CHOROIDAL THICKNESS ASSESSMENT IN DIABETES MELLITUS PATIENTS By

Dr. MERVIN JONATHAN ISRAEL.

Dissertation submitted to

BLDE (Deemed to be University) Vijayapura, Karnataka

In partial fulfillment of the requirements for the degree of

MASTER OF SURGERY

In

OPTHALMOLOGY

Under the guidance of

Dr.RAGHAVENDRA.K

PROFESSOR

DEPARTMENT OF OPTHALMOLOGY

BLDE (Deemed to be University)

SHRI B.M.PATIL MEDICAL COLLEGE

HOSPITAL & RESEARCH CENTRE, VIJAYAPUR KARNATAKA

2020

CHOROIDAL THICKNESS ASSESSMENT IN DIABETES MELLITUS PATIENTS

MASTER OF SURGERY

In

OPHTHALMOLOGY

LIST OF ABBREVIATIONS

DR	Diabetic Retinopathy
T2 DM	Type 2 diabetes mellitus
IOP	Intraocular pressure
HbA1c	Glycoselated haemoglobin
NPDR	Non proliferative diabetic retinopathy
PDR	Proliferative diabetic retinopathy
AGEs	Advanced glycosylation end products
OCT	Optical coherence tomography
B scan	Brightness Scan
RBS	Random Blood Sugar
FBS	Fasting Blood Sugar
PPBS	Post Prandial Blood Sugar
FFA	Fundus Flourscein Angiography
ICG	Indocyanine Green Angiography

LIST OF CONTENTS

SL.NO	PARTICULARS	PAGE NO.
1.	ABSTRACT	15-16
2.	INTRODUCTION	17-20
3.	OBJECTIVE	21
4.	REVIEW OF LITERATURE	22-75
5.	MATERIALS AND METHODS	76-87
6.	RESULTS	88-100
7.	DISCUSSION	101-105
8.	CONCLUSION	106-107
9.	SUMMARY	108-109
10.	BIBLIOGRAPHY	111-117
11.	ANNEXURES	118-
	I. ETHICAL COMMITTEE CLEARANCE	111
	II. CONSENT FORM	112-116
	III. PROFORMA	117-118
	IV. MASTER CHRTS	119-120
	V. COLOR PLATES	121

Sl no	Tables	Page
		no
1.	RISK FACTORS OF DIABETIC RETINOPATHY	44
2.	ETDRS Classification of Diabetic retinopathy	55
3.	ETDRS RECOMMENDATION FOR FOLLOWUP IN DR	57
4.	STANDARD DIABETIC PHOTOGRAPHIC FIELDS	67
5.	CONCEPT OF P VALUE	83
6.	COMPARISON OF PARAMETERS BETWEEN CASES AND CONTROLS	92
7.	COMPARISION OF CHOROIDAL THICKNESS BETWEEN DIABETICS AND CONTROLS	92
8.	SHOWING THE COMPARISON OF CHOROIDAL THICKNESS IN CASES AND CONTROLS	93
9.	SHOWING COMPARISON OF CHOROIDAL THICKNESS IN DIABETIC BETWEEN PATIENTS WITH NO RETINOPATHY, RETINOPATHY AND NEPHROPATHY	94
10.	COMPARISION OF CHOROIDAL THICKNESS BETWEEN CONTROLS AND NEPHROPATHY PATIENTS	95
11.	COMPARRISION OF CHOROIDAL THICKNESS BETWEEN DIABETICS WITHOUT RETINOPATHY AND DIABETIC NEPHROPATHY PATIENTS	96

LIST OF TABLES

LIST OF GRAPHS

Sl no	GRAPH IMAGE	Page no
1	PIE CHART SHOWING DISTRIBUTION OF RETINOPATHY AND NEPHROPATHY AMONG DIABETIC	86
2	GRAPH SHOWING AGE DISTRIBUTION AMONG CASES AND CONTROLS	86
3	GRAPH SHOWING SEX DISTRIBUTION	87
4	PIE CHART SHOWING DIABETIC TREATMENT PATTERN	87
5	GRAPH REPRESENTING DURATION OF DIABETES	88
6	GRAPH SHOWING CORRELATION BETWEEN DURATION OF DIABETES AND GRADE OF RETINOPATHY	89
7	GRAPH REPRESENTING RELATION BETWEEN HBA1C AND CASES	89
8	GRAPH REPRESENTING RELATION BETWEEN HBA1C AND CASES	90
9	GRAPH REPRESENTING RELATION BETWEEN HBA1C AND CASES	91
10	BAR GRAPH SHOWING GRADES OF DIABETIC RETINOPATHY	91
11	GRAPH SHOWING COMPARISON OF CHOROIDAL THICKNESS BETWEEN CONTROLS AND CASES	92

LIST OF FIGURES

SL NO	FIGURE	PAGE NO
1.	SCHEMATIC CROSS-SECTION OF RETINA	33
	DEMONSTRATING LAYERS OF RETINA	
2.	THE RPE AND ITS RELATIONSHIP TO THE	35
	PHOTORECEPTORS AND BRUCH MEMBRANE.	
3.	FIGURE DEMONSTRATING EXTENT OF CHOROID	37
4.	FIGURE SHOWING DEVELOPMENT OF EYE	37
5.	SCHEMATIC CROSS-SECTION OF RETINA	38
	DEMONSTRATING LAYERS OF CHOROID	
6.	BLOOD SUPPLY OF CHOROID	40
7.	SHOWING ANATOMY OF KIDNEY	42
8.	SHOWING STRUCTURE OF NEPHRON	43
9.	HYPERGLYCEMIA DYSREGULATES FOUR BIOCHEMICAL PATHWAYS.	48
10.	HYPERGLYCEMIA DYSREGULATES FOUR BIOCHEMICAL PATHWAYS.	50
11.	BREAKDOWN OF BLOOD RETINAL BARRIER	51
12.	TRANSMEMBRANE RECEPTORS, SITE OF VASCULAR ENDOTHELIAL GROWTH FACTOR-A BINDING	51
13.	MODIFIED AIRLIE HOUSE CLASSIFICATION	56
14.	RAY DIAGRAM OF THE OPTICS OF THE DIRECT OPHTHALMOSCOPE	62
15.	RAY DIAGRAM OF THE OPTICS OF THE INDIRECT OPHTHALMOSCOPE	63

16.	FLUORESCEIN ANGIOGRAM SEQUENCE, AVPHASE AND PROGRESSING TO MIDTRANSIT.	64
17.	FFA IN PDR	64
18.	DIAGRAM OF SEVEN STANDARD PHOTOGRAPHIC FIELDS	68
19.	WORKING PRINCIPLE OF OCT	69
20.	OCT SCAN OF MACULAR EDEMA	70
21	FIG 21 MEASUREMENT OF CHOROIDAL THICKNESS ON OCT SCANS	121
22	Fig 22. Fundus photograph of a Moderate – Severe NPDR patient	122

ABSTRACT

BACKGROUND

Diabetes mellitus (D.M.) is a significant public health problem where about more than 300 million people are affected, with severe morbidity and mortality. Its long-term complications can decrease the quality of life of patients. It is one of the largest global health emergencies of this century leading to high mortality with cardiovascular disease (CVD), respiratory disease, and cancer

The choroid is a vital structure responsible for the supply of nourishment to the outer retinal layers, and any modifications in choroidal structure or vasculature may affect the retinal function. choroid being a vascular structure is extremely vulnerable to both microvascular and macro-vascular abnormalities caused by diabetes mellitus. change, choroidal vasculopathy might also play a role in the pathogenesis of diabetic retinopathy. recent studies have focused on the choroidal thickness as an indicator of the choroidal blood flow

Diabetic Mellitus includes several end-organ, one of the more pronounced organs to be affected is the kidneys leading to diabetic nephropathy. Developmentally the retinal and the renal vasculature share some similarities during organogenesis; thus, the vascular pathologies affecting either the retina or the kidney may have some correlation

AIM AND OBJECTIVES

This study aims to assess the choroidal thickness in Diabetes Mellitus patients.

MATERIALS AND METHODS

This is a cross-sectional and time-bound study conducted on patients attending the outpatient and inpatient departments of Ophthalmology, B.L.D.E. (D.U.).'s Shri B.M. Patil Medical College, Hospital and Research Centre, VIjayapura.

A total of 192 patients were included in this study, of which 96 were diabetic patients (cases) and 96 were normal patients (controls). Diabetic patients were grouped into patients with retinopathy and nephropathy. Patients were screened for Diabetes mellitus and retinopathy by complete examination, including detailed History. The following investigations were performed:

- Best-corrected visual acuity
- Slit-lamp examination
- Direct and Indirect Ophthalmoscopy
- Fundus Photography
- Relevant blood investigations like F.B.S., P.P.B.S., HBA1C, SR CREAT, ALBUMINUREA, UREA and eGFR were done
- Diabetic retinopathy was graded using E.T.D.R.S. (Early Treatment Diabetic Retinopathy Study).
- Choroidal thickness was assessed by SD- OCT with EDI

RESULTS

study included 96 cases and 96 controls, of which majority belonged to the 5th and 6th decade. male predominance was noted, while Majority of the diabetic had duration of diabetes of 5-10 years with severe PDR cases of 10-15 years. positive correlation was noted between duration of diabetes with severity of retinopathy. HbA1c levels also showed significant relation with grades of retinopathy, with majority of patients with severe PDR and PDR had values >8%

On assessment of choroidal thickness controls had a mean choroidal thickness of 327.308 microns as compared to diabetic patients with overall thinner choroidal thickness. An overall decrease in choroidal thickness was also noted with increasing severity or higher grades of diabetic retinopathy. Thinnest choroids were observed in PDR patients with a mean thickness of 193 microns.

Statistically significant difference in choroidal thickness across all groups were noted with p value of < 0.001. in patients with nephropathy, thinner choroidal thickness was noted with a mean thickness of 211.838 microns. A statistically significant difference p value 0.001 was noted when compared to the control group as well as cases group with mild and moderate NPDR, with least choroidal thickness in patients with nephropathy.

CONCLUSION

the severity of diabetic retinopathy was influenced by the duration of diabetes and HbA1c levels. Choroidal thickness was maximum in control group. Diabetic patients showed decrease in choroidal thickness with increase in severity of retinopathy and nephropathy. Thinnest choroidal thickness was observed in patient with PDR and nephropathy. SD-OCT (EDI) proves to be a reliable method to assess choroidal thickness. Choroidal thickness can be used to assess the severity of diabetic retinopathy, as well as the prognosis with treatment. It can also n=be used as a screening tool for diabetic nephropathy in diabetics coming for ocular complaints.

INTRODUCTION

Diabetes mellitus (D.M.) is a significant public health problem where about more than 300 million people are affected, with severe morbidity and mortality. Its long-term complications can decrease the quality of life of patients ¹.

A series of metabolic illnesses known as diabetes mellitus are characterized by chronic hyperglycemia brought on by the deficiencies in secreting insulin, faulty action of insulin, or both. ².

Diabetes mellites being one of the largest global health emergencies of this century, ranking among the 10 leading causes of mortality together with cardiovascular disease (CVD), respiratory disease, and cancer ³.

Nearly 592 million people are anticipated to pass away from diabetes by 2035⁴.

8.8% of United States adult population have diabetes, with males having slightly higher rates (9.6%) than women (9.0%), the International Diabetes Federation claims (IDF) ⁵. Impaired glucose tolerance (IGT), a prediabetic condition, affects 463 million and 374 million persons worldwide, respectively, according to the most recent data. It is predicted that by 2045, there will be 548 million people with IGT and 700 million people with diabetes, a 51% rise from 2019 ⁶.

Diabetes was divided into Type 1, Type 2, Additional Forms, and Gestational Diabetes Mellitus (GDM), which is currently the most common, by the American Diabetes Association (ADA) in 1997⁷.

Diabetes Mellitus Type 1 (insulin-dependent diabetes mellitus [IDDM]), which is brought on by the autoimmune-mediated death of the beta cells of the pancreas and the cells that produce insulin, is one of two types of diabetes mellitus. Many recent studies have focused on the choroidal thickness as an indicator of the choroidal blood flow. Choroidal vasculature and blood flow can be altered in various conditions; however, the major condition affecting the choroid is diabetes mellitus. Diabetic retinopathy is one of the primary causes of preventable blindness in working-age adults, affecting more than 35% of diabetic patients, as the choroid being a vascular structure is extremely vulnerable to both microvascular and macro-vascular abnormalities caused by DM2

The choroid, also known as the choroid coat, is the vascular layer of the eye, which is positioned between the retina and sclera. The choroid receives a large percentage of ocular blood flow and is responsible for the supply of nourishment to the outer retinal layers, and any modifications in choroidal structure or vasculature may affect the retinal function ⁸. It also provides nourishment to retinal pigment epithelium (RPE) and photoreceptors, which is responsible for maintaining the extremely metabolically active photoreceptor cells, as apparent from the absence of retinal vasculature in the foveal region ⁹ the fovea is the most sensitive area of the retina, responsible for sharp central vision, is also supplied by the choroidal vasculature, and thus also affected in choroidopathy. Damage of choriocapillaris may cause severe functional impairment to tissues in foveal region ¹⁰

Scientific and experimental findings suggest that, along with retinal change, choroidal vasculopathy might also play a role in the pathogenesis of diabetic retinopathy. Various choroidal irregularities, including obstruction of the choriocapillaris, vascular degeneration, choroidal aneurysms, and choroidal neovascularization, have been observed in previous studies on diabetic eyes ^{10,11,12}. Thus, such choroidal vascular

19

irregularities can lead to serious complications and dysfunction of the outer retina. However, in recent times there have been very few studies carried out on choroidal vasculature assessment and associating features. Thus this study aims to assess and the choroid vasculature properties, its changes with diabetes, and its association with co-relatable pathologies.

Choroidal imaging has seen a lot of development in recent years. Previously invasive procedures such as indocyanine green choreography were used for the imaging and assessment of the choroid, which made it difficult to carry out studies of choroidal pathology at a large scale. However, in recent years a more non-invasive and convenient method for choroidal imaging has emerged. Since the invention of spectral-domain optical coherence tomography, the imaging of the choroid has been gradually improving (SD-OCT). Moreover, the emergence of SD-OCT enhanced depth imaging (EDI) has enabled improved visualization and clearer imaging of the choroid¹³. Enhanced depth imaging optical coherence tomography (EDI OCT) is unique in having foveal tracking ability and is used to measure the thickness of the choroid in normal and pathological states ^{13,14,15}

Diabetic Mellitus includes several end-organ pathologies that directly relate to the severity and chronicity of the disease. One of the more pronounced organs to be affected is the kidneys, which, due to the various microvascular changes, lead to the development of diabetic nephropathy. Developmentally the retinal and the renal vasculature share some similarities during organogenesis; thus, the vascular pathologies affecting either the retina or the kidney may have some correlation and

influence on each other, resulting in pathologies in either one being used as a marker or predictor for pathologies of the other.

Microalbuminuria is an initial marker of generalized endothelial damage and is also related to the microvascular chronic complications in diabetic patients. Annually, 5%–10% of type 2 diabetes mellitus patients with microalbuminuria develop diabetic nephropathy, presenting with an increased risk of developing DR ^{16,17}

Development of nephropathy, in turn, leads to a higher risk of development of retinopathy and choroidopathy. Diabetic nephropathy leads to changes in the eGFR, albumin excretion, serum creatinine, and urea. These can be used as markers or predictors for the increased risk of development of choroidal vascular changes and, in turn, diabetic choroidopathy.

NEED FOR STUDY

Many recent studies have focused on the choroidal thickness as an indicator of the choroidal blood flow which is suspectable to alteration in diabetes mellitus. Scientific and experimental findings suggest that, along with retinal change, choroidal vasculopathy might also play a role in the pathogenesis of diabetic retinopathy.

In our study the choroidal thickness was assessed using a more resent development, the EDI OCT. The development of Enhanced Depth Imaging Optical Coherence Tomography (EDI OCT) has made it possible to visualize and image the choroid more clearly ¹³ with unique foveal tracking ability and can be used to measure the thickness of the choroid in normal and pathological states ¹³.

Diabetic Mellitus includes several end-organ pathologies, and One of the more pronounced organs to be affected is the kidneys, which, due to the various microvascular changes, lead to the development of diabetic nephropathy. Developmentally similarities are also shared between the retinal and renal vasculature during organogenesis, thus we also focused on choroidal thickness assessment in patients with diabetic nephropathy

REVIEW OF LITERATURE

HISTORY

In 1856, Eduard Jaeger noted the first signs of diabetes in the retina. This wasn't possible prior to the direct ophthalmoscope's invention in 1855. Jaeger's conclusions were refuted by Albrecht Von Graefe, who claimed there was no connection between diabetes and retinopathy.

Edward Nettleship demonstrated in his work from 1872 the first histological proof of "Cystoid Degeneration of the Macula" in diabetic individuals. Then, in 1876, Wilhelm Manz emphasised the significance of vitreous haemorrhages and tractional retinal detachments while describing the proliferative alterations connected to diabetic retinopathy. ¹⁸

The debate over whether diabetes, hypertension, and arteriosclerosis were the more likely culprits for macular alterations persisted, into the early 20th century. However, greater proof that diabetes was the underlying cause of the retinopathy observed in these patients was presented by Arthur James Ballantyne in Glasgow in the second part of the 20th century.

