 97.3 97.0 97.0 98 100 10.4 97.0 97.0 97.0 98 100 10.4 97.0 <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>																									-	-		-	-	-				
35 Shreya Nirwa 40 F 23.9 83 86 0.9 78 14 78 36 90 26 23 23 23 87 23 87 23 87 14 98 114 78 36 90 25 120 112 739 Control 38 0.7 25 67 94 169 57 0.51 10.4 94 35.7 36 G M Mathapa 50 M 23.1 81 83 0.976 67 12 98 108 24 25 24 24 25 24 24 25 118 844 Control 38 0.7 25 79 98 160 11 95 24 26 24 25 120 113 276 Control 38 0.7 25 79 98 160 61 0.75 144 97 148 16 173 27 <																																		
36 M matral so M 23 86 91 9.4 94 14 98 17 26 93 23 33 33 33 34 70 18 92 13 130 130 140 94 110 93 94 100 130 100 130 100 130 100 130 100 130 100 130 100 130 100 130 100 130 100 130 100 130 <t< td=""><td></td><td></td><td></td><td>г г</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				г г																														
37 anschah H 50 M 23. 81 83 0.97 67 12 98 108 76 2 64 12 98 100 76 2 74 130 75 24 24 26 130 111 796 Curron 38 0.7 25 79 98 100 61 0.73 7.1 40 27.2 30 Indira Hunde 48 F 2.6 9 9 100 61 12 98 100 9 148 78 74 13 97 12 120 130 120 130 120 130 120 130 120 130 120 130 120 130 120 130 120 130 120 130 120 130 120 130 120 130 120 130 130 140 130 120 130 130 130 140 130 140 130 130 140 140 130 130 140 130 130 <td></td> <td></td> <td></td> <td>F</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>				F																				-	-	-	-		-					
38 Indira Hunde 48 F 2.3. 8 8 1.01 8 1.2 98 1.01 98 1.0 98 1.01 98 1.01 98 1.01 98 1.01 98 1.01 98 1.01 98 1.01 98 1.01 98 1.01 98 1.01 98 1.01 98 1.01 39 33 37 4.0 1.01 30 1.01 30 3.0 4.0 1.01 3.0 1.01 30 4.0 1.02 1.01 3.0 1.01 3.0 4.0 4.0 1.01 3.0 4.0 4.0 4.0 1.01 3.0 4.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																																		
33 Sushla Bhim 50 F 25.6 92 95 0.96 78 14 97 148 78 70 101.3 30 44 35 120																																		
40 Javashree Ma 50 F 27. 10 10.4 10.7 74 12 97 144 82 62 10.7 37 36 45 44 146 164	_																							-		-						-		
41 shreya Nirwa 40 F 2.7.8 10.7 1.0.8 1.0 1.0.8 1.0 1.0.8 </td <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>148</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>62</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>0.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				F							-	148							62				-		0.8									
42 Gayari Math 50 F 27.6 103 98 1.05 75 14 98 1.02 92 50 108.7 38 95 44 119 State 119 State 119 State 14 0.8 1.8 98 1.8 2.32 1.68 1.01 2.32 1.03 93 1.01 1.01 91 1.01 State 1.11	40 J	ayashree Ma	50	F	27.5	101	104	0.971	74	13	97	144	82	62	102.7	37	36	45	44				-		0.9	32	72	2 201	261	41	2.697	2.69	133	369.6