Technically speaking, diabetic choroidopathy is a non-inflammatory degeneration of the choroid caused by diabetes, and the first study on it was conducted by Hidayat and Fine (1985) in a small cohort of advanced-stage, painfully blind diabetic eyes (Hidayat and Fine, 1985) ¹⁹

In some of the arteries, they noticed choriocapillaris (CC) dropout, luminal constriction, and thickening of the basement membranes.

Fryczkowski created vascular casts of a small group of diabetic eyes and used scanning electron microscopy (SEM) to analyse the choroidal vasculature (Fryczkowski, 1988, Fryczkowski et al., 1989). ²⁰

In diabetic choroid, Lutty and McLeod used histochemical activity of the endogenous alkaline phosphatase (APase) enzyme to demonstrate the absence of functional choriocpillaries. (McLeod and Lutty, 1994; Lutty and McLeod, 2005)²¹

DIABETES MELLITUS

DEFINITION

A series of metabolic illnesses known as diabetes mellitus are characterized by chronic hyperglycemia brought on by deficiencies in insulin secretion, insulin action, or both. Low insulin levels, insulin resistance in tissues including skeletal muscles and adipose tissue, as well as liver genes to a lesser extent, are to blame for these metabolic anomalies.²²

According to the WHO, diabetes is a metabolic disease that is chronic and is defined by high blood glucose (or blood sugar) levels. Over time, this causes major harm to the heart, blood vessels, eyes, kidneys, and nerves.

EPIDEMIOLOGY

Ever since it was first recognized as a disease, diabetes mellitus has caused concern on a global scale. Diabetes mellitus has become more common worldwide, reaching epidemic levels in underdeveloped countries like India and China. With an estimated 77 million people affected, India has the second-highest prevalence of diabetes behind China. In India, it has been discovered that one out of every six individuals is impacted. 23

I.D.F., the international organization for diabetes, mentioned in the year 2020, approximately 463 million people in the world have diabetes, of which Southeast Asia contributes 88 million people ^{24.} On analysis of the epidemiology of diabetic retinopathy, 16.9% of the population consisted of people below 50 years of age. On further analysis, reports stated that 18.6%, of diabetic retinopathy population belonged to the age group between 60-69 years and 18.3% of the age group 70-79-years. The lowest prevalence of 14.3% were found in the age groups of 50-59-years ^{25.}

CLASSIFICATION OF DIABETES MELLITUS

The categories of diabetes mellitus include the following

- Type 1 diabetes It happens as a result of insulin shortage brought on by -cell destruction.
- 2. **Type 2 diabetes** It results from problems with insulin secretion and insulin resistance.

- 3. **Gestational diabetes mellitus (G.D.M.)** It is typically discovered in the second or third trimester of pregnancy and is not overt diabetes.
- 4. **Specific types of Diabetes** Ex: because of chemically induced diabetes, exocrine pancreas disorders, and monogenic diabetes syndromes (^{12).}

CRITERIA FOR DIAGNOSIS OF TYPE 2 DIABETES MILLITUS

Type 2 Diabetes according to the American Diabetes Association Diagnostic criteria

"The American Diabetes Association Expert Panel recommends a diagnosis of diabetes Mellitus when one of the following four criteria are met and confirmed with retesting on a subsequent day:

- HbA1c $\geq 6.5\%$ (<5.7% = normal)
- plasma glucose level 2 hourly \geq 200 mg/dL (11.1 mmol/L) with 75-g OGTT
- Random plasma glucose levels ≥200 mg/dl in a patient with symptoms of hyperglycaemia, including polyphagia, polyuria, and polydipsia"²⁶

World Health Organization and the International Diabetic Federation both claim

Measurement Diagnostic cut-off value Comment

- Fasting plasma glucose \geq 7.0 mmol/L (126 mg/dL)
- post-load venous plasma glucose $\geq 11.1 \text{ mmol/L} (200 \text{ mg/dL})$
- 2-hour post-load capillary plasma glucose $\geq 12.2 \text{ mmol/L} (220 \text{ mg/dL})$
- Random plasma glucose $\geq 11.1 \text{ mmol/L} (200 \text{ mg/dL})$
- HbA1c 6.5% (48 mmol/mol)

PREVENTION OF DIABETES

NATIONAL DIABETES CONTROL PROGRAM

The National Diabetes Control Program (N.D.C.P.) was initiated in 1987 in Tamil Nadu, Jammu and Kashmir, and Karnataka. Its objectives included:

- Identify high-risk population
- Introduction of the health education for early measures
- Aim for early diagnosis and treatment.
- Reduction in mortality and morbidity among the high-risks.
- Prevention of ocular metabolic, renal, cardiovascular complications.
- Rehabilitation of the people disabled people due to the disease ²⁷

INDIAN DIABETES PREVENTION PROGRAM

A three-year randomized control experiment called the Indian Diabetes Prevention Program (I.D.P.P.) used metformin and lifestyle changes to help people with impaired glucose tolerance avoid developing type 2 diabetes.

They came to the conclusion that altering one's lifestyle and taking metformin were affordable therapies that may be utilized to prevent diabetes in high-risk people in India and other developing nations. ²⁸.

OCULAR MANIFESTATIONS OF DIABETES AND HYPERGLYCEMIA

Diabetes mellitus can lead to a number of complications that involves multiple systems. Ocular complications such as diabetic retinopathy, diabetic papillopathy, glaucoma, cataract, and ocular surface diseases ²⁹

Various ocular structures that are affected in diabetes:

EYE LIDS/LASHES

Individuals are generally prone to majority of acute infections, especially in the presence of uncontrolled diabetes. The eyelids being more susceptible to infection may give rise to ulcerative blepharitis and. Recurrent styes are sometimes the first indications of diabetes and hence should indicate for an immediate diabetic evaluation **30.**Staphylococcus epidermis was reported to be isolated from the lid margins of nearly all diabetic patients

EXTRAOCULAR MUSCLE ABNORMALITIES

The extraocular muscles involved in the movement of the eyeball are controlled by the 3rd, 4th, and 6th nerves. These nerves are susceptible to damage from high blood sugar, eventually leading to nerve palsy. These Nerve palsies tend to recover completely on normalization of blood sugar. ^{31,32}

CONJUNCTIVA

Patients with diabetes are susceptible to bacterial infections, such as acute infective conjunctivitis. Conjunctival pathological alterations in up to 86% of diabetic patients include higher squamous metaplasia rates and decreased goblet cell density. ^{33,34}

CORNEA

acceleration of ocular surface abnormalities has been noted, indicating diabetic keratopathy. Corneal abnormalities include symptomatic corneal conditions, such as punctate keratopathy and persistent corneal epithelial defect ³⁵. Minor Corneal abrasions in diabetic patients can lead to severe outcomes including non-healing corneal ulcers and detachment of the basement membrane.

IRIS

One of the most deleterious effects on the iris is neovascularization. It is often present around the pupillary margin, but in advanced cases, it may involve the angle of the anterior chamber and even the whole of the iris ³⁶. These changes result in neovascular glaucoma.

PUPIL

It has been observed that there is a Loss of nerve terminals in diabetes. These nerve loss affects the dilator muscle majorly as shown in histological studies ³⁷, leading to pupils being more miotic ³⁸. In diabetic patients, surgically induced miosis that followed phacoemulsification was shown to be substantially more pronounced.

CHANGES IN REFRACTION

The posterior half of the cornea's refractive power was affected by diabetes, according to research by **Wiemer et al**. However, since the overall corneal power was unaffected, it is still most likely that lens modifications are to blame for the refractive abnormalities observed in diabetic patients. ³⁹.

Prior to this, **Duke-Elder** had noted a change from hyperopia to myopia in relation to either hyperglycemia or hypoglycemia, respectively. ⁴⁰. According to recent studies, diabetic individuals changed more frequently toward hyperopia, especially when therapy first started.

In addition to refractive changes, recent onset diabetic patients also exhibit changes in accommodation. Waite and Beetham reported transient paralysis of accommodation in 21% of diabetic patients, most commonly in between 20 followed by 50 years of age group ⁴¹.

CHANGES IN LENS

One well-known side effect of cataract growth is visual impairments. According to the **Framingham Eye Study** ⁴² Those over 65 years old have a twofold rise in cataract occurrences, while patients under 65 years old have a fourfold increase. According to The **Blue Mountains Eye Study**, impaired fasting glucose is a risk factor for cortical cataract development even in the absence of clinical diabetes **43**. One potential pathogenic mechanism for diabetes cataracts has been proposed: the deposition of advanced glycation end products in the lens. ⁴⁴ Additionally, it has been noted that sorbitol builds up in the fibres of the cortical lens to provide an osmotic explanation for the lens enlargement and cataract. ⁴⁵

The following are the hypotheses that explain lens changes in diabetics

- In diabetics, the activation of a specific isoform of protein kinase C by glucose results in the development of early-onset cataracts
- increased flux mediated by aldose reductase.
- Production of advanced glycation end products has increased (A.G.E.s), which are produced by the non-enzymatic reaction of aldehydes like glucose ⁴⁶.

RETINA

The retina is most suspectable to damage from diabetes, leading to severe complications and eventually visual loss. Diabetes mellitus majorly affects the microvasculature of the retina. The advanced glycation end products formed due to uncontrolled hyperglycaemia is responsible for the damaging effect of diabetes. Two pathways are responsible for the formation of these end products, the sorbitol and hexosamine pathways.

Diabetes-related microvascular damage also causes an increase in the synthesis of numerous growth factors, including vascular endothelial growth factor (VEGF), which worsens the disease's progression. The development of D.R. is primarily related to the duration and control of diabetes. Other factors known to influence the disease process are hyperglycaemia, hypertension, hyperlipidaemia, pregnancy, nephropathy, and anaemia ^{47,48}.

Diabetic retinopathy (D.R.) being a microangiopathy mainly targets smaller retinal vessels leading to increased vascular permeability, ocular haemorrhages, lipid exudate, ischemia and formation of new vessels ⁴⁹.

Along with retinal change, choroidal vasculopathy might also play a role in the pathogenesis of diabetic retinopathy. Various choroidal irregularities, including obstruction of the choriocapillaris, vascular degeneration, choroidal aneurysms, and choroidal neovascularization. Additionally seen in some arteries were choriocapillaris dropout, luminal constriction, and thickening of the basement membranes.

BASIC ANATOMY

The retina makes up the eyeball's inner layer, where the eye's optical system creates the optical image. The macula is situated in the middle of the temporal vascular arcades and the optic nerve head, measuring roughly 5.5 mm in diameter. The 1.5 mm of the macula centrally, the fovea is specialized for color vision and high spatial acuity. The unborn depression, which has a diameter of $150-200 \mu m$, is located in the foveola's middle.

A region devoid of retinal vessels within the fovea is known as the foveal avascular zone (F.A.Z.). The parafovea, which is 0.5 mm wide and surrounds the fovea, is the thickest part.

OPTIC DISC

Its diameter is roughly 1.5 mm. Except for the nerve fiber layer, all retinal layers terminate here. Due to the lack of photoreceptors, it is insensitive to light and is referred to as the blind spot. The extra-areal peripheral part of retina, sometimes denoted as peripheral retina, is typically split into several concentric sections, A 1.5-mm ring around the temporal major vascular arcades is the closest to the center.

Peripheral retina refers to the region that is anterior to the equatorial retina. The retina that encircles the equator is known as the equatorial retina. The retina and pars plana are divided from one other in the far peripheral retina by the Ora Serrata.

HISTOLOGY

Here is a list of the layers of the retina, from the inner to the outer retina.:

- 1. Internal limiting membrane (I.L.M.)
- 2. Nerve fibre layer
- 3. Ganglion cell layer
- 4. Inner plexiform layer (I.P.L.)
- 5. Inner nuclear layer (I.N.L.)
- 6. Middle limiting membrane (M.L.M.)
- 7. Outer plexiform layer (O.P.L.)
- 8. Layer of Henle fibre (HFL))
- 9. Outer nuclear layer (O.N.L.; the nuclei of the photoreceptors)
- 10. limiting membrane external (E.L.M.)
- 11. Inner segments Rod and cone (I.S.)
- 12. Outer segments Rod and cone (O.S.)

Internal-		
limiting	Nerve fiber layer	
memorane	Ganglion cell layer	0 - 120 0 0 - 3000, 30 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0
Middle limiting membrane-	Inner plexiform layer	
	Inner nuclear layer	
	Outer plexiform layer	
External-	Outer nuclear layer	121 Jan to Black of Black the She
limiting membrane	Inner segments Outer segments RPE	
membrane	Choriocapillaris Choroid	
Internal- limiting		
membrane	Ganglion cell layer	and the second se
Middle limiting	Inner plexiform layer Inner nuclear layer	States
External- limiting membrane Bruch- membrane	Outer plexiform layer Henle fiber layer Outer nuclear layer	and the second
	Inner segments Outer segments RPE	
	Choriocapillaris Choroid	

Figure 1. Schematic Cross-section of Retina Demonstrating Layers of Retina

OXYGEN SUPPLY AND RETINAL VASCULATURE

The avascular outer retina receives its vascular supply directly from the choroidal circulation, while the vascular supply of the inner retina receives it indirectly via the retinal circulation. The central retinal artery divides into four branches after entering the eye, each of which supplies blood to one of the retina's four quadrants. An area of the inner retina may occasionally receive blood flow from a cilioretinal artery that originates from the ciliary circulation.

The retina receives blood supply from up to four layers of vessels at the tissue level:

- 1. The radial peripapillary capillary network in the nerve fibre layer surrounds the optic nerve head.
- 2. In the retinal ganglion cell layer, the superficial vascular plexus,
- 3. A capillary bed on either side of the I.N.L. in the deep capillary plexus

The four layers that make up the outer lamina are the pigment epithelium, rods and cones, the outer nuclear layer, the external limiting membrane, and the choriocapillaris.

The remaining six layers that make up the inner lamina are the internal limiting membrane, the inner nuclear layer, the ganglion cell layer, and the nerve fibre layer supplied by the central retinal arteries and veins.

The choriocapillaris and central retinal artery both contribute to the supply of the outer plexiform layer.

RETINAL PIGMENT EPITHELIUM

RPE is a monolayer of pigmented cells that develops from the optic cup's outer layer. This layer is continuous with the pigment epithelium of the ciliary body and iris.

Each RPE cell has an apex and base; the apical portion envelops the outer segments of the photoreceptor cells with villous processes.

FIG 2. The Bruch membrane and the RPE's relationship to photoreceptors

The RPE supports retinal function in a number of ways, including:

- light absorption
- phagocytoses of cells in the outer segments of the rod and cone
- takes part in the metabolism of retinal fat and polyunsaturated fatty
- maintenance of subretinal space
- healing and scar tissue formation
- regeneration and recycling of visual pigment

BLOOD RETINAL BARRIER

Endothelial cells line the retinal capillaries, which are joined by zonula occludens-type intercellular connections. The blood-retinal barrier is made up of these junctions, which prevent solutes and fluids from freely moving from the retinal vessels into the interstitium. This blood-retinal barrier is weakened in diabetes, which causes the distinctive alterations seen in diabetic retinopathy.

ANATOMY OF CHOROID

he choroid is the term for the back of the uvea, the central tunic of the eye. The choroid is made up of blood vessels, melanocytes, fibroblasts, resident immune-competent cells, and supporting collagenous and elastic connective tissue. Its principal function has traditionally been considered to be providing oxygen and nutrients to the outer retina as well as the inner retina in animals with avascular retinas. One of the body's tissues with the most extensive vascularization is this one. Light absorption is a further conceivable purpose (in species with pigmented choroids). Thermoregulation and IOP adjustment are achieved through heat dissipation and vasomotor control of blood flow. It is noteworthy that the choroid is also engaged in the aqueous humor's uveoscleral route outflow from the anterior chamber. In humans, this route is responsible for about 35% of drainage, 40% to 60% in non-human primates, and significantly less drainage (about 3% and 3-8%, respectively) in cats and rabbits.

FIG, 3 SHOWING ANATOMY OF CHOROID

DEVELOPEMENT

In humans, towards the end of the first month, the two vesicles that later develop into the eyes, the uvea, bud off the embryonic forebrain. Around that time, melanocyte precursors start to travel from the neural crest into the uvea, but it takes them another 7-8 months of pregnancy for them to differentiate into pigmented melanocytes. The growing retinal pigment epithelium (RPE) must connect with the mesenchyme that creates the choriocapillaris at about two months in order to differentiate. As a result, the neural ectoderm serves as the origin of both the retina and the RPE, while other cell lines make up the choroid.

FIG 4 SHOWING DEVELOPMENT OF CHOROID

HISTOLOGY

The choroid continues anteriorly from the pars plana to the margins of the optic nerve before creating the ciliary body. Its deepest layer is the complex 5-laminar Bruch's membrane structure, and its outermost layer is the suprachoroidal gap between the choroid and sclera.

It is 0.1 mm thick at the ora serrata and 0.22 mm thick in the central macular region, progressively getting thinner anteriorly, according to histologic study. With a mean age of 50 years old and healthy subjects, the average subfoveal choroidal thickness measured in vivo by SD-OCT is 287 m. However, as people get older and sicker, the thickness of their eyes varies. The presence of both thin (leptochoroid) and thick (pachychoroid) choroid is associated with ocular disease.

Depending on whether the vascular region is viewed as 1 or 2 layers (Sattler's and Haller's) and if the lamina fusca is believed to be of choroidal or scleral origin, the choroid has been histologically divided into 4 to 6 layers. The five layers that are most usually used to describe it are Bruch's membrane, the choriocapillaris, the two vascular layers (Haller's and Sattler's), and the suprachoroidea.

FIG 5 SHOWING HISTOLOGY OF CHORIOCAPILLARIS

CIRCULATION

The posterior ciliary arteries supply blood to the choroid. The Haller layer, the outermost layer of large-caliber choroidal arteries, is comparatively thick. The Sattler layer is the

division of the choroidal arteries into smaller-diameter vessels and precapillary arterioles. By distributing blood throughout the choroid, these blood vessels raise the choriocapillaris's relatively low arterial pressure. Backwards is where the choroid is thickest.

Even though the capillaries themselves are not precisely ordered into lobules, the choriocapillaris creates a plexus of capillaries in the posterior pole. The capillary pattern is more unequal close to the periphery, where the capillaries are directed more radially. There are small patches of fibroblasts, loose connective tissue, and melanocytes throughout the arteries of the choroid.

Blood is gathered in venules after it has passed through the choriocapillaris, and these venules eventually combine to form the ampullae, or collecting channels, of the vortex veins. The equator of most eyes is where four or five vortex veins exit the eye. The superior and inferior ophthalmic veins receive drain from the vortex veins.

The retina, which has one of the highest metabolic rates per gramme of tissue in the body, receives its metabolic requirements from the choroid. According to some estimates, 90% of the oxygen required by the retina, specifically by the photoreceptors, is provided by the choroidal circulation. The highest blood flow of any tissue occurs in the choroid, yet the venous blood that leaves it still has a very high oxygen tension.

The RPE cells receive the highest oxygen pressures of any perfused tissue because to their physical attachment to the choriocapillaris, which raises the possibility of oxidative injury. The choroid's rapid flow generates a heat sink by absorbing thermal energy from light absorption.

FIG 6 SHOWING CHOROIDAL CIRCULATION

ANATOMY OF KIDNEYS

The excretion of waste products like ammonia and urea, the management of electrolytes, and the maintenance of acid-base balance are just a few of the crucial tasks carried out by the kidneys. They are necessary for maintaining intravascular volume and managing blood pressure via the renin-angiotensin-aldosterone pathway. They are also in responsible of reabsorbing glucose, calcium, phosphate, erythropoietin, calcitriol, electrolytes, water, and amino acids ^{50,51}.

The kidneys have a bean-like form with lateral convexity and medial concavity. Male kidneys typically weigh between 150 and 200 g, whereas female kidneys typically weigh between 120 and 135 g. The measurements are typically 10 to 12 cm in length, 5

to 7 cm in width, and 3 to 5 cm in thickness. Each kidney is about the size of a closed fist. They are situated between the transverse processes of T12 and L3 on the posterior abdominal wall, retroperitoneally. In comparison to the lower poles, the higher poles are frequently slightly medially and posteriorly inclined. A horseshoe kidney or a superior pole renal tumor may be present if the upper renal poles are positioned laterally. Due to the liver, the right kidney is typically positioned somewhat below the left kidney. ⁵²

EMBRYOLOGY

The intermediate mesoderm is where the mammalian kidney develops. Pronephros, mesonephros, and metanephros are the three sequential phases of kidney development (nephrogenesis). The cervical region's pronephros are comprised of vestibular excretory units (nephrotomes) during the beginning of the fourth week of development, but by the conclusion of the week, they have retreated. The intermediate mesoderm from the upper thoracic to upper lumbar segments gives birth to the mesonephros as the pronephros regresses. Bowman's capsule surrounds the glomerulus that makes up the renal corpuscle, and it extends, forms a loop, and develops capillaries. The mesonephric or Wolffian duct, which is a collecting duct, receives the excretory tubule. By around the sixth week, two bilateral organs are present. ⁵³.

STRUCTURE AND FUNCTION

The two main parts of the kidney are the cortex and medulla. The cortex is composed of renal corpuscles, straight tubules, collecting tubules, collecting ducts, and vasculature.

Medullary rays are straight tubules and collecting ducts that the medulla projects into the cortex. The medulla also contains the vasa recta, a network of capillaries important to the countercurrent exchange system. Oriented with their bases facing the cortex and their apexes facing the hilum, pyramids are conical formations comprised of tubules that have gathered in the medulla. The papillae on the apices of the pyramids grow into smaller calyces and discharge into the cribrosa, a collection area, at the points of the structures. A lobule is a group of nephrons that a collecting duct drains. ⁵⁴

FIG 7 SHOWING ANATOMY OF KIDNEY

The functioning elements of the kidney are called nephrons. Per adult kidney, there are about 2 million nephrons. A renal corpuscle is created by an afferent arteriole supplying a network of capillary loops known as the glomerulus, which is encircled by a doublelayered epithelium known as Bowman's capsule. The vasa recta, which develops from an efferent arteriole that drains the glomerulus, supplies the renal tubules. The following structures are located distal to Bowman's capsule: the proximal convoluted tubule, proximal straight tubule, or thick descending limb of the Henle loop, thin descending limb of the Henle loop, thin ascending limb of the Henle loop, distal straight tubule, or think ascending limb of the Henle loop, distal convoluted tubule, collecting
tubule, cortical collecting duct, medullary collecting duct, papillary duct, minor calyx, major calyx, renal pelvis, and ureter. The tubules begin in the brain, travel to the medulla, undergo a hairpin-like turn in the small limb of the loop of Henle, and then return to the cortex at the site of their starting renal corpuscle. ^{50,51}

FIGURE 8 SHOWING STRUCTURE OF NEPHRON

The glomerular filtration barrier of the renal corpuscle is composed of the visceral layer of Bowman's capsule, the glomerular basement membrane (GBM), and the fenestrated endothelium of glomerular capillaries. Foot processes that stretch from the podocytes join, leaving filtration slits between them, that the slit diaphragm covers. The lamina rara externa, lamina rara interna, and lamina densa make up the GBM. Simple squamous epithelium makes up Bowman's capsule's parietal layer. It is separated from the visceral layer by Bowman's gap. Mesangial cells are present across the whole renal corpuscle, outside of the capillaries. Specialized mesangial cells outside of the renal corpuscle, juxtaglomerular cells, and the macula densa make up the juxtaglomerular apparatus. In its return to the original glomerulus, the thick ascending limb creates the macula densa, a wall of specialised cells enclosing the afferent arteriole. ^{55,56}.

DIABETIC RETINOPATHY

RISK FACTORS OF DIABETIC RETINOPATHY CAN BE CLASSIFIED AS FOLLOWS:

Non-modifiable	Duration of Diabetes, Genetic Factors, Gender
Modifiable	Glycaemia, Blood Pressure, and Lipid Levels
Others	Carotid arterial disease, pregnancy, renal impairment, and smoking

TABLE .1 RISK FACTORS OF DIABETIC RETINOPATHY

NON-MODIFIABLE FACTORS

DURATION

The Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) examined patients with both type 1 and type 2 diabetes mellitus and discovered a connection between the prevalence of diabetic retinopathy and the length of diabetes mellitus. After 20 years of having diabetes mellitus, nearly 99% of type 1 patients and 60% of type 2 patients in the **WESDR** cohort had some kind of diabetic retinopathy Proliferative diabetic retinopathy was discovered in 25% of type 2 patients with a 25-year history of the disease and 50% of type 1 individuals with a 20-year history of the condition. ⁵⁷.

GENDER

In the WESDR trial, men who developed diabetes sooner than women did had a higher incidence of proliferative diabetic retinopathy. But in the **WESDR** trial, there was no discernible difference between males and females in terms of the prevalence or progression of retinopathy ⁵⁷. PDR was discovered in 33% of women and 50% of men after 20 years of diabetes, respectively.

GENETICS

Genetic influence has also known to factor in and influence the course of diabetic retinopathy by either altering the onset, progression or severity of DR. heredity plays a vital role leading to estimates ranging from 25% to 50% have been reported for proliferative DR ⁵⁸.

Patients with the HLA DR 4 and DR 5 phenotypes have an increased chance of developing proliferative diabetic retinopathy.

Seventy loci were found to be related with type 2 diabetes in a study called the **Genome-wide association studies (GWAS)** that was carried out on several populations. Additionally, they found a strong correlation between a variety of mutations and SNPs that affected how linked proteins expressed and had physiological effects and an elevated risk of type 2 diabetes ⁵⁹.

MODIFIABLE FACTORS

GLYCEMIA

In a study, the trial research group it was observed that for type 1 diabetic patients, a 10% reduction in the haemoglobin A1c (HbA1c) was associated with improvement of DR in the rigorous and traditional treatment group, ⁶⁰.

Diabetes Control and Complications Trial (DCCT) ⁶¹ and the **United Kingdom Prospective Diabetes Study (UKPDS)** have both demonstrated the cost-effectiveness and efficacy of glycaemic control in reducing the incidence and progression of retinopathy. However, it was also observed that the data from these studies, as well as other other studies have confirmed the difficulty in achieving and maintaining good glycaemic control over an extended period of time ⁶².

The (**DCCT**) also found that a 10% drop in HbA1c (from 8% to 7.2%) causes a 35% to 40% drop in the prevalence of diabetic retinopathy. But rather of using data from **NIDDM** patients, this study used outcomes from **IDDM** patients.

The **ACCORD** Eye study confirmed the importance of maintaining good glycaemic control by lowering HbA1c levels from a mean of 58 to 46 mmol/mol, as well as its correlation with decreased incidences of proliferative retinopathy requiring

photocoagulation or vitrectomy from 10.2% to 6.5% and retinopathy progression was decreased by 42% 63 .

BLOOD PRESSURE

Hypertension has been observed to be a causative factor for increased retinal capillary endothelial damage. The constant elevation in blood pressure is responsible for this in already susceptible retinal vasculature in diabetics ⁶⁴.

The **UKPDS** revealed a link between elevated systolic blood pressure and the higher prevalence of retinopathy. ⁶⁵.

The **UKPDS** also shown an association between a decrease in the mean systolic blood pressure from 154 to 144 mmHg and a decrease in the number of microaneurysms at 4.5 years of follow-up. At 7.5 years, there were also less hard exudates and cotton-wool spots, a lower need for photocoagulation, and less degeneration of 2-step or more on the ETDRS retinopathy scale ⁶⁶.

LIPID LEVELS

High serum lipid levels in the ETDRS were linked to a higher occurrence of hard exudates at the macula and lower visual acuity at baseline

OTHER FACTORS

PREGNANCY

Pregnancy is associated with increased risk factor that leads to a progression in retinopathy. The severity of retinopathy is also known to increase, when compared to non-pregnant diabetic women. It has been observed that Human placental lactogen (hPL) plays an important role in the influence of pregnancy on DR due to its increased production and similarity to growth hormone activity. Pregnancy being a Hyperdynamic circulatory is also known to cause mechanical endothelial damage at the capillary level ⁶⁷.

SMOKING

Smoking is a significant risk factor, particularly for diabetic people. When difficulties arise early in the course of type 1 diabetes, smoking has been found to be connected to microangiopathy. ^{68,69}

PATHOGENESIS OF DIABETIC RETINOPATHY

1. ANATOMICAL

- a) Thickening of the capillary basement membrane
- b) According to electron microscopy, the basement membrane has significantly thickened, showing signs of vacuolization akin to Swiss cheese and the deposition of fibrillar collagen, which is positive for type III collagen.
- c) Loss of intramural microvascular pericytes
- d) They have been described as empty, balloon-like regions protruding from the capillary wall during digest preparation. This is probably connected to how the sorbitol pathway works.
- e) Endothelial cell dysfunction and endothelial cell loss
- f) The endothelial cell connections loosen, which may be connected to the ZO-1 protein's decreased expression. In the cytoplasm of endothelial cells, there are fenestrations.

2. BIOCHEMICAL MECHANISMS IN THE PATHOGENESIS OF DIABETIC RETINOPATHY

Individuals with DM experience microvascular abnormalities in the retinal vasculature, renal glomeruli, and peripheral nerve vasa vasorum.

Edema, ischemia, and hypoxia-driven neovascularization are caused by chronic hyperglycaemia's reduction in the production of neuronal cell and endothelium trophic factors. ⁷⁰

While atherosclerosis marks the beginning of endothelial dysfunction in non-diabetic patients, it appears that insulin resistance does so in diabetes patients.

Four hypotheses were used to investigate the mechanism of hyperglycaemia-induced microvascular injury.

These are:

- I. Increase in polyol pathway flux
- II. Build-up of advanced glycation end products (AGEs)
- III. Protein kinase C activation (PKC)
- IV. Enhanced flux via the hexosamine route

FIG 10. HYPERGLYCEMIA DYSREGULATES FOUR BIOCHEMICAL PATHWAYS.

Increased Polyol Pathway Flux

Aldose reductase in cases of high blood sugar, glucose is converted to sorbitol As NADH levels drop, . Sorbitol is then oxidised to fructose with NADH reconstitution. The oxygenation of sorbitol prevents the enzyme glyceraldehyde-3-aldehyde dehydrogenase (GAPDH) from working, which raises triose phosphate concentrations and causes the synthesis of methylglyoxal and diacylglycerol (DAG)⁷¹. Reduction of glucose to sorbitol consumes NADPH, worsening oxidative stress.

Advanced Glycation End Products (AGEs)

AGE formation is promoted by intracellular hyperglycemia, which is found in increased concentrations in glomeruli and diabetic retinal blood vessels ⁷².

Critical proteins are altered and have their functions changed by AGE precursors. These alter integrins and elements of the extracellular matrix, changing the way that plasma proteins bind to AGE receptors.

By extending the molecular packing of type 1 collagen and altering the collagen type IV composition in basement membranes, advanced glycation end product-induced cross-linking alters blood vessel function.⁷³.

Activation of Protein Kinase C (PKC)

When AGE receptors are ligated by hyperglycemia [and the polyol pathway becomes more active], PKC isoforms are indirectly activated. ⁷⁴. Nitric oxide production drops and endothelin-1 activity rises as a result of PKC-isoform activation, which is what causes aberrant blood flow in the kidney and retina.

A PKC-specific inhibitor reduces retinal activity and reduces diabetes-related increases in retinal mean circulation time. ⁷⁵.

Hexosamine Pathway Flux Increased

Over-induction of the hexosamine pathway causes the activation of genes that cause vascular endothelial dysfunction and a variety of other changes that are seen in diabetic retinopathy. The covalent modification of the transcription factor Sp1 by N-acetylglucosamine (G1cNAc) explains the relationship between the hexosamine pathway and hyperglycemia-induced changes in the transcription of the PAI-I gene, but it is unclear how increased hexosamine pathway flux results in hyperglycemia-induced increases in gene transcription. ⁷⁶

PATHOGENESIS OF DIABETIC MACULAR EDEMA

1. BREAK DOWN OF BLOOD RETINAL BARRIER

2. Damage to the junctional complexes between RPE cells and capillary endothelial cells, changes in the condition of the cell's membrane or its capacity to pump, or all three of these factors may be to blame. Leakage processes include increased transcellular transport via vesicles, the development of fenestrations across the cytoplasm of endothelial cells, and increased RPE infoldings that promote choroidal to subretinal space transudation..⁵³

FIG 11. BREAKDOWN OF BLOOD RETINAL BARRIER

2. ROLE OF VASOACTIVE FACTORS

- a. Vascular endothelial growth factor-A
- b. Protein kinase C
- c. Histamine
- d. Angiotensin II

- e. Matrix metalloproteinases
- f. Pigment epithelium-derived factor.

Vascular endothelial growth factor

Through a number of processes, vascular endothelial growth factor raises vascular permeability (Fig.5)

The process starts by triggering inositol triphosphate (IP3), which releases intracellular calcium and relaxes vascular smooth muscle.

Second, VEGF promotes the synthesis of DAG, which directly raises cellular permeability via DAG-sensitive Ca2+ channels. Thirdly, elevated DAG production activates PKC.⁷⁷.

FIG 12. TRANSMEMBRANE RECEPTORS, SITE OF VASCULAR ENDOTHELIAL GROWTH FACTOR-A BINDING

Protein kinase C

Protein kinase C, a member of the serine/threonine protein kinase family, has been

linked in three different ways to the aetiology of diabetic BRB breakdown:

VEGF-A mediates its impact.

It has been demonstrated that PKC- regulates and facilitates the regulation of VEGF-A gene expression in a transgenic mouse model.

Secondly, by oxidative stress through ROS produced by hyperglycemia or advanced glycation end-products (AGEs), PKC can be activated.