43 U C Nuchi 49 M 28 107 104 1.02 92 15 97 138 96 42 110 39 37 58 45 141 138 90 Stage II 14 0.9 33 86 136 26 45 1.92 4.36 164 38.2 44 Jaya H B 50 F 25.9 89 83 1.072 83 144 98 163 64 103.3 53 24 43 49 1257 93 Stage II 23 0.9 35 77 154 194 3.026 2.31 148 35.2 12 43 49 154 49 155 43 49 154 1257 93 Stage II 23 0.9 35 77 154 19 3.02 2.31 148 35.2 14 141 148 1257 154 136 154 141 141 1257 154 154 154 154 154 154 152 154 154<	41 S	Shreya Nirwa	40	F	27.8	105	107	0.981	78	12	98	148	86	62	106.7	38	35	46	48	1756	1248	1019	9 Stage II	19	0.6	18	87	7 198	257	43	1.611	. 4.86	137	288.7
44 Java H B 50 F 25.9 89 83 1.072 83 14 98 146 82 64 103.3 55 32 43 94 154 916 1527 936 Stage II 23 0.9 35 77 154 194 31 2.026 2.31 148 25.1 45 Raju Ratho 50 M 23.1 92 100 83 12 12 126 <th1< td=""><td>42 0</td><td>Gayatri Math</td><td>50</td><td>F</td><td>27.6</td><td>103</td><td>98</td><td>1.051</td><td>75</td><td>14</td><td>98</td><td>142</td><td>92</td><td>50</td><td>108.7</td><td>38</td><td>39</td><td>56</td><td>42</td><td>1798</td><td>1447</td><td>1119</td><td>9 Stage II</td><td>14</td><td>0.8</td><td>31</td><td>85</td><td>5 187</td><td>231</td><td>45</td><td>2.012</td><td>2.32</td><td>158</td><td>301.7</td></th1<>	42 0	Gayatri Math	50	F	27.6	103	98	1.051	75	14	98	142	92	50	108.7	38	39	56	42	1798	1447	1119	9 Stage II	14	0.8	31	85	5 187	231	45	2.012	2.32	158	301.7
45 Raju Rathod 50 M 23.1 92 87 1.057 82 12 97 142 80 102 142 830 142 124 880 Stage II 22 0.7 33 95 245 190 42 1.959 3.56 154 237.2 46 Pallavi Kanh 40 F 29.1 94 89 1.056 7.6 1.4 97 1.50 88 62 1.05 3 47 48 1.49 1.24 880 Stage II 2.0 0.7 33 95 245 1.90 3.56 1.54 37.7 40 Pallavi Kanh 40 F 29.1 49 1.4 97 3.58 62 1.05 3.7 3.7 3.5 1.4 37.7 41 Pallavi Kanh 40 F 29.1 49 1.4 97 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	43 L	J C Nuchi	49	М	28	107	104	1.029	92	15	97	138	96	4 2	110	39	37	58	45	1411	1382	930	Stage I	14	0.9	33	86	i 136	236	45	1.929	4.36	164	368.2
45 Raju Rathod 50 M 23.1 92 87 1.057 82 12 97 142 80 101 11 142 143 143 143 142 142 180 142 180 142 80 Stage II 2 0.7 33 95 245 190 42 1.959 3.56 154 237.2 46 Pallavi Kanh 40 F 29.1 49 140 91 240 124 880 Stage II 25 0.7 33 95 245 190 42 1.959 3.65 154 237.2 40 Pallavi Kanh 40 F 29.1 49 49 47 48 142 124 880 Stage II 16 0.7 18 91 125 13.5 143 143 143 143 142 142 142 142 142 142 143 142 143 142 143 143 143 143 143 143 143 143 143 1	44 J	ауа Н В	50	F	25.9	89	83	1.072	83	14	98	146	82	64	103.3	35	32	43	49	1549	1257	936	Stage I	23	0.9	35	77	154	194	31	2.026	i 2.31	. 148	325.1
46 Pallavi Kanth 40 F 29.1 94 89 1.056 76 14 97 150 88 62 10.87 37 32 47 48 1096 129 76 14 97 150 88 62 10.87 37 32 47 48 1096 1295 763 Stage II 16 0.7 18 99 126 212 58 2.021 3.65 164 370.7	45 R	Raju Rathod	50	М	23.1					12	97	142	82	60	102	31	31	51	48	1429	1242	880	Stage II	22	0.7	33	95	5 245	190	42	1.959	3.56	i 154	237.2
																							-											
				М									98			-							-											