Thirdly, Phosphorylation of tight junction-associated proteins to induce BRB breakdown is triggered by PKC ⁷⁸.

Histamine

·Vascular endothelial cells of the retina are very sensitive to histamine.

• Reduces the ZO1 protein expression.

Renin/Angiotensin System

Angiotensin has a major impact on vascular smooth muscle cells, causing them to expand, proliferate, and deposit extracellular matrix proteins. Some of the mediators of these include TGF-1, PDGF, VEGF, insulin-like growth factor, and connective tissue growth factor. **79**

Angiotensin II's pro-angiogenic effect on mammalian retinas with oxygen-induced retinopathy is mediated by VEGF. Pharmacological RAS suppression lowers angiogenesis by downregulating VEGF and VEGFR2. ^{80.} Angiotensin II levels are increased in diabetic macular edoema patients and are associated with vitreous VEGF concentrations. According to study, this may be regulated by the AT1-R/NF-B pathway, opening up new target sites for the prevention of diabetic retinopathy. ⁸¹.

CLINICAL FINDINGS OF DIABETIC RETINOPATHY

Vascular malfunction and decreased perfusion remain the hallmarks of diabetic retinopathy, but a growing body of data suggests that neuroretinal function is impacted before overt vascular abnormalities are apparent.

1. MICROANEURYSM

Retinal capillary microaneurysms are frequently the earliest diabetic retinopathy symptoms to be seen under an ophthalmoscope. The dark red or white fundus patches that have a diameter of 25 to 100 m are saccular dilations of the capillaries. There is no known mechanism for how microaneurysms arise. Alterations in the retinal microenvironment caused by metabolic effects on neurons, glial cells, and endothelial cells, as well as endothelial cell injury related to leukostasis, may be contributory factors.

Perfused microaneurysms are seen on fluorescein angiography as distinct hyperfluorescent patches, with early dye pooling and late leakage.

2. RETINAL HAEMORRHAGES

Retinal haemorrhages come in two different shapes and can be either:

- 'Flame-shaped," which typically develops from the superficial capillary plexus and occurs within the nerve fibre layer.
- "Dot and blot," which takes place in the spaces between the vertically oriented axons that emerge from the deep capillary plexus and are located in the inner plexiform layer.
- Unlike microaneurysms, haemorrhages typically signify a more serious form of DR.

3. HARD EXUDATES

Hard exudates are small, white or yellowish-white deposits with definite edges. The exudates are pathologically observed as fat-filled (lipoidal) histiocytes in the OPL or Henle fibre layer. Foamy histiocytes are present in massive exudation in the OPL. Circinate retinopathy is the term for the circular pattern caused by the accumulation of exudates around diseased vessels.

4. SOFT EXUDATES

Cotton-wool spots occur in the nerve fiber layer and under the ILM. Cotton-wool spots are indicative of backup of axoplasmic flow. Histopathological, the cotton-wool spots are cystoid bodies and are the swollen ends of ruptured axons in the nerve fiber layer in the infarcted area, just under the ILM

5. INTRARETINAL MICROVASCULAR ANOMALIES (IRMA)

Intraretinal microvascular abnormalities (IRMAs) are shunt vessels and appear as abnormal branching or dilation of existing blood vessels (capillaries) within the retina that act to supply areas of non-perfusion in diabetic retinopathy.

These vessels represent either new vessel growth within the retina or remodelling of pre-existing vessels through endothelial cell proliferation stimulated by hypoxia bordering areas of capillary nonperfusion.

Cotton wool patches and localised arteriolar blockage may coexist with the collateral creation process, which is a variation responsible for the development of IRMA. Cotton wool spots (CWS) and intraretinal microvascular abnormalities are frequently linked to early retinal ischemia (IRMA).

6. OPTIC DISC CHANGES

Diabetes papillopathy, which causes swollen optic discs, is common in diabetic patients but has no relationship to retinopathy levels. Diabetic papillopathy must be distinguished from neovascularization and ischemic optic neuropathy (NVD

7. RETINAL NEOVASCULARIZATION

Retinal neovascularization arises as a result of advanced retinal ischemia. Neovascularization elsewhere (NVE) or neovascularization of the disc (NVD) refers to generating new vasculature from retinal or disc vessels that already exist, which develop along the scaffolding of the posterior hyaloid surface. The level of intraocular VEGF typically correlates with the rate of blood vessel growth. Although new vascular growth is the hallmark of proliferative diabetic retinopathy (PDR), patients may also have all the signs of non-proliferative diabetic retinopathy, including macular edoema .

8. VITREO-RETINAL INTERFACE ANGIOGENESIS

The inner side of the retina, which is most firmly adhered to the pars plana, and the posterior hyaloid face of the vitreous gel are where new blood vessels develop. Typically, they have no symptoms. The difficulties that result from the dynamic interplay at the vitreoretinal interface are what produce the symptoms. The contact raises the new vessel off the retinal surface and causes an inflammatory reaction and scarring. Additional contraction may result in vitreous haemorrhage and traction retinal detachment.

9. RETINAL DETACHMENTS

The vitreoretinal attachments determine the extent and location of tractional retinal detachment.

CLASSIFICATION OF DIABETIC RETINOPATHY

There are mainly two types of classification:

A. ETDRS CLASSIFICATION OF DIABETIC RETINOPATHY

"Disease severity level	Findings observable upon dilated ophthalmoscopy
MILD NPDR	 At least one microaneurysm, and definition not met for Moderate NPDR. 5 % risk of progressing to PDR within 1 year and a 15 % risk of progressing to high-risk PDR within 5 years
MODERATE NPDR	 Haemorrhages and/or microaneurysms, and/or soft exudates, venous beading, or intraretinal microvascular abnormalities definitely present; Definition not met for severe NPDR The risk of progression to PDR is 12-27 % within 1 year, and 33 % within 5 years
SEVERE NPDR	 The 4-2-1 rule; one or more of: Severe haemorrhages in all 4 quadrants Significant venous beading in 2 or more quadrants Moderate IRMA in 1 or more quadrants The risk of developing PDR is 52 % within 1 year and 60 % within 5 years.
VERY SEVERE NPDR	 Two or more of the criteria for severe NPDR. The risk of developing PDR is 75 % within 1 year.
EARLY PDR	New vessels; and definition not met for high-risk PDR
HIGH RISK PDR	 New vessels on or within one disc diameter of the optic disc (NVD with or without vitreous haemorrhage or pre retinal haemorrhage; Accompanied by new vessels, either NVD< or new vessels elsewhere (NVE)>/= one quarter disc area"

Table 2. ETDRS Classification of Diabetic retinopathy

- Clinically important macular oedema (CSME) was described as follows in ETDRS:
 - \blacktriangleright Within 500 microns of the macula's center, the retina thickens.
 - If connected to thickening of the retina, exudates that are 500 microns or less from the macula's center (which may be outside the 500-micron range).
 - Any portion of the retina that is thicker than one disc area (1500 microns) and falls within one disc diameter of the macula's centre

MODIFIED AIRLIE HOUSE CLASSIFICATION

Seven standard photographic fields are shown for the right eye. Field 1 is centered on the disc, field 2 on the macula, and field 3 temporal to the macula so that its nasal edge passes through the center of the macula. Fields 4 to 7 are tangential to a vertical line passing through the center of the disc and to horizontal lines passing through its upper and lower poles.

FIG 13. : MODIFIED AIRLIE HOUSE CLASSIFICATION

"ETDRS RECOMMENDATION FOR FOLLOW-UP"

CATEGORY	FOLLOW UP
NO DIABETIC RETINOPATHY	Review in 12 months

MILD NPDR	 Review range of 6-12 months, depending stability, severity and associated systemic features
MODERATE NPDR	Review in roughly six months
SEVERE NPDR	Review in three months
VERY SEVERE NPDR	Review in two to three months
EARLY PDR	 A therapy plan based on the stability, seriousness, and associated systemic difficulties Review in 2 months if the patient is not receiving treatment

Table 3: ETDRS RECOMMENDATION FOR FOLLOWUP IN DR

DIABETIC CHOROIDOPATHY

It has been suggested in previous literature that diabetes can cause a non-inflammatory deterioration of the choroid. a Hidayat and Fine study (1985) ¹⁹, It was observed that some arteries had arteriosclerotic alterations together with choriocapillaris (CC) dropout, luminal constriction, and thickening of basement membranes. Loss of CC, big and intermediate blood vessel tortuosity, vascular hypercellularity, and microaneurysms were reported in patients with diabetic choroids, according to a 1989 study by **Fryczkowski et al.**

CHOROIDAL VASCULAR LOSS

Endogenous alkaline phosphatase (APase) enzyme histochemical activity has shown decrease of functional CC in diabetic choroid (Lutty and McLeod, 2005)

Histochemical study of large fields of CC revealed malfunction in flat mount preparations of diabetic choroids in both diabetics with and without retinopathy at all stages of the disease (Lutty and McLeod, 2005; McLeod and Lutty, 1994)²¹

There are two different forms of choroidal vascular loss

- 1. Diffuse
- 2. Complete

In diffuse loss there is capillary loss but without any defined area, however in complete loss there was defined borders with atrophy.

ETIOLOGY

Diabetes is known to initiate an inflammatory response as part of its pathological process. TNF and IL1 levels had been found to be elevated (Lampeter et al., 1992)⁸²

The presence of activated leukocytes, such as polymorphonuclear neutrophils (PMNs), circulating in diabetics in comparison to non-diabetic's nondiabetics (Wierusz-Wysocki et al., 1987) ⁸³. Compared to nondiabetics, diabetic PMNs have a stiffer cytoplasmic membrane, which increases the likelihood that they will become caught in the microvasculature and lead to capillary blockage (Kelly et al., 1993).

Firm adhesion to the endothelium cells is caused by PMNs adhering to them after rolling over the surface, which is mediated by P-selectin. ICAM-1 and activated PMNs are known to exhibit CD11/CD18 on their surfaces, which aids in their ability to bind to ICAM-1 (Springer, 1994)

CHOROIDAL NEOVASCULARIZATION IN DIABETIC CHOROIDOPATHY

CC depletion in diabetic choroid eventually led to development of hypoxia in the choroid and overlying RPE. this hypoxic causes the upregulating of VEGF production leading to angiogenesis (Shima et al., 1995)⁸⁴

EVALUATION

- 1. ICG angiography
- 2. colour Doppler
- 3. Optical coherence tomography (OCT)

ICG angiography and FA shows areas with hypofluorescence and late choroidal nonperfusion regions, whereas OCT offers a better assessment of the blood vessels in the Sattler's and Haller's layer. OCT also helps with evaluation of choroidal nonperfusion or poor perfusion, as well as choroidal hypoxia areas. Additionally, localized dilatations and choroidal vascular remodeling in the form of crooked, tortuous, and beaded choroidal arteries have been reported.. examination and measurement of choroidal thickness in diabetic choroidopathy is also an effective method to assess the choroidal status. It has been observed, due to the hypoperfusion in diabetics there is a reduction in the choroidal thickness in time.

DIABETIC NEPHROPATHY

Diabetic nephropathy (DN) or diabetic kidney disease is a syndrome with characteristic features of urine albumin excretion in pathological quantities, diabetic glomerular lesions along with the loss of glomerular filtration rate (GFR)⁸⁵.

Diabetic kidney disease (DKD) is the major causative factor for end-stage kidney disease (ESKD). Diabetic retinopathy is majorly caused by the involvement of microvascular components, and can occur in both type 1 and type 2 diabetes mellitus. Albuminuria with a progressive decline in the glomerular filtration rate are some of the important presenting features. progression of the discord can be substantially reduced when treatment is initiated early ¹⁷.

PATHOPHYSIOLOGY

Similarly, to diabetic retinopathy and choroidopathy, Hyperglycemia tends to be the initiating factor. It causes the synthesis of harmful reactive oxygen species and the activation of many pathways. These pathways can include the protein kinase C, polyol and hexosamine pathway. Eventually there is formation of advanced glycation end products (AGE). Another crucial element is inflammation, which shows itself as a rise in cytokines and chemokines. These inflammatory mediators, which cause inflammation fibrosis and increased vascular permeability, include IL-6, MCP-1, TGF-beta (transforming growth factor-beta), and VEGF (vascular endothelial growth factor).

These different pathways culminate in A podocytopathy, which then prompts albuminuria. Proteinuria is the outcome of the resultant intraglomerular and systemic hypertension. Proteinuria induces the transition of epithelial-mesenchymal cells into fibroblasts and persistent tubular damage.

INVESTIGATIONS

Urine albuminuria and estimated GFR (eGFR) are reliable diagnostic and monitoring assays. Urea, creatinine, and protein levels in urine are measured via urine analysis. A nephritic cause is ruled out using microscopy. To rule out multiple myeloma, serum and urine electrophoresis are performed, and renal ultrasonography is performed to measure the size of the kidneys. When the diagnosis is unclear, a kidney biopsy is performed.

DIAGNOSTIC TESTING

1. DIRECT OPHTHALMOSCOPE

In 1851, Helmholtz invented the first direct ophthalmoscope. The direct ophthalmoscope allows a highly magnified, monocular image of the retina and optic disk. The fundus is viewed through a tiny peephole located just above the illumination source of the instrument, producing an upright virtual image.

FIG 14 RAY DIAGRAM OF THE OPTICS OF THE DIRECT OPHTHALMOSCOPE

2. INDIRECT OPHTHALMOSCOPE

Introduced by Schepens, binocular indirect ophthalmoscopy offers an excellent resolution of fundus details. The binocular indirect ophthalmoscope provides a brightly illuminated, wide-angle, and stereoscopic view of the retina.

The power of the lens depends upon the magnification used and the refraction of the eye.

- 15D lens (magnifies four times and field is about 40°) is used for examination of the posterior pole.
- 20D lens (magnifies three times and field is about 45°) is most commonly used for the general overall examination of the fundus.
- 30D (magnifies 2.5 times and field is 60°) has a shorter working distance and is useful when examining the patient with small pupils.
- 40D lens (magnifies 1.5 times and field is about 65°) is used mainly to examine small children. Panretinal 2.2 lens magnifies three times, and the field observed is about 55°

FIG.15 RAY DIAGRAM OF THE OPTICS OF THE INDIRECT OPHTHALMOSCOPE

3. FUNDUS PHOTOGRAPHY

- The digital fundus camera is a low-power microscope specialized with a camera attached. The optical design of the camera is similar to the monocular indirect ophthalmoscope principle.
- The fundus camera provides a magnified upright view of the fundus.

- In colour fundus photography, the retina is examined in full colour and illuminated by white light.
- Red colour is removed by filtration of imaged light, which improves the contrast of vessels and other structures in red-free photography. It shows small haemorrhage's, microaneurysms, and hard exudates with more clarity than colour fundus photos.

Fig 8. Fundus photography of Moderate NPDR

4. FLUORESCEIN ANGIOGRAPHY

In FA, through intravenous injection of a fluorescent dye, the vessels are brought into high contrast. With an excitation color, the retina is illuminated, which fluoresces the light of another color. By using a filter, the excitation color is excluded, and by passing the fluorescent stain, a higher contrast of the vessels is produced. Photos of the timed sequence show the dye's progression into the vessels reveals the flow dynamics and the different layers of the retina. Thus, different areas of the retinal architecture are delineated.

FIG 16. FLUORESCEIN ANGIOGRAM SEQUENCE, AVPHASE AND PROGRESSING TO MIDTRANSIT

Clinical Applications of Fluorescein Angiography

Macular edema and non- proliferative diabetic retinopathy and to evaluate areas of capillary nonperfusion. Neovascularization of the retina elsewhere would also be identified. Fluorescein angiography is also useful to monitor macular edema postlaser. To evaluate the progression and resolution of residual macular edema, comparison photographs and angiographic frames from previous examinations can be used.

FIG 17. FFA IN PDR

5. INDOCYANINE GREEN ANGIOGRAPHY

Indocyanine green dye angiography (ICG) is a method to capture the flow of the dye in the choroid. In approximately 15% of patients with nonproliferative diabetic retinopathy, ICG can reveal additional microvascular complications in diabetes not seen with conventional fluorescein angiography

Clinical Applications of Indocyanine Green Angiography - ICG is used to follow in patients with choroidal lesions or those patients with diabetes with an abnormal presentation of diabetic retinopathy.

SEVEN STANDARD DIABETIC PHOTOGRAPHIC FIELDS

This is a technique of taking photos in a series using a digital fundus camera. A 35degree field of view is utilized.

The fields are centered as follows:

FIELD 1	THE OPTIC NERVE IS CENTERED
FIELD 2	THE MACULA
FIELD 3	TEMPORAL TO THE MACULA
FIELD 4	SUPEROTEMPORALLY, EXCLUDING THE OPTIC DISC
FIELD 5	INFEROTEMPORALLY EXCLUDING THE OPTIC DISC;
FIELD 6	SUPRANASALLY ALONG THE ARCADES, EXCLUDING THE OPTIC
FIELS 7	INFERONASALLY- EXCLUDING THE OPTIC DISC.

TABLE 4 STANDARD DIABETIC PHOTOGRAPHIC FIELDS

FIG 18. DIAGRAM OF SEVEN STANDARD PHOTOGRAPHIC FIELDS.

6. OPTICAL COHERENCE TOMOGRAPHY

An optical equivalent of the frequently used ultrasonic imaging is optical coherence tomography (OCT). It works by collecting and creating cross sections of the retina using low coherence interferometry. To obtain a decoded image of the tissue microstructures, light scattering from tissue is collected and processed.

It makes use of infrared light from a two-part super luminescent diode.

1. The light that a reference mirror reflects

2. light reflected by living tissue.

Along with their amplitude information, the two reflected light beams are created to produce interference patterns that aid in determining an echo time delay. A 2-dimensional image is created by combining scans taken by a transverse scanning mechanism at adjacent retinal regions. One can attain image resolutions of 1 to 15 m.

There are two primary OCT technologies used in point-scanning/point-detection technology,

- 1. time-domain OCT (TD-OCT)
- 2. Fourier-domain OCT (FD-OCT).
- 3. full-field OCT (FF-OCT) Direct acquisition of 2D OCT

TD-OCT is based on a detection technique that uses a low-coherent light source and a scanning reference delay. The first OCT technology to be created was TD-OCT, which initially appeared in the 1990s. In TD-OCT measurements, light echoes are progressively caught by the step-movement of a reference mirror.

Fourier-domain OCT imaging can also be performed in two ways: by spectral-domain OCT (SD-OCT) and by swept-source OCT (SS-OCT). In FD-OCT, all of the spectral components of the source spectrum are concurrently recorded as light echoes that arrive at the same time from all axial depths. They are able to acquire data at faster rates. Before detection with SD-OCT, the interference pattern dissipates.

FIG 19. WORKING PRINCIPLE OF OCT

Konstantina Sampani et al, in their study "Comparison of SDOCT Scan Types for Grading Disorganization of Retinal Inner Layers and Other Morphologic Features of Diabetic Macular Edema" conducted in 2020, concluded that reproducibility for SDOCT parameters of DRIL and intraretinal cysts was high across all five SDOCT scan types; thus, evaluation of DRIL is feasible using multiple SDOCT models in eyes with DME ⁸⁶.

Ahmed H. ElTanboly et al, in 2020 carried out a study to assess An automated approach for early detection of diabetic retinopathy using SD-OCT images ⁸⁷. They characterized Each layer of retina by its thickness, tortuosity, and normalized reflectivity and concluded that SD-OCT is a novel automated method that enables quantitative analysis of the changes in each layer of the retina caused by diabetes. They also stated it was a reliable non-invasive diagnostic tool for early detection of DR

Gerard A. Lutty in his study on diabetic choroidopathy in 2017 stated that, The tortuosity and loss in intermediate and major blood vessels in Sattler's and Haller's layer that were previously observed with histological techniques have been documented by EDI-SD OCT and SS OCT. ⁸⁸

FIG 20. OCT SCAN OF MACULAR EDEMA

In their study on the role of biochemistry and molecular cell biology in the evolution of diabetic retinopathy, Brownlee M et al. identified increased polyol pathway flux, increased advanced glycation end products (A.G.E.s), activation of the isoform of protein kinase C (PKC), and increased hexosamine pathway flux as the mechanisms causing diabetic retinopathy.⁸⁹.

The E.T.D.R.S. group developed the modified Airlie House classification of diabetic retinopathy, which was used in the D.R.S., based on the specific lesions seen. There are five levels of diabetic retinopathy: mild, moderate, severe, very severe, early PDR, and high-risk PDR. ⁹⁰.

CHOROIDAL THICKNESS AND DIABETES MELLITUS

- In 2012 Caio v. regatieri, Ph.D., laurenbranchini, jillcarmody, James g. Fujimoto, and jay s. Duker, in their study on choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography, concluded that choroidal thickness was altered in diabetics and may be related to the severity of retinopathy, and the presence of diabetic macular edema is associated with a significant decrease in the choroidal thickness ⁹¹
- 2. In 2013 Hyo Kyung Lee ,Ji Won Lim , Min Cheol Shin1 . Concluded, a significant decrease in CT between mild-to-moderate NPDR, severe NPDR, and PDR groups (p = 0.005, p < 0.001, p < 0.001, respectively). There were no significant differences among the mild-to-moderate NPDR, severe NPDR, and PDR groups (p > 0.05). The retinal foveal thickness was significantly increased only in the severe NPDR and PDR groups compared with the controls (p < 0.001). In the no-diabetic-change and mild-to-moderate NPDR groups⁹²
- 3. In 2015 Aditya Sudhalkar, et al. In their study to evaluate choroidal thickness (CT) change by SDOCT in various grades of diabetic retinopathy in125 diabetic patients and 110 age-matched normal patients. They found Subjects with diabetes without retinopathy had a greater subfoveal choroidal thickness (SFCT) than subjects with diabetes with retinopathy. And patients with PDR had thinner SFCT than those with NPDR. They concluded that control patients had a greater SFCT than patients with diabetes and that the thinning progressed with the severity of DR⁹³
- 4. In 2019, Hamidreza Torabi1 reported that there is a substantial association between choroidal thickness and haemoglobin A1c levels in individuals with type 2

diabetes, and that better glycemic control with HbA1c <7% may prevent choroidal thinning.⁹⁴

5. In 2020 Wei Wang, Sen Liu, ZhihanQiu, Miao He, Lanhua Wang, Yuting Li, and Wenyong Huang concluded. Choroidal thickness increased in the early stages of diabetes, and further decreased with diabetic retinopathy progression. Diabetic macular edema had no significant association with choroidal thickness. These findings provide more insight to suggest that choroid alterations have a role in the DR pathogenesis ⁹⁵

CHOROIDAL THICKNESS AND NEPHROPATHY

1. In 2014, Won June Lee, Lucia Sobrin, MinJeong Lee, Min-Ho Kang, Mincheol Seong, and Heeyoon Cho discovered that in Korean individuals with diabetes, proliferative diabetic retinopathy is linked to microalbuminuria and DR is linked to overt nephropathy. Their findings also indicated that prompt evaluation of the patient's renal condition should be advised when an ophthalmologist discovers the presence of DR or PDR. ⁹⁶

2. In 2019 Antonio Manuel Garrido-Hermosilla1 et al. in their study on Renal function and choroidal thickness did use swept-source optical coherence tomography in diabetic patients, concluded Choroidal thickness could represent an additional tool to help clinicians predicting the renal status in ocular treatment-naïve diabetic patients ⁹⁷

MATERIALS AND METHODS

This research is a cross-sectional and time-limited study on patients attending the outpatient and inpatient departments of Ophthalmology, BLDE (DU.).'s Shri B.M. Patil Medical College, Hospital and Research Centre, Vijayapura.

The study includes a total of 192 patients of which 96 patients with Type 2 Diabetes Mellitus and 96 age matched controls. the diabetic group are further grouped into three with those having diabetic retinopathy, those without diabetic retinopathy and those with diabetic nephropathy.

They will be screened for Diabetic Retinopathy by complete ophthalmic examination, including detailed History.

HISTORY:

An extensive history was used to screen every patient. It was also necessary to record the history of any past eye surgery, laser therapy, or other medical treatments, as well as the use of oral hypoglycemic medicines, insulin, and other medications.

OCULAR EXAMINATION

- Snellen's chart was used to measure visual acuity, and patients' refractive status was recorded.
- A biomicroscope with a slit lamp was used to evaluate the anterior segment.
- The Goldmann Applanation Tonometer was used to measure intraocular pressure.
- Diabetic retinopathy was examined by a dilated fundus examination using 90D & indirect ophthalmoscopy
- Photographs of the fundus were obtained for documentation.

• Retinopathy grades were then determined and categorised in accordance with the ETDRS (Early Treatment Diabetic Retinopathy Study) grading system.

The patients were explained about the study and patients' willful consent was taken. Details of the patients including history, clinical examination, investigations were recorded

INVESTIGATIONS

1. EVALUATION OF DIABETES MELLITUS

- Blood glucose levels at fasting (FBS)
- Levels of postprandial blood sugar (PPBS)
- Random blood sugar levels (RBS)
- Glycolsated haemoglobin (HBA1c) were done to evaluate the diabetic status of the patient.
- Biochemical parameters were analyzed in clinical biochemistry laboratory using commercial kit adapted to auto analyzer. Serum was separated by centrifugation at 4,000 rpm for 10 min.Plasma glucose level was estimated by glucose oxidase and peroxidase (GOD-POD) end point assay method.
- > The biomarkers' normal ranges are as follows.:
- ✓ Fasting Blood Sugar: 70 to 110 mg/dl
- ✓ Post prandial Sugar: 110 to 140 mg/dl
- ✓ HbA1c:

2. ASSESSMENT OF NEPHROPATHY IN DIABETIC PATIENTS

- Albumin excretion in the form of microalbuminuria will be used as a marker of nephropathy changes
- Microalbuminuria will be defined as 24 hours excretion of albumin in the range of 30-300mg/dl
- Urinary albumin excretion less than 30mg/dl will be considered normal
- Urinry albumin excreation between 30mg/dl 300mg/dl were considered significant microalbuminuria
- And urinary albumin excretion above 300mg/dl will be considered as macroalbuminuria
- Serum creatinine levels were measured On the EM 360, a Fully Automated Biochemistry Analyzer, creatinine was calculated using the modified Jaffe's Method and urea by the Urease-Berthelot's method.
- Serum urea was assessed
- eGFR will also be used in the assessment of nephropathy
- To estimate the GFR, an abridged equation that was created using data from the Modification of Diet in Renal Disease research was used to determine the kidney function level as follows:
- eGFR ¹/₄ 186.3 x (serum creatinine)1.154 x age0.203 x (0.742 for women).
- ✓ An eGFR of less than 60 mL/min/1.73m2 was used to identify chronic kidney disease (CKD).
- ✓ The biomarkers' normal ranges were as follows:
- ✓ Serum Urea: 15 to 40 mg/dl
- ✓ Serum Creatinine:
- In Males 0.6 to 1.2 mg/dl and in
- Females 0.5 to 1.1 mg/dl

3. CHOROIDAL THICKNESS

- SDOCT ASSESSMENT OF THE CHOROIDAL THICKNESS
- SD-OCT; (ZEISS CIRRUS 500 HD-OCT) was carried out on day of blood sampling without pupillary dilation. using EDI-OCT imaging Each eye's central sub-foveal choroidal thickness will be measured with the available calliper (CIRRUS software version 8.0; ZEISS CIRRUS 500) From the hyper-reflective line corresponding to the Bruch's membrane under the retinal pigment epithelium (RPE) to the choroid and sclera interface, the central horizontal B-scan travels directly through the foveal centre. The central subfoveal pol will therefore be 500 m in the nasal and temporal directions based on the measures of choroidal thickness.
- Sdoct scans will be performed in the EDI mode
- Choroidal thickness measurements will be taken from the area extending from the outer margins of the retinal pigment epithelium to the inner sclera
- Measurements will be taken at three points, the subfoveal area, the area temporal to the foveal center, and the area nasally to the foveal center
- Retinal status was documented by a post-pupillary dilation fundus camera

STATISTICAL ANALYSIS

> Formula used to calculate the sample size:

$$N = 2\left[\frac{(Z_{a} + z_{\beta}) * S}{d}\right]^{2}$$

- ✓ Za Level of significance=95%
- \checkmark **Z** β the power of the study=90%
- \checkmark **d**= clinically significant difference between two parameters
- \checkmark **SD** = Common standard deviation
- The anticipated Mean ± SD of Nasal Choroidal thickness in non-diabetic patients is 200.5±51.5 and in Diabetic without Retinopathy patients 178.6±56 resp.
- The required minimum sample size is 96 per group (i.e., a total sample size of 192, assuming equal group sizes) to achieve a power of 95% and a level of significance of 5% (two-sided) for detecting a true difference in means between two groups.
- CALCULATED SAMPLE SIZE 192

STATISTICAL TOOLS USED FOR DATA ANALYSIS AND RESULTS TABLES ARE EVOLVED THROUGH DATA ANALYSIS TOOL IN MS-EXCEL AS AN ADD ON TOOL

THEORETICAL CONCEPTS AND EQUATIONS

COVARIANCE:

- It is a systematic relationship where changes in one random variable are mirrored by comparable changes in the second random variable
- ➤ t can have any value between -∞ to +∞, with a positive value denoting a positive relationship, a negative value denoting a negative relationship, and a value of zero denoting no relationship.
- Calculation of Covariance:
- > For the set of 'n' units of observations be given by the ordered pairs (x_1, y_1) , (x_2, y_1)

 y_2)....(x_n , y_n), where n is the number of sets or observations.

Calculate $\overline{\mathbf{x}} = (\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n)/n$ or $(\sum_{i=1}^n x_i)/n$

Calculate $\overline{y} = (y_1 + y_2 + \dots + y_n)/n$ or $(\sum_{i=1}^n y_i)/n$

Calculate: $\sum_{i=1}^{n} (x_i - X) (y_i - y)$

Covariance: (X, Y) =
$$\sum_{i=1}^{n} (x_i - X) (y_i - y)$$

CORRELATION:

- A measure which determines the change in one variable due to change in another variable.
- Correlation can range from -1 to +1, with close values to +1 indicating high positive correlation and close values to -1 indicating strong negative correlation.

Correlation (X, Y) =
$$\frac{\sum_{i=1}^{n} (x_i - X) (y_i - y)}{n}$$

 $\sqrt{Variance of X * Variance of Y}$
ANALYSIS OF VARIANCE (ANOVA):

Analysis of variance is a collection of statistical models and their associated estimation procedures used to analyse the differences among group means in a sample. There are two types i.e., one-way anova and two-way anova.

a) <u>Calculation of Variance Between the Samples:</u>

It is the sum of the squares of the deviations of the means of various samples.

(i) Calculate the sample means $\overline{X_1}$, $\overline{X_2}$ $\overline{X_k}$ of k samples.

(ii) Calculate mean for it i.e.
$$\overline{X_1} + \overline{X_2} \dots \overline{X_k}$$

= T/ N where

Κ

T= grand total of all observations and N = total No.of observations in K samples.

Calculate find. $\overline{X_1} - \overline{X}, \overline{X_2} - \overline{X}, \dots, \overline{X_k} - \overline{X},$

Calculate: SSB (or SSC) = Sum of the Squares of the variations between the samples (or between the columns)

 $= \sum_{i=1}^k n_{\rm I} \, (\overline{X_i} - \overline{X})^2$

(a) Calculations of Variance within the samples:

It is the sum of the squares of the deviations of the means of various samples.

- (i) Calculate the sample means $\overline{X_1}, \overline{X_2}, \dots, \overline{X_k}$ of k samples.
- (ii) Calculate the deviations of various k samples from mean values and Square these deviations and obtain their total

Calculate: SSW = Sum of the squares of the variations within the samples.

$$\sum (X_1 - \overline{X_1})^2 + \sum (X_2 - \overline{X_2})^2 + \dots \sum (X_K - \overline{X_K})^2$$

(C) Calculation of the Test Statistic F

Assuming that H_o is true, the Test Statistic

CONCEPT OF P VALUE

The p-value is calculated using the sampling distribution of test statistic under Null Hypothesis, the sample data, type of test being done.

What Is P-Value?

The probability of receiving outcomes as extreme as those of a statistical hypothesis test, assuming that the null hypothesis is true, is known as the p-value in statistics. The smallest level of significance at which the null hypothesis would be rejected is provided by the p-value, which is used as an alternative to rejection points. The alternative hypothesis is supported by more robust evidence when the p-value is lower.

How Is P-Value Calculated?

P-values are computed using spreadsheets, statistical software, or p-value tables. A reader could occasionally find it challenging to compare the outcomes of two distinct tests since different researchers employ various levels of significance when studying an issue. P-values offer an answer to this issue.

The researchers might give the reader the p-value of the hypothesis test to get around this problem and let them assess the statistical significance. A p-value method to hypothesis testing is what it is.

P-Value Approach to Hypothesis Testing

The p-value approach of hypothesis testing uses the estimated probability to determine whether there is enough data to reject the null hypothesis. The null hypothesis, often known as the conjecture, is the initial claim made about a population (or the process used to produce the data).

If the population parameter is different from the value of the population parameter specified in the conjecture, this is mentioned in the alternative hypothesis.

The significance level, which establishes the minimum p-value required to reject the null hypothesis, is typically established in advance

Type I Error

Falsely rejecting the null hypothesis is a type I error. This happens when the null hypothesis is rejected because the p-value is less than the significance level even though the null hypothesis is actually true (often 0.05). The significance level (often 0.05) and relative frequency of receiving a p-value that is less than the significance level together determine the risk of a type I error under the null hypothesis.

Real-World Example of P-Value

Let's say an investor says the performance of their investment portfolio is comparable to the Standard & Poor's (S&P) 500 Index. To determine this, the investor does a twotailed test. The alternative hypothesis asserts that, in contrast to the null hypothesis, the returns of the portfolio and the S&P 500 are not equal during the relevant time period. (If the investor used a one-tailed test, the alternative hypothesis would be that the returns on the portfolio are either lower or higher than the returns on the S&P 500.) 0.05 is a typical significance level. If the investor finds out that the p-value is less than 0.05, the null hypothesis is disproved. The investor would thus favour the alternative hypothesis above the null hypothesis. The p-value decreases as the strength of the evidence against the null hypothesis increases. If the investor finds that the p-value is 0.001, which is strong evidence against the null hypothesis, they can be certain that the portfolio's returns and the returns of the S&P 500 are not equal.