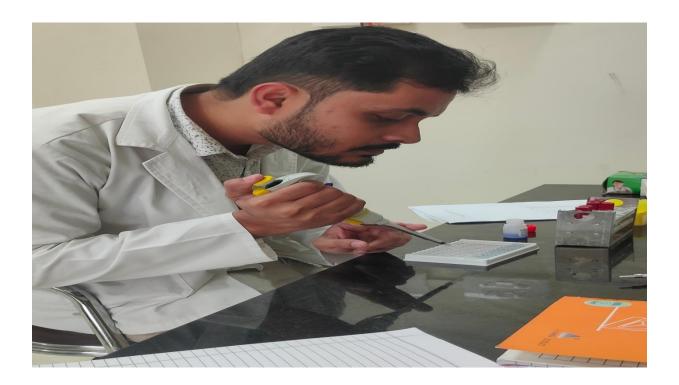
																_																
48 Basavaraj Ani	42	М	28	100	104	0.962	70	14	97	148	92	56	110.7	40	38	52	43	1634	1509	1076	Stage II	23	0.7	18	81	114	216	44	1.394	3.68	153	342.6
49 Pratyusha Ka	35	F	28.4	100	99	1.01	92	12	98	142	82	60	102	34	32	40	45	1248	1039	719	Stage II	14	0.6	34	86	87	242	52	2.021	3.69	154	380.3
50 Kashi Badiger	50	F	26.6	100	103	0.971	82	14	97	160	82	78	108	35	36	41	57	1489	1272	917	Stage II	17	0.7	35	75	161	169	54	1.427	5.34	138	271.3
51 Santosh K Rat	39	М	29.1	99	97	1. 0 21	74	12	98	142	92	50	108.7	37	34	48	40	1316	1195	813	Stage II	12	0.9	36	75	182	210	54	1.441	3.96	134	331.6
52 M S Patil	35	М	34.1	104	105	0.99	73	14	97	158	98	60	118	38	36	51	49	1299	1101	767	Stage II	11	0.9	33	99	123	181	49	1.319	4.39	136	379.4
53 Shrishil I Aga	50	М	32.3	104	103	1.01	70	12	97	152	90	62	110.7	35	38	43	53	2115	1600	1315	Stage II	15	0.6	31	83	136	168	47	1.922	3.64	185	387.1
54 Bindu Madha	45	М	23.8	93	89	1.045	94	13	98	160	98	62	118.7	49	50	67	53	1931	1677	1270	Stage II	14	0.6	22	93	175	236	43	2.021	2.12	145	340.5
55 Mallappa Hac	50	М	24	95	91	1.044	88	14	98	148	96	52	113.3	36	44	66	60	1975	1732	1311	Stage II	17	0.7	38	99	126	214	41	2.031	3.54	199	313.5
56 Renuka Patil	38	F	35.7	102	101	1.01	82	15	97	154	80	74	104.7	29	36	33	45	1459	1279	935	Stage II	20	0.6	34	87	106	196	45	2.099	5.34	178	395.3
57 Mahadev Pat	47	М	34.6	93	92	1.011	88	12	98	148	96	52	113.3	49	45	43	53	1518	1408	941	Stage II	12	0.9	33	81	109	147	31	2.027	3.86	140	395.4
58 Sumitra Balac	47	F	32	101	106	0.953	82	13	98	132	94	38	106.7	35	32	39	45	1642	1466	1061	Stage II	18	0.7	33	86	67	103	39	2.029	3.68	148	379.8
59 Sumedha Hip	48	F	27	103	109	0.945	104	12	97	136	96	40	109.3	35	32	37	31	1584	1378	1001	Stage II	22	0.7	26	81	140	128	37	2.978	3.45	135	312
60 Padmah Yara	42	F	27.6	92	98	0.939	87	12	97	154	94	60	114	31	42	43	58	1435	1248	884	Stage II	19	0.6	30	79	122	166	41	2.729	5.36	146	382.6
61 Sabitri Inamd	45	F	25.6	91	99	0.919	87	14	98	140	90	50	106.7	35	39	35	50	1388	1220	853	Stage II	13	0.6	19	77	124	183	43	2. 94 1	3.21	133	355.6
62 G I Kori	45	М	25	98	99	0.99	80	14	98	152	92	60	112	35	32	42	42	1483	1178	875	Stage II	20	0.7	33	84	257	108	43	1.974	2.36	189	351.8
63 Mohan B K	43	М	24.4	89	91	0.978	84	15	97	150	88	62	108.7	32	29	39	48	1216	1121	740	Stage II	21	1	33	90	104	193	56	2.095	3.69	147	365.8
64 S M Patil	47	М	30.8	102	98	1.041	81	13	98	154	82	72	106	40	38	48	42	1801	1448	1120	Stage II	17	0.6	26	99	212	144	46	1.742	3.51	148	351.1
65 Sumangala P	48	F	30.4	97	93	1.043	82	12	97	144	90	54	108	29	29	38	37	1655	1716	1171	Stage II	17	0.7	30	87	200	140	65	1.591	3.65	140	315.1
66 Umesh Kalad	46	М	27.7	104	100	1.04	79	12	97	156	96	60	116	29	29	40	47	1513	1119	864	Stage II	14	0.6	19	73	143	272	62	1.679	2.25	185	303.6
67 Ravi B Patil	39	М	29.1	99	97	1.021	74	14	97	142	92	50	108.7	37	34	48	40				Stage II		0.8	22	91	143	172	60	1.719	5.34	137	337.9
68 Santosh Nanc	45	М	23.8	93	89	1.045	94	13	97	160	98	62	118.7	35	36	41	57				Stage II		1.1	35	91	75	194	49	1.788	5.21	105	370.5
69 Sankarappa B	50	М	26.6	100	103	0.971	82	13	98	160	82	78	108	49	50	67	53	1931			Stage II	20	0.8	38	76		228	47	1.693	4.36	185	358.6
70 Vimala Sures		F				0.905	78	13	97	132	94	38	106.7	35	32	39	45	1435			Stage II		1.1						1.581		136	
71 Javashree Bir		F	26.1			0.883	82	12	98	136	96	40	109.3	35	32	37	31	1388			Stage II		1.2		_	162			1.686		157	
72 Saniukta Pati		F				0.981		14	98	140	90	50	106.7		39	35					Stage II				_				2.587			301.2
																					0											