If the p-value was less than 0.05, the investor would fail to reject the null hypothesis, indicating that there is (at best) scant evidence against the speculation. The disparities between the S&P 500 data and investment portfolio data in this scenario can only be explained by chance.

P Value	Conclusion	Level of Significance
0.001 to 0.010	Reject Null hypothesis at 1% level	Highly significant
0.011 to 0.050	Reject Null hypothesis at 5% level	Significant
0.051 to 1.00	Accept Null hypothesis at 5% level	Not Significant

Table 5: Concept of P value

STATISTICALLY SIGNIFICANT TESTS USED IN THE STATISTICAL ANALYSIS:

KRUSKAL–WALLIS TEST

The Kruskal-Wallis test on ranks, also known as the one-way ANOVA on ranks or the Kruskal-Wallis H test (after William Kruskal and W. Allen Wallis), is a non-parametric technique for determining if samples come from the same distribution. It is utilised to compare two or more distinct samples with similar or dissimilar sample sizes. The Mann-Whitney U test, which is used to compare only two groups, is expanded by this method. The one-way analysis of variance is the Kruskal-Wallis test's parametric counterpart (ANOVA).

MANN-WHITNEY U TEST

In statistics, the Mann-Whitney U test (also called the Mann-Whitney-

Wilcoxon (MWW), Wilcoxon rank-sum test, or Wilcoxon-Mann-Whitney test) is

a nonparametric test of the null hypothesis that, for randomly selected

values *X* and *Y* from two populations, the probability of *X* being greater than *Y* is equal to the probability of *Y* being greater than *X*.

Although Mann and Whitney developed the Mann–Whitney *U* test under the assumption of continuous responses with the alternative hypothesis being that one distribution is stochastically greater than the other, there are many other ways to

$$U=\sum_{i=1}^n\sum_{j=1}^m S(X_i,Y_j),$$

formulate the null and alternative hypotheses such that the Mann–Whitney U test will give a valid test.

The corresponding Mann-Whitney U statistic is defined as:

with

$$S(X,Y) = egin{cases} 1, & ext{if } Y < X, \ rac{1}{2}, & ext{if } Y = X, \ 0, & ext{if } Y > X. \end{cases}$$

INCLUSION CRITERIA

- Individuals with type 2 diabetes mellitus who visit the OPD at the BLDE, Bijapur, Department of Ophthalmology.
- Diabetic individuals coming to the medicine/ophthalmology OPD/IPD with and without nephropathy.
- Patients without diabetes mellitus presenting to the OPD of the Department of Ophthalmology in BLDE, Bijapur.
- 4. Patients having different grades of diabetic retinopathy and ME.

EXCLUSION CRITERIA

- 1. Type 1 diabetes mellitus
- 2. Patients having a history of diabetic retinopathy who received treatment for the same
- Patients with high myopia or any other developmental anomalies with increased axial length
- 4. Conditions causing hazy media such as corneal opacities, cataract, and vitreous hemorrhage that interfere with readings.
- 5. Patients with Choroidal detachment
- 6. Patients with macular and choroidal degeneration from any other cause
- 7. Inability to give informed consent

RESULTS

192 patients were enrolled in this study. 96 patients were diagnosed as diabetics and were considered as cases, while 96 were non-diabetics and were considered as controls. Of the 96 patients with diabetes mellitus 50 patients had some grade of diabetic retinopathy present, 26 patients had presence of diabetic nephropathy and 20 patients were normal

fig 1. pie chart showing distribution of retinopathy and nephropathy among diabetics

AGE DISTRIBUTION

Fig 2. GRAPH SHOWING AGE DISTRIBUTION AMONG CASES AND CONTROLS

The ages of patients ranged from 39 years to 79 years. Majority of the patients belonged to the age group of 50-59 years of age.

SEX DISTRIBUTION

Fig 3. GRAPH SHOWING SEX DISTRIBUTION

Our study observed an increase in male patients in both cases and controls. While (55.8%) were males among the diabetic group when compared to females (44.2%). The control group also showed similar results

TREATMENT PATTERN AMONG DIABETIC PATIENTS

Fig 4. PIE CHART SHOWING DIABETIC TREATMENT PATTERN

In the study among the patients included in the study, majority 53 (55.2%) were under oral hyperglycaemic drugs, while 27 (28.12%) of the patients were on regular insulin therapy and 16 (16.6%) patients were not on any treatment for hyperglycaemia.

DURATION OF DIABETES

Fig 5. GRAPH REPRESENTING DURATION OF DIABETES

From the time of initial diagnosis of diabetes mellitus to the present study period. The duration of diabetes was categorized into 5 groups. The majority of patients (37) had diabetes for a duration of 5 to 10 years, followed by (29) patients with a duration of less than 5 years. While the duration of diabetes between 10 to 15 years and 15 to 20 years were 20 and 7 respectively. Only 3 patients were diabetics for more than 20 years

Fig 6. GRAPH SHOWING CORRELATION BETWEEN DURATION OF DIABETES AND GRADE OF RETINOPATHY

Reviewing the duration of diabetes according to the degree of retinopathy revealed that patients with mild NPDR had an average duration of less than five years (n=16), those with moderate NPDR had an average duration of five to ten years, and those with severe NPDR had an average duration of ten to fifteen years.

On the other hand, among the PDR cases, majority were included in 5 to 10 years but were among irregular treatment.

DISTRIBUTION OF HBA1C AMONG THE CASE

Fig 7. GRAPH REPRESENTING RELATION BETWEEN HBA1C AND CASES

The serum HbA1c levels were found to be statically significant among the cases. Majority of the diabetic patients 36(37.5) had serum HBA1c level below 6.4, followed by 28(29.1) patients who had HbA1c values ranging from 6.5 to 8.9. while patients with HbA1c values between 9 to 11.9 and 12 to 14.9 were 19(19.7) and 11(11.4) respectively. Only 2 patients had values above 15.

Fig 8. GRAPH SHOWING DISTRIBUTION OF HBA1C LEVELS ACCORDING TO SEVERITY OF RETINOPATHY

serum HbA1c levels were highest in patients with PDR in which 22 patients had HbA1c values above 8%. This was followed by patients in the sever NPDR group, where 21 patients had values above 8%. Both the mild NPDR and moderate NPDR groups had majority of patients with HbA1c between 6.5 to 7.9. it was also observed that minimum number of patients in all groups of retinopathies had HbA1c values of <6.4%.

Fig 9 LINE GRAPH SHOWING THE TREND OF HBA1C LEVELS IN RELATION TO THE SEVERITY OF RETINOPATHY.

An increasing tread was observed when comparing HbA1c levels with the various groups of diabetic retinopathy severity, where a steep rise was seen in HbA1c values from diabetic patients without retinopathy to diabetic patients with PDR. The HbA1c levels ranged from 3.3 to 16.1 % with the minimum values seen in diabetic patients without retinopathy and the maximum value seen in patients with PDR

Fig .10 BAR GRAPH SHOWING GRADES OF DIABETIC RETINOPATHY

STATISTICAL 1	ESTING PART
---------------	--------------------

TABLE COMPARING VARIOUS PARAMETERS BETWEEN CASES AND CONTROLS						
	CASES		CONTROLLS			
	MEAN	STANDARD DEVATION	MEAN	STANDARD DEVATION		
AGE	58.86	8.03	61.48	7.42		
HbA1C	7.86	2.78	4.70	0.59		
PPBS	229.07	78.41	164.22	14.7		
FBS	172.76	68.68	94.47	9.07		
SUBFOVAL THICKNESS	253.63	36.35	328.30	18.11		

Table 6 COMPARISON OF PARAMETERS BETWEEN CASES AND CONTROLS

On comparing the means of various parameters in both cases and controls, it was observed the mean HbA1c in diabetics was 7.86% while it was only 4.7% in the control group. The mean subfoval thickness was 74.67 microns thicker in the control group in comparison with the diabetic group

TABLE 7 COMPARISION OF CHOROIDAL THICKNESS BETWEEN DIABETICS AND CONTROLS

TABLE SHOWING COMPARRISION OF CHOROIDAL THICKNESS BET DIABETIC PATIENTS AND CONTROLS						
CHOROIDAL THICKNESS	GROUPS	MEAN	SD	CHI- SQUARE		
	NO RETINOPATHY	302.70	10.063			
	MILD NPDR	276.03	30.522			
SUBFOVAL	MODERATE NPDR	239.68	31.242	145.674		
	SEVERE	195.08	12.972			
	PDR	193.00	15.245			
	CONTROLLS	328.30	17.382			
	NO RETINOPATHY	291.80	13.477			
NASAL	MILD NPDR	268.55	31.891			
	MODERATE NPDR	231.73	30.376	147.556		
	SEVERE	188.83	13.630			
	PDR	186.09	15.527			
	CONTROLLS	324.88	18.117			
	NO RETINOPATHY	297.70	11.150			
TEMPORAL	MILD NPDR	272.13	30.407			
	MODERATE NPDR	236.50	31.567	148.509		
	SEVERE	191.25	11.537			
	PDR	188.55	14.767			
	CONTROLLS	329.18	21.819			
	NO RETINOPATHY	297.00	12.048			
SUPERIOR	MILD NPDR	267.00	41.204			
	MODERATE NPDR	236.59	28.555	147.136		
	SEVERE	192.83	13.704			
	PDR	191.64	14.144			
	CONTROLLS	327.73	18.685			
	NO RETINOPATHY	293.35	28.673			
INFERIOR	MILD NPDR	273.84	46.587			
	MODERATE NPDR	236.14	28.501	130.012		
	SEVERE	200.33	26.898			
	PDR	198.18	59.493			
	CONTROLLS	326.45	18.825			
STATISTICALLY SIGNIFICANT						

TABLE .8 SHOWING THE COMPARISON OF CHOROIDAL THICKNESS IN CASES AND CONTROLS

Comparison of choroidal thickness between control group and cases group were statistically significant. The choroidal thickness was maximum in the control group, while the PDR patients of the cases(diabetic) group had least choroidal thickness. The choroidal thickness decreased as

the severity of diabetic retinopathy increased. On comparison, the closest similarity in choroidal thickness between cases and controls was that of controls and diabetic patients without retinopathy

BETWEEN PATEINTS WITH NO RETINOPATHY, RETINOPATHY AND NEPHROPATHY							
CHOROIDAL THICKNESS	GROUPS	MEAN	SD	CHI- SQUARE			
	NO RETINOPATHY	302.70	10.063				
	RETINOPATHY	254.62	40968				
SUBFOVAL	NEPHROPATHY	213.96	35.113	145.674			
NASAL	NO RETINOPATHY	291.80	13.477				
	RETINOPATHY	247.64	41.066	147.556			
	NEPHROPATHY	205.92	33.913				
TEMPORAL	NO RETINOPATHY	297.70	11.150				
	RETINOPATHY	251.12	40.842	148.509			
	NEPHROPATHY	209.69	34.881				
SUPERIOR	NO RETINOPATHY	297.00	12.048				
	RETINOPATHY	248.46	43.596	147.136			
	NEPHROPATHY	210.81	33.786				
INFERIOR	NO RETINOPATHY	293.35	28.67				
	RETINOPATHY	251.58	46.853	130.012			
	NEPHROPATHY	218.81	54.228				
STATISTICALLY SIGNIFICANT							

TABLE. 9 SHOWING COMPARISON OF CHOROIDAL THICKNESS IN DIABETIC BETWEEN PATIENTS WITH NO RETINOPATHY, RETINOPATHY AND NEPHROPATHY

On comparing sub-groups in cases, Choroidal thickness showed significant difference in the subfoval, nasal, temporal, superior and inferior areas. In the diabetic group patients without retinopathy had the highest choroidal thickness, while patients with nephropathy had the least thickness in all areas. The mean choroidal thickness in diabetic patients without retinopathy was 296 microns, while the mean in patients without retinopathy and

nephropathy was 250 microns and 211 microns respectively

CHOROIDAL THICKNESS	GROUPS	MEAN	SD	Mann- Whitney U Test	P VALUE
SUBFOVAL	NEPHROPATHY	213.96	35.113	6.00	<0.001
	CONTROL	328.30	17.382		
NASAL	NEPHROPATHY	205.92	33.913	7.500	<0.001
	CONTROL	324.88	18.117		
TEMPORAL	NEPHROPATHY	209.69	34.881	7.0	<0.001
	CONTROL	329.18	21.819		
SUPERIOR	NEPHROPATHY	210.81	33.786	10.500	<0.001
	CONTROL	327.73	18.685		
INFERIOR	NEPHROPATHY	218.81	54.228	67.00	<0.001
	CONTROL	326.45	18.825		

TABLE 10 COMPARISION OF CHOROIDAL THICKNESS BETWEEN CONTROLS ANDNEPHROPATHY PATIENTS

There is statistically significant difference (p value <0.001) in the mean choroidal thickness between the control group and diabetic group with nephropathy. The difference in choroidal was noted in all areas (sub-foval, nasal, temporal, superior and inferior). The mean choroidal thickness in patients with nephropathy ranged from 205.92 microns to 218.81 microns, with a mean of 211.838 microns. While in the control group mean ranged from 329.18 microns to 324.88 microns, with a mean of 327.308 microns.

CHOROIDAL THICKNESS	GROUPS	MEAN	SD	Mann- Whitney U Test	P VALUE	
SUBFOVAL	NEPHROPATHY	213.96	35.113	6.00	<0.001	
	NORMAL DIABETIC	302.70	10.063			
NASAL	NEPHROPATHY	205.92	33.913	7.500	<0.001	
	NORMAL DIABETIC	291.80	13.477			
TEMPORAL	NEPHROPATHY	209.69	34.881	7.0	<0.001	
	NORMAL DIABETIC	297.70	11.150			
SUPERIOR	NEPHROPATHY	210.81	33.786	10.500	<0.001	
	NORMAL DIABETIC	297.00	12.048			
INFERIOR	NEPHROPATHY	218.81	54.228	67.00	<0.001	
	NORMAL DIABETIC	293.35	28.673			
	NORMAL DIABETIC	293.35	28.673			
STATISTICALLY SIGNIFICANT						

TABLE 11 COMPARRISION OF CHOROIDAL THICKNESS BETWEEN DIABETICS WITHOUT RETINOPATHY AND DIABETIC NEPHROPATHY PATIENTS

A statistically significant difference was also observed when comparing the nephropathy

group with the diabetic patients without retinopathy, with P value <0.001.

DISCUSSION

A structurally and functionally intact choroidal vasculature is essential for proper functioning of the retina. Any abnormalities in the choroidal circulation and blood volume leading to a compromised choroidal blood flow can eventually cause the dysfunction of photoreceptor leading to its death. Diabetes mellitus mainly targeting the microvasculature can affect multiple systems. The retina, choroid and kidneys are majorly affected and can influence each other leading co- related complication and outcomes.

In our study about 45.8 % of patients belonged to the 5th to 6th decades of life, suggesting the increased prevalence of systemic diseases such as diabetes among people in those age groups. Similar results were observed in a study by wei wang et al,on choroidal thickness in diabetes and diabetic retinopathy. They observed that maximum patients belonged to the 6th decade (80) Several studies reported that early onset diabetes was more aggressive and may be related to increased occurrence of diabetic microvascular dmage. Zou, W., Ni, L., Lu, Q. *et al* in their study on Diabetes Onset and its Association with an Increased Risk of Diabetic Retinopathy concluded that diabetes onset age of 31–45 years was considered an independent risk factor for development of DR in type 2 DM ⁹⁸.

Sex distribution saw a male predominance in both cases and controls. This increased male predominance can be attributed to the increased prevalence of diabetes in males. Results are similar to the results of a study by Nordstorm a et al in their study on higher prevalence of type 2 diabetes in men than in women is associated with differences in visceral fat mass

On evaluation of the duration of diabetes, it was observed that a maximum of 38.5 % of the diabetic group had a history of diabetes of 5-10 years. However, patients with a longer duration of diabetes were observed to have higher grades of diabetic retinopathy and subsequently a lower overall choroidal thickness. Similar observations were also made on evaluating medication history, where majority of patients (55.2) were on oral medications, however more severe grades of diabetic retinopathy were noted in patients on insulin therapy (16.5)

Hyperglycemia being the main initiating component for the microvascular alterations and disease progression in diabetic patients, makes it vital to monitor the diabetic status and control of the patient. HbA1c, PPBS and FBS were used to evaluate the diabetic status in both cases and controls, as well as the diabetic control in the diabetic group. Assessment of HbA1c levels showed concerning number of patients with levels >8 %. It was observed that higher HbA1c levels had statistically significant association with increased severity in grades of retinopathy. This can be attributed to the poor diabetic control that higher HbA1c levels represent, which in turn leads to increased severity in microvascular damage due to hyperglycemia. Similar observations were made on consideration of FBS and PPBS levels. On comparison with cases, it was noted that ta statistically significant difference in all three levels were present, implicating the importance of diabetic status and diabetic control of the patient

Diabetic patients were grouped into patients with retinopathy and without. The patients with retinopathy were further graded according to the severity of retinopathy. In our study majority of the patients had mild NPDR (32%). However, an alarming number of patients had severe NPDR (12.5%) and PDR (11.5%)

96

Choroidal thickness assessment was the major parameter evaluated in this study, and compared between the cases and control groups. Until recent times, insight pertaining to choroidal thickness was primarily based on histologic and histopathology. This however did not give which necessarily and vital measurements of the choroidal. Recent literature has proven the potential of spectral-domain OCT in imaging the choroidal. Manjunath V et al in their study on Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography, demonstrated that choroidal thickness can be evaluated using SD-OCT ⁹⁹

In our study the mean choroidal thickness in controls was 327.308 microns, with the maximum thickness of 329.18 microns noted in the temporal area and minimum thickness of 324.88 microns in the nasal region. Similar results were observed in a study by Entezari M et al on choroidal thickness in healthy subjects ¹⁰⁰.