73 LH Pail	45	М	25	98	99	0.99	80	14	97	152	92	60	112	40	38	48	42	1801	1448	1120	Stage II	16	1.1	39	67	164	146	39	2.013	2.25	113	399.7
74 Sana K Patel	35	F	26.1	99	103	0.961	76	14	97	136	82	54	100	23	23	40	38	1557	1680	1115	Stage I	27	0.5	24	76	109	147	52	1.064	7.65	148	351.8
75 Shantaveerya	35	М	28.7	98	96	1.021	70	14	98	128	88	40	101.3	31	33	39	53	1337	1284	859	Stage I	22	0.6	16	77	67	103	39	0.722	6.65	147	365.8
76 Praveen Kho	49	М	24.6	92	88	1.045	67	15	98	136	78	58	97.33	29	20	27	37	1147	1091	669	Stage I	24	1	31	76	140	128	42	0.986	7.89	145	351.1
77 Mallapa Sidd	40	М	21.1	81	78	1.038	78	12	97	134	84	50	100.7	28	16	31	34	1174	1215	762	Stage I	30	0.7	32	79	122	166	55	0.637	5.36	139	415.1
78 Vikas Desai	43	М	23.7	96	94	1.021	76	14	97	138	78	60	98	32	29	20	32	1206	1033	699	Stage I	25	0.8	36	70	140	183	49	1.686	5.69	140	403.6
79 Shrinivas Rail	35	М	22.1	81	79	1.025	80	14	98	132	82	50	98.67	30	29	33	42	1291	1137	778	Stage I	34	1.1	34	92	88	108	34	1.581	7.69	135	437.9
80 Santosh Hipp	35	М	21,5	83	82	1.012	74	15	98	134	80	54	98	29	31	31	35	1190	1106	723	Stage I	23	0.7	24	84	150	146	31	1,188	4.46	95.6	370.5
81 S M Biradar	48	М	24.6	88	92	0.957	60	13	97	138	88	50	104.7	28	19	40	39	1383	1301	885	Stage I	21	0.9	29	99	237	227	37	1.147	4.89	98.6	358.6
82 Rekha S Udgi	46	F	27.4	101	93	1.086	70	12	98	132	78	54	96	24	36	48	61	1334	1606	992	Stage I	36	0.6	22	60	81	157	37	1.078	5.87	135	362.7
83 Huchappa Mu	49	М	27.7	93	90	1.033	76	14	98	136	82	54	100	30	29	35	39	1371	1399	921	Stage I	35	1	18	98	224	254	65	1.071	4.01	143	384.6
84 V G Warad	50	М	24.4	92	95	0.968	72	14	98	130	86	44	100.7	25	9.4	24	21	1290	1410	942	Stage I	23	0.7	22	60	201	157	49	1.075	4.56	146	401.2
85 Murgesh Mat	42	М	21.6			0.883		15	97	132	88	44	102.7	14	30	22					Stage I	24	0.7	26	80	201	224	37	1.067	4.89	139	399.7
86 Anand Amba	49	М	28.3			0.913		13	97	132	86	46	101.3	17	23	41					Stage I	28	1.1	32	86	118	190	40	1.491		147	389.3
87 Balaraj Birada	50	М				0.962		14	98	138	88	50	104.7	28	23	36	37				Stage I	22	0.8			114		43	1.693	5.63	136	388.8
88 Manjunath K	47	М	26.7	91	101	0.901	82	14	98	136	82	54	100	22	24	24	27				Stage I	21	1.1	36	75	112	134	49	1.446	4.21	149	390
89 Vimala Sures	46	F	22.4			0.905	78	15	97	132	82	50	98.67	18	26	46				1001	Stage I	25	0.7				205	47	1.062	4.96	147	340.1
90 Jayashree Bir	36	F	26.1	83	94	0.883	82	13	98	136	88	48	104	17	22	41	34	1126	1029	665	Stage I	24	0.8	21	81	154	201	45	1.064	4.36	148	365.9
91 Nikita R	38	F	24.6			0.977	78	12	98	134	82	52	99.33	14	29	35	39	1206			Stage I	27	0.6	34	81		195	49	1.085	5.21	140	383.8
92 Supriya Bhos	35	F	23.7	88		0.967	86	12	98	138	88	50	104.7	29	31	31	35		1205	779	Stage I	20	0.5	25	78	92	189	50	1.084	5.36	95	399.9
93 Vijaya Sorgar	36	F	24.6	91	98	0.929	76	14	97	134	82	52	99.33	32	29	24	61	1190	1091	1115	Stage I	23	0.7	30	84	79	179	53	1.066	4.56	137	373.7
94 Santosh Patil		М				1.016	82	13	97	130	82	48	98	23	25	38	40				Stage I	28	0.8	23			216	45	1.788		105	386.9
95 Sanjay Wavar	47	М	30.8		98	1.041	75	12	98	134	80	54	98	32	30	40	46	1735	1397	1071	Stage I	22	0.8	29	61	107	161	37	0.604	5.89	145	359.2
96 D G Gannur	49	М	27.1	94	99	0.949	72	14	98	132	80	52	97.33	32	19	37	33	1534	1347		Stage I	21	0.6	34	85	73	143	57	0.911	5.69	136	350.7
97 Daya Pujari	47	F	24.6	92	88	1.045	67	15	97	136	78	58	97.33	24	36	48	61	1334	1606	992	Stage I	24	0.8	33	86	257	137	59	0.998	7.89	134	382.7

98	Vithoba Neel	50	F	21.1	81	78	1.038	78	12	98	134	84	50	100.7	30	29	35	39	1371	1399	921	Stage I	20	0.7	33	85	104	193	55	1.034	5.46	147	329.8
99	Manjula Nee	49	F	23.7	96	94	1.021	76	12	97	138	78	60	98	25	9.4	24	21	1290	1410	942	Stage I	21	0.8	26	95	212	144	45	1.088	4.56	98.7	402.7
100	Shantaveerya	35	M	22.1	81	79	1.025	80	14	97	132	82	50	98.67	14	30	22	26	1238	1205	785	Stage I	27	0.7	30	99	200	140	47	1.719	4.23	98.2	342.6
101	Gayatri V Par	46	F	21.5	83	82	1.012	74	14	98	134	80	54	98	17	23	41	34	1347	1288	865	Stage I	25	0.7	19	85	143	272	43	0.798	7.87	140	380.3
102	Rani Singhan	42	F	24.6	88	92	0.957	60	12	98	138	88	50	104.7	28	23	36	37	1518	1361	967	Stage I	23	0.8	23	81	143	172	61	1.679	7.54	148	371.3
103	Roma Siddan	38	M	27.4	101	93	1.086	70	12	97	132	78	54	96	22	24	24	27	1478	1181	874	Stage I	23	0.9	21	86	75	183	59	1.596	4.32	135	331.6
104	Yashi Srikant	42	F	27.7	93	90	1.033	76	14	97	136	82	54	100	18	26	46	35	1578	1384	1001	Stage I	29	0.9	33	85	85	108	54	0.715	4.21	146	379.4
105	Supriya Patil	36	F	24.4	92	95	0.968	72	15	98	130	86	44	100.7	17	22	41	34	1126	1029	665	Stage I	30	0.8	33	75	79	146	53	1.089	5.67	133	387.1
106	Manjula Nare	50	F	25 <mark>.</mark> 6	83	94	0.883	72	12	98	132	88	44	102.7	14	29	35	39	1206	1408	627	Stage I	26	0.6	26	99	186	227	51	1.742	5.69	150	440.5
107	Sabitri Patil	46	F	28.3	95	104	0.913	64	12	97	132	86	46	101.3	29	31	31	35	1292	1205	779	Stage I	29	0.8	30	95	107	157	57	1.125	5.32	147	413.5
108	Chandra Bhui	43	F	28	100	104	0.962	64	12	98	138	88	50	104.7	32	29	24	61	1190	1091	1115	Stage I	27	0.9	19	93	73	254	45	1.171	7.21	101	395.3
109	Rajashree An	50	F	27.7	91	101	0.901	82	12	97	136	82	54	100	23	25	38	40	1482	1336	941	Stage I	26	0.7	24	67	257	157	43	1.111	7.56	99.2	395.4