According to our study's assessment of the choroidal thickness of diabetes patients (cases group), patients without retinopathy had the highest levels of choroidal thickness, with a mean thickness of 295 microns. Maximum reduction in choroidal thickness among patients with retinopathy was observed in patients with PDR, with a mean thickness of 191.492 microns. Mean choroidal thickness in the mild NPDR, moderate PDR, severe PDR was 271, 242, 193 microns respectively. A statistically significant reduction in mean choroidal thickness was noted with increasing severity of diabetic retinopathy

Study by Regatieri CV et al, also observed similar results in their study on Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. They observed presences of thinner choroids in patients with

proliferative diabetic retinopathy, as compared to patients with non-proliferative diabetic retinopathy. They also concluded that, diabetic choroidal angiopathy was related to the degree of severity of retinopathy because of a significant decrease in the CT in patients ¹⁰¹. Another study by Ambiya, V et al concluded The SFCT was significantly lower in proliferative DR as compared to non-proliferative DR patients ¹⁰².

As our study is a case control-study, comparisons were made between the non-diabetic patients (control) and diabetic patients (cases). Mean choroidal thickness in controls was 327.308 microns, as compared to thinner mean choroidal thickness in diabetic patients of 295 microns in diabetic patients without retinopathy and 271, 242, 193 and 191.492 with mild NPDR, moderate PDR, severe PDR and PDR respectively. Statistically significant differences were on comparisons of choroidal thickness between controls and cases

Comparative findings between cases and controls in our study are similar to the results observed by Hyo Kyung Lee et al in their study, where they noted That sub-foveal choroidal thickness was thinner in eyes with non-proliferative or proliferative diabetic retinopathy than in normal eyes (p < 0.01)¹⁰³.

To the best of our knowledge, this work is the first to combine SD-OCT with EDI to look into the relationship between choroidal thickness and diabetic nephropathy.

The findings showed that diabetic individuals with nephropathy had considerably thinner CTs than diabetic patients without retinopathy or non-diabetic patients.

The choroid is a highly vascularized tissue that is crucial for controlling ocular metabolism. According to our study, diabetic patients with nephropathy had a mean choroidal thickness of 211.838 microns. When compared to the choroidal thickness in the control group, this was noticeably thinner. Additionally, there was a statistically significant difference in choroidal thickness between diabetics with nephropathy and those without, as well as between those with mild and those with moderate NPDR. Nephropathy patients had the thinnest choroidal tissue. This may be because the choroid is purely vascular and can thin to reflect microvascular disease throughout the body. Patients with severe NPDR and PDR had thinner choroids than those with nephropathy, it was also discovered.

Previous research has assessed the connection between CT and renal function as well as the impact of systemic vascular disease on choroid alterations. While Farias et al. discovered that the CT was thinner in patients with microalbuminuria, Kocasarac et al. revealed that the CT was lowered in diabetes patients with diabetic nephropathy, showing that patients with renal impairment had generally thinner CTs ¹⁰⁴.

CONCLUSION

Choroidal and its vasculature is essential for proper functioning of the retina. Any abnormalities in the choroidal circulation and blood volume leads to a compromised choroidal blood flow and can eventually lead to the dysfunction and of photoreceptor. Our study mainly concentrated on the estimation of choroidal thickness in diabetic patients. This was designed a case control study for more reliable results.

Our study included 96 cases and 96 controls. The majority of individuals included in our study were male and primarily in their fifth and sixth decades of life. Majority of the diabetic patients had some grade of retinopathy 52%, while 27% had nephropathy. majority of the diabetic patients had mild NPDR (32%). However, an alarming number of patients had severe NPDR (12.5%) and PDR (11.5%)

Majority of the diabetic patients 37 had duration of diabetes of 5-10 years. The severity of retinopathy and the duration of diabetes were positively correlated, with patients with severe PDR having had diabetes for an average of 10-15 years. It has been hypothesised that prolonged diabetes increases the severity of retinopathy and eventually thins the choroid.

HbA1c levels were found to be below 6.4% in majority of diabetic patients 37.5%. HbA1c levels also showed significant relation with grades of retinopathy, in which majority of patients with severe PDR and PDR had values >8%, showing the importance of proper diabetic control in arresting progression of retinopathy and eventually choroidal dysfunction Choroidal thickness was measured using the SD-OCT with EDI mode. Healthy nondiabetic patients showed a mean choroidal thickness of 327.308 microns, while diabetic patients had an overall thinner choroidal thickness. An overall decrease in choroidal thickness was noted with increasing severity or higher grades of diabetic retinopathy. Thinnest choroids were observed in PDR patients with a mean thickness of 193 microns. Thinning of the choroid can be attributed to the hypoperfusion of the choroid due to microvascular changes, eventually leading to choroidal dysfunction.

Presence of Nephropathy was noted in diabetic patients by assessing 24 hours microalbuminuria, Sr creatinine, urea, and eGFR. In our study a total 27% of the diabetic group patients had presence of nephropathy. On assessment of choroidal thickness in these patients, thinner choroidal thickness was noted with a mean thickness of 211.838 microns. A statistically significant difference was noted when compared to the control group as well as cases group with mild and moderate NPDR, with least choroidal thickness in patients with nephropathy. This can be attributed to the high vascular nature of the choroid which can be altered or reflect systemic microvascular dysfunction

SUMMARY

This was a time bound, case control study carried out on 192 patients, that include 96 non diabetic healthy patients as controls and 96 diabetic patients as cases done. The study was caried out on patients attending the outpatient and inpatient departments to determine the choroidal thickness.

This study aimed to assess the choroidal thickness in diabetes mellitus patients and compare it with healthy non diabetic controls

A total 196 patients, fulfilling the inclusion criteria were included in the study. The study parameters including: RBS, FBS, PPBS, HbA1c to assess diabetic asatus and control and SR creatinine, SR urea, microalbuminuria, eGFR for nephropathy. Diabetic retinopathy assessment and grading was done and choroidal thickness was measured using SD-OCT with EDI mode. A detailed history was taken from patients including duration of diabetes and treatment history. Thorough ocular examination was performed

Our study included 96 cases and 96 controls, of which majority belonged to the 5th and 6th decades of life in both cases and control groups. A male predominance was noted with 55.8% males and 44.2% females. Majority of the diabetic patients 37 had duration of diabetes of 5-10 years, while maximum patients with severe PDR having diabetes for 10-15 years. positive correlation was noted between duration of diabetes with severity of retinopathy.

96 patients were diabetic, of which 52% had retinopathy and 27% had retinopathy. Of the patients with retinopathy (32%) had mild NPDR, (12.5%) had severe NPDR and (11.5%) had PDR

HbA1c levels was below 6.4% in majority of diabetic patients 37.5%, while majority of patients with severe PDR and PDR had values >8% HbA1c levels also showed significant relation with grades of retinopathy

On assessment of choroidal thickness. Healthy non-diabetic patients showed a mean choroidal thickness of 327.308 microns in comparison to diabetic patients in which overall thinner choroidal thickness was noted. An overall decrease in choroidal thickness was also noted with increasing severity or higher grades of diabetic retinopathy. Thinnest choroids were observed in PDR patients with a mean thickness of 193 microns. Statistically significant difference in choroidal thickness across all groups were noted with p value of < 0.001. in patients with nephropathy, thinner choroidal thickness of 211.838 microns. A statistically significant difference p value 0.001 was noted when compared to the control group as well as cases group with mild and moderate NPDR, with least choroidal thickness in patients with nephropathy.

LIMITATIONS OF THE STUDY

- this study lacked patient follow up and choroidal assessment after diabetic control was achieved in an uncontrolled diabetic
- Patients were not evaluated for macular thickness

BIBLOGRAPHY

- 1. Sherwin R., Jastreboff A.M. Year in diabetes 2012: the diabetes tsunami. J. Clin. Endocrinol. Metab. 2012;97:4293–4301. doi: 10.1210/jc.2012-3487.
- Akram T Kharroubi, Hisham M Darwish, Diabetes mellitus: The epidemic of the century World J Diabetes 2015 June 25; 6(6): 850-867 ISSN 1948-9358 (online)
- Pouya Saeedi, Inga Petersohn, Paraskevi Salpea, Belma Malanda, Suvi Karuranga, Nigel Unwin, Stephen Colagiuri, Leonor Guariguata, Ayesha A. Motala, Katherine Ogurtsova, Jonathan E. Shaw, Dominic Bright, Rhys Williams, Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition, Diabetes Research and Clinical Practice, Volume 157, 2019,

Diabetes Research and Clinical Practice, Volume 157, 2019, 107843,

- A. Yahyaoui, A. Jamil, J. Rasheed and M. Yesiltepe, "A Decision Support System for Diabetes Prediction Using Machine Learning and Deep Learning Techniques," 2019 1st International Informatics and Software Engineering Conference (UBMYK), 2019, pp. 1-4, doi: 10.1109/UBMYK48245.2019.8965556.
- Chan-Hee Jung, Diabetes Fact Sheets in Korea, 2020: An Appraisal of Current Status Diabetes Metab J 2021;45(1):1-10. Published online: 13 January 2021 DOI: <u>https://doi.org/10.4093/dmj.2020.0254</u>
- eedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R; IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019 Nov;157:107843. doi: 10.1016/j.diabres.2019.107843. Epub 2019 Sep 10. PMID: 31518657.
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011 Jan;34 Suppl 1(Suppl 1):S62-9. doi: 10.2337/dc11-S062. PMID: 21193628; PMCID: PMC3006051
- Sudhalkar A, Chhablani J.K, Venkata A, Raman R, Rao P.S, and Jonnadula GB Choroidal thickness in diabetic patients of Indian ethnicity. Indian journal of ophthalmology. 2015 Dec;63(12):912.
- 9. AlmA. Ocular circulation. In: Hart WM, editor. Adler's Physiology of the Eye. 9th ed. St. Louis, MO: C.V. Mosby; 1992. p. 198 227. 4.
- 10. Hidayat A.A, Fine B.S, Diabetic choroidopathy: light and electron microscopic observations of seven cases. Ophthalmology. 1985 Apr 1; 92(4):512-22.
- 11. Weinberger D, Kramer M, Priel E, Gaton DD, Axer-Siegel R, Yassur Y. Indocyanine green angiographic findings in nonproliferative diabetic retinopathy. American journal of ophthalmology. 1998 Aug 1; 126(2):238-47
- 12. Shiragami C, Shiraga F, Matsuo T, Tsuchida Y, Ohtsuki H. Risk factors for diabetic choroidopathy in patients with diabetic retinopathy. Graefe's archive for clinical and experimental ophthalmology. 2002 Jun 1; 240(6):436-42

- Spaide RF, Koizumi H, Pozonni MC. Enhanced depth imaging spectral-domain optical coherence tomography. American journal of ophthalmology. 2008 Oct 1; 146(4):496-500.
- 14. Fujiwara T, Imamura Y, Margolis R, Slakter JS, and Spaide RF; Enhanced Depth imaging Optical Coherence Tomography, of the Choroid in highly myopic eyes. American journal of ophthalmology; 2009 Sep 1; 148(3):445-50.
- 15. Imamura Y, Fujiwara T, Margolis RO, Spaide RF, Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina; 2009 Nov 1; 29(10):1469-73.
- 16. Lee ES, Tang WE. The prevalence of albuminuria among diabetic patients in a primary care setting in Singapore. Singapore medical journal. 2015 Dec; 56(12):681.
- Farias LB, Lavinsky D, Benfica CZ, DA Silva MO, Lavisnky J, Canani LH. Changes in Choroidal thickness and choroidal volume are related to the urinary albumin excretion in type TWO diabetic patients without retinopathy. Clinical ophthalmology (Auckland, NZ). 2018; 12:1405.
- Lutty GA. Diabetic choroidopathy. Vision Res. 2017 Oct;139:161-167. doi: 10.1016/j.visres.2017.04.011. Epub 2017 Jun 9. PMID: 28535994; PMCID: PMC5858724
- 19. Hidayat A, Fine B. Diabetic choroidopathy: light and electron microscopic observations of seven cases. Ophthalmology. 1985;67:512–522.
- 20. Fryczkowski AW. Diabetic choroidal involvement: scanning electron microscopy study. Klinika oczna. 1988;90:145–149.
- 21. Lutty GA, McLeod DS. Phosphatase enzyme histochemistry for studying vascular hierarchy, pathology, and endothelial cell dysfunction in retina and choroid. Vision Res. 2005;45:3504–3511.
- 22. Diabetes mellitus: The epidemic of the century, World journal of Diabetes 2015 Jun 25;6(6):850-867
- 23. Kannan, Ramya (2019-11-14). "India is home to 77 million diabetics, second highest in the world". The Hindu. ISSN 0971-751X. Retrieved 2020-04-29.
- 24. International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels, Belgium: International Diabetes Federation; 2019
- 25. Sharma, Neetu Chandra (2019-10-10). "Government survey found 11.8% prevalence of diabetes in India". Livemint. Retrieved 2020-04-29.
- 26. American Diabetes Association. Diagnosis and classication of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62–S69.
- Verma, Ramesh; Khanna, Pardeep; Mehta, Bharti (2012-06-30). "National programme on prevention and control of diabetes in India: Need to focus". The Australasian Medical Journal. 5(6): 310–315
- 28. "Cost effectiveness of prevention of diabetes" (PDF). Indian Diabetes Prevention Programme: 13. 1 August 2007.
- 29. Threatt J, Williamson JF, Huynh K, Davis RM. Ocular disease knowledge and technology applications in patients with diabetes. Am J Med Sci. 2013;345:266–270
- 30. Schultz RO, Van Horn DL, Peters MA, Klewin KM, Schutten WH. Diabetic Keratopathy. Trans. Am. Ophthal. Soc. 1981;79:180–199
- 31. Bortolami R, D'Alessandro R, Manni E. The origin of pain in ischemic-diabetic thirdnerve palsy. Arch Neurol. 1993;50:795. doi: 10.1001

- Naghmi R, Subuhi R. Diabetic oculomotor mononeuropathy: involvement of pupillomotor fibres with slow resolution. Horm Metab Res. 1990;22:38–40. doi: 10.105
- Dogru M, Katakami C, Inoue M. Tear function and ocular surface changes in noninsulin-dependent diabetes mellitus. Ophthalmology. 2001;108:586–592.
 [PubMed] [Google Scholar] A prospective, case-controlled study on ocular surface disease in diabetics
- 34. Yoon KC, Im SK, Seo MA. Changes in tear film and ocular surface in diabetes mellitus. Korean J. Ophthalmology. 2004;18:168–174
- 35. Schultz RO, Van Horn DL, Peters MA, Klewin KM, Schutten WH. Diabetic keratopathy. Trans Am Ophthalmol Soc. 1981;79:180–199
- 36. Hayreh SS. The CVOS group M and N reports. Ophthalmology. 1996;103:350–2
- Ishikawa S, Bensaoula T, Uga S, Mukuno K. Electron-microscopic study of iris nerves and muscles in diabetes. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z FürAugenheilkd. 1985;191(3):172–83
- 38. Smith SA, Smith SE. Evidence for a neuropathic aetiology in the small pupi of diabetes mellitus. Br. J.Opthalmol. 67, 89-93
- 39. Wiemer NGM, Dubbelman M, Kostense PJ, Ringens PJ, Polak BCP. The influence of chronic diabetes mellitus on the thickness and the shape of the anterior and posterior surface of the cornea. Cornea. 2007;26(10):1165–1170.
- 40. Gwinup G, Villarreal A. Relationship of serum glucose concentration to changes in refraction. Diabetes. 1976;25 29-21
- Waite JH, Beetham WP. The visual mechanism in diabetes mellitus: A comprehensive study of 2002 diabetics and 457 non- diabetics for control. New Engl. J. Med. 1935;212:367–379. 429–443
- 42. Klein BE, Klein R, Moss SE. Prevalence of cataract in a population based study of persons with diabetes mellitus . Ophthalmology. 92, 1191-1196.
- 43. Rowe NG, et al: Diabetes, fasting blood glucose and age-related cataract: the Blue Mountains Eye Study. Ophthalmic Epidemiol 7:103–114, 2000
- 44. Pirie A: Epidemiological and biochemical studies of cataract and diabetes. Invest Ophthalmol 4:629–637, 1965
- 45. Kaufman PL, Adler FH, Levin LA, Alm A. Adler's Physiology of the Eye. Elsevier Health Sciences; 2011. 810 p
- Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014 Feb;18(1):1-14. doi: 10.4196/kjpp.2014.18.1.1.
- Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N Engl J Med. 2000;342:381–389
- Stratton IM, Kohner EM, Aldington SJ, Turner RC, Holman RR, Manley SE, Matthews DR. UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia. 2001;44:156–163
- Singh PP, Mahadi F, Roy A, Sharma P. Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2. Indian J Clin Biochem. 2009;24:324–342
- 50. Madrazo-Ibarra A, Vaitla P. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Nov 21, 2021. Histology, Nephron. [PubMed]