ANNEXURE-V

PHOTOGRAPHS


Photograph 1: UV-Spectrophotometer

Photograph 2: ELISA Reader and Centrifuge Machine

Photograph 3: The Biochemical Analysis of Nitric Oxide

Photograph 4: The Molecular Analysis of the samples

Photograph 5: The Process of MDA Analysis

ANNEXURE-VI

SIMILARITY CHECK CERTIFICATE

ORIGIN	ALITY REPORT				
5 simil	% ARITY INDEX	1% INTERNET SOURCES	4% PUBLICATIONS	1% STUDENT PAR	PERS
PRIMAR	W SOURCES				
1	Vitamin Publication	D, 2010.			2%
2	Nichola: Deficier Evidenc Mechan	har Ullah, Gabrie s, Christian A. Ko icy Cause Hyper e from Clinical S isms", Internatio nology, 2010	och. "Does Vita tension? Curro tudies and Po	amin D ent tential	1%
3	Kyle Ho "A retro diagnos	R Gildea, Stace garth, David S W spective analysi is of lung cance ClinicoEconomic h, 2017	/ilson, Curtis C s of delays in r and associat	: Quinn. the ed	1%
4	Submitt Student Pape	ed to Manipal U	niversity		1%
5	cgmj.cg	u.edu.tw			1%