- 51. Scott RP, Quaggin SE. Review series: The cell biology of renal filtration. J Cell Biol. 2015 Apr 27;209(2):199-210. [PMC free article] [PubMed]
- 52. El-Reshaid W, Abdul-Fattah H. Sonographic assessment of renal size in healthy adults. Med Princ Pract. 2014;23(5):432-6
- 53. Rehman S, Ahmed D. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Aug 8, 2022. Embryology, Kidney, Bladder, and Ureter
- McMahon RS, Penfold D, Bashir K. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Jul 25, 2022. Anatomy, Abdomen and Pelvis, Kidney Collecting Ducts
- 55. Falkson SR, Bordoni B. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Aug 8, 2022. Anatomy, Abdomen and Pelvis, Bowman Capsule.
- 56. Pollak MR, Quaggin SE, Hoenig MP, Dworkin LD. The glomerulus: the sphere of influence. Clin J Am Soc Nephrol. 2014 Aug 07;9(8):1461-9
- 57. Klein R, Lee KE, Knudtson MD, Gangnon RE, Klein BE. Changes in visual impairment prevalence by period of diagnosis of diabetes: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmology. 2009;116(10):1937–1942
- 58. Hietala K, Forsblom C, Summanen P, Groop PH. Heritability of proliferative diabetic retinopathy. Diabetes. 2008;57:2176–2180
- 59. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336– 1341.
- 60. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 1995 Aug;44(8):968-83. PMID: 7622004.
- 61. The diabetic control and complications trial/Epidemiology of diabetic interventions and complications research group. Retinopathy and nephropathy in type 1 diabetes 4 years after a trial of intensive therapy. N Eng J Med 2000; 342: 381-389.
- 62. UK Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854–65
- 63. ACCORD Study Group; ACCORD Eye Study Group, Chew EY, Ambrosius WT, Davis MD, Danis RP, Gangaputra S, Greven CM, Hubbard L, Esser BA, Lovato JF, Perdue LH, Goff DC Jr, Cushman WC, Ginsberg HN, Elam MB, Genuth S, Gerstein HC, Schubart U, Fine LJ. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010 Jul 15;363(3):233-44. Epub 2010 Jun 2
- 64. Kohner EM. Diabetic retinopathy. Br Med Bull 1989;45:148–73
- 65. Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia 2001;44:156–63
- 66. Matthews DR, Stratton IM, Aldington SJ, Holman RR, Kohner EM, for the UK Prospective Diabetes Study Group. Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus. Archives of Ophthalmology 2004;122:1631-1640
- 67. Best RM, Chakravarthy U. Diabetic retinopathy in pregnancy. Br J Ophthalmol. 1997;81:249–51.

- Pan A, Wang Y, Talaei M, Hu FB, Wu T. Relation of active, passive, and quitting smoking with incident type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3:958–67.
- 69. Cacciola RR, Guarino F, Polosa R. Relevance of endothelial-hemostatic dysfunction in cigarette smoking. Curr Med Chem. 2007;14:1887–92.
- 70. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature.2001;414:813–20
- Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes. 2004;53(9):2404–2411
- Hammes HP, Alt A, Niwa T, et al. Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia. 1999;42:728–736. doi: 10.1007/s001250051221
- 73. Huijberts MSP, Wolffenbuttel BH, Boudier HA, et al. Aminoguanidine treatment increases elasticity and decreases fluid filtration of large arteries from diabetic rats. J Clin Invest. 1993;92:1407–11
- 74. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47:859–866
- Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010 Apr 30;106(8):1319-31. doi: 10.1161/CIRCRESAHA.110.217117. PMID: 20431074; PMCID: PMC2877591
- 76. Okamoto T, Yamagishi S, Inagaki Y, et al. Inhibition of high glucose-induced VEGF and ICAM-1 expression in human retinal pigment epithelium cells by targeting ILK with small interference RNA. Molecular Biology Reports. 2001;39(1):613–620
- 77. Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide syn- thase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A. 2001;98:2604–9
- 78. Aiello LP, Bursell SE, Clermont A, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes. 1997;46:1473–80
- Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The Renin-Angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflam. 2014;2014:689360. doi: 10.1155/2014/689360. Epub 2014 Apr 6
- 80. Meadows KN, Bryant P, Pumiglia K: Vascularendothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 2001;276:49289–49298
- 81. Nagai N, Izumi-Nagai K, Oike Y, et al. Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-κB pathway. Invest Ophthalmol Vis Sci. 2007;48:4342–50.
- Eberhard R Lampeter, Takashi K Kishimoto, Robert Rothlein, Elizabeth A Mainolfi, Jorg Bertrams, Hubert Kolb, Stephan Martin; Elevated Levels of Circulating Adhesion Molecules in IDDM Patients and in Subjects at Risk for IDDM. Diabetes 1 December 1992; 41 (12): 1668–1671
- Wierusz-Wysocki B Wysocki H Siekierka H Wykretowicz A Szcaepanik A Klimas R. Evidence of polymorphonuclear neutrophils (PMN) activation in patients with insulindependent diabetes mellitus. J Leukoc Biol . 1987; 42: 519–523
- 84. Shima, D.T., Adamis, A.P., Ferrara, N. et al. Hypoxic Induction of Endothelial Cell Growth Factors in Retinal Cells: Identification and Characterization of Vascular Endothelial Growth Factor (VEGF) as the Mitogen. Mol Med 1, 182–193 (1995)

- 85. Lim AKh. Diabetic nephropathy complications and treatment. Int J Nephrol Renovasc Dis. 2014 Oct 15;7:361-81. doi: 10.2147/IJNRD.S40172. PMID: 25342915
- 86. Sampani K, Abdulaal M, Peiris T, Lin MM, Pitoc C, Ledesma M, Lammer J, Silva PS, Aiello LP, Sun JK. Comparison of SDOCT Scan Types for Grading Disorganization of Retinal Inner Layers and Other Morphologic Features of Diabetic Macular Edema. Transl Vis Sci Technol. 2020 Jul 30;9(8):45.
- ElTanboly AH, Palacio A, Shalaby AM, et al. An automated approach for early detection of diabetic retinopathy using SD-OCT images. Frontiers in Bioscience (Elite Edition). 2018 Jan;10(2):197-207. DOI: 10.2741/e817
- Lutty GA. Diabetic choroidopathy. Vision Res. 2017 Oct;139:161-167. doi: 10.1016/j.visres.2017.04.011. Epub 2017 Jun 9. PMID: 28535994
- 89. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13;414(6865):813–20.
- 90. Photocoagulation treatment of proliferative diabetic retinopathy: relationship of adverse treatment effects to retinopathy severity. Diabetic retinopathy study report no. 5. Dev. Ophthalmol.1981;2:248-61.
- 91. Regatieri C.V, Branchini L, Carmody J, Fujimoto J.G, Duker J.S; Choroidal thickness in patients with diabetic retinopathy analyzed by SDOCT. Retina (Philadelphia, Pa.). 2012 Mar; 32(3):563.
- Lee H.K, Lim J.W, Shin M.C; Comparison of choroidal thickness in patients with diabetes by spectral-domain optical coherence tomography. Korean Journal of Ophthalmology. 2013 Dec 1; 27(6):433-9
- Sudhalkar A, Chhablani J.K, Venkata A, Raman R, Rao P.S, and Jonnadula G.B, Choroidal thickness in Diabetic patients with Indian ethnicity; Indian journal of ophthalmology. 2015 Dec; 63(12):912.
- 94. Torabi H, Isfeedvajani MS, Ramezani M, Daryabari SH. Choroidal Thickness and Hemoglobin A1c Levels in Patients with Type 2 Diabetes Mellitus. Journal of Ophthalmic & Vision Research. 2019 Jul; 14(3):285
- 95. Wang W, Liu S, Qiu Z, He M, Wang L, Li Y, Huang W. Choroidal Thickness in Diabetes and Diabetic Retinopathy. A Swept Source OCT Study. Investigative Ophthalmology & Visual Science. 2020 Apr 9; 61(4):29
- 96. Lee W.J, Sobrin L, Lee M.J, Kang M.H, Seong M, and Cho H; The relationships between diabetic retinopathy and diabetic nephropathy in a population-based study done in Korea (KNHANES V-2, 3). Investigative ophthalmology & visual science. 2014 Oct 1; 55(10):6547-53.
- 97. Garrido-Hermosilla AM, Méndez-Muros M, Gutiérrez-Sánchez E, Morales-Portillo C, Díaz-Granda MJ, Esteban-González E, Relimpio-López I, Martínez-Brocca MA and Rodríguez-de-la-Rúa-Franch E; Renal function and choroidal thickness using sweptsource optical coherence tomography in diabetic patients. International Journal of Ophthalmology. 2019; 12(6):985.
- Zou W, Ni L, Lu Q, Zou C, Zhao M, Xu X, Chen H, Zheng Z. Diabetes Onset at 31-45 Years of Age is Associated with an Increased Risk of Diabetic Retinopathy in Type 2 Diabetes. Sci Rep. 2016 Nov 29;6:38113. doi: 10.1038/srep38113. Erratum in: Sci Rep. 2017 May 26;7:46839
- 99. Manjunath V, Taha M, Fujimoto JG, Duker JS. Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography. Am J Ophthalmol. 2010 Sep;150(3):325-329.e1. doi: 10.1016/j.ajo.2010.04.018.

- 100. Entezari M, Karimi S, Ramezani A, Nikkhah H, Fekri Y, Kheiri B. Choroidal Thickness in Healthy Subjects. J Ophthalmic Vis Res. 2018 Jan-Mar;13(1):39-43. doi: 10.4103/jovr.jovr_148_16.
- 101. Regatieri CV, Branchini L, Carmody J, Fujimoto JG, Duker JS. Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina. 2012 Mar;32(3):563-8
- 102. Ambiya V, Kumar A, Baranwal VK, Kapoor G, Arora A, Kalra N, Sharma J. Change in subfoveal choroidal thickness in diabetes and in various grades of diabetic retinopathy. Int J Retina Vitreous. 2018 Sep 12;4:34
- 103. Lee HK, Lim JW, Shin MC. Comparison of choroidal thickness in patients with diabetes by spectral-domain optical coherence tomography. Korean J Ophthalmol. 2013 Dec;27(6):433-9
- 104. Liu S, Wang W, Tan Y, He M, Wang L, Li Y, Huang W. Relationship Between Renal Function and Choroidal Thickness in Type 2 Diabetic Patients Detected by Swept-Source Optical Coherence Tomography. Transl Vis Sci Technol. 2020 Apr 24;9(5):17

ANNEXURES

ETHICAL CLEARANCE CERTIFICATES

TEC/NO-09/2011 Date- 22/01/2021

(Declared vide notification No. F.9-37/2007-U.3 (A) Dated. 29-2-2008 of the MHRD, Government of Act, 1956) The Constituent College SHRI. B. M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE

INSTITUTIONAL ETHICAL CLEARANCE CERTIFICATE

The Institutional ethical committee of this college met on 11-01-2021 at 11 am to scrutinize the synopsis of Postgraduate students of this college from Ethical Clearance point of view. After scrutiny the following original/corrected and revised version synopsis of the Thesis has been accorded Ethical Clearance

Title: Choroidal thickness assessment in diabetes mellitus patients.

Name of PG student: Dr Mervin Jonathan Israel, Department of Ophthalmology

Name of Guide/Co-investigator: Dr Raghavendra.K. Ijeri, Associate Professor of Ophthalmology

DR S.V.PATIL CHAIRMAN, IEC Institutional Ethical Committee B L D E (Deemed to be University) Shri B.M. Patil Modical College, VIJAYAPUR-526103 (Karnataka)

Following documents were placed before Ethical Committee for Scrutinization:

- 1. Copy of Synopsis / Research project
- Copy of informed consent form
 Any other relevant documents.

SAMPLE INFORMED CONSENT FORM

B.L.D.E.U.'S SHRI B.M. PATIL MEDICAL COLLEGE HOSPITAL AND RESEARCH CENTRE, VIJAYAPUR–586103, KARNATAKA

TITLE OF THE PROJECT

: CHOROIDAL THICKNESS ASSESSMENT BY SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IN DIABETES MELLITUS PATIENTS

PG GUIDE: Dr. RAGHAVENDRA. K. IJERI

ASST. Professor

Department of Ophthalmology

BLDE Deemed to be university ShriB.M.Patil Medical College Hospital & Research Centre, Solapurroad, vijayapura.

PRINCIPAL INVESTIGATOR: Dr. MERVIN JONATHN ISRAEL

First-year resident in Ophthalmology

Department of Ophthalmology BLDE Deemed to be university.

ShriB.M.Patil Medical College Hospital & Research Centre, Solapur Road Vijayapura-586103

Email: mervinisrael@yahoo.co.in / israelmervin@gmail.com

PURPOSE OF RESEARCH:

I have been informed that this study: CHOROIDAL THICKNESS ASSESSMENT BY SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IN DIABETES MELLITUS PATIENTS.

I am briefing about the reason for doing this study and selecting me/my ward as a participant for this study. I have also been given free will for either being included or not in the study.

PROCEDURE:

I understand, that i will be taking part in this study: A STUDY TO ASSESS THE CHOROIDAL THICKNESS BY SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IN PATIENTS WITH DIABETES MELLITUS

I understand that I may experience and discomfort during the examination. This mainly results from my condition, and the procedure of this study does not expect to exaggerate or worsen these feelings, which are usually associated with the usual course of treatment.

BENEFITS:

I understand my participation in this study:

CHOROIDAL THICKNESS ASSESSMENT BY SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IN DIABETES MELLITUS PATIENTS

I Understand and accept the risks, benefits, and costs involved and I willingly give consent to take part in the study.
CONFIDENTIALITY:

I understand that the medical information acquired by this study will become a part of this Hospital's records and will be subjected to the confidentiality and privacy regulation of this hospital. If this data is used for publication in the medical literature or teaching purposes, no names and other identifying details such as photographs and audio or video will be used. Such usage will be allowed only with my documented permission. I also understand that I may see the photograph and videotapes and hear audiotapes before giving permission.

REQUEST FOR MORE INFORMATION:

I understand that I can ask more questions about the study at any time. **Dr. RAGHAVENDRA. K. IJERI** in the Department of ophthalmology will be available anytime to answer my questions or related concerns. I also understand that I will be informed of any significant new findings discovered during this study, which might influence my continued participation. If, during this study or later, I wish to discuss my participation in or concerns regarding this study with persons not directly involved, I am aware that the social worker of the hospital is available to talk with me.

And that a copy of this consent form will be given to me to keep for careful reading.

REFUSAL OR/AND WITHDRAWAL TO PARTICIPATE IN THE STUDY:

I understand that my participation will be voluntary, and I may refuse to participate or may withdraw consent and discontinue from participating in this study at any time without prejudice to my present or future care at this hospital.

I also understand that Dr. MERVIN JONATHAN ISRAEL will terminate my participation in this study at any time after he/she has explained the reasons for doing so and has helped arrange for my continued care by my physician or therapist if this is appropriate.

INJURY STATEMENT;

I understand that in the unlikely event of an injury to me, resulting directly due to my participation in this study, such injury will be reported promptly, then medical treatment would be available to me, but no further compensation will be provided.

I understand that by my agreement to participate in this study and not waiving any of my legal rights.

I have explained the purpose of this research, the procedures required, and the possible risks to the best of my ability in the patient's language.

Dr. MERVIN JONANTHA ISRAEL

(Investigator)

DATE

Patient's signature Witness to above signature

STUDY SUBJECT CONSENT STATEMENT:

I confirm that Dr. MERVIN JONATHAN ISRAEL has explained to me the purpose of this research study, the study procedure that I will undergo, and the possible discomforts and benefits that I may experience in my language.

I have been explained all the above in detail in my language, and I understand the same. Therefore I agree to give my consent to participate as a subject in this research project.

(Participant) Date

(Witness to above signature) Date

ಡಾ. ಮೆರ್ವಿನ್ ಜೊನಾಥನ್ ಇಸ್ರ ೇಲ್ ನನಗೆ ಸಂಶೇಧನೆಯ ಉದ್ದ ೇಶ, ಅಧಯ ಯ ವಕಧಾನ ಮತ್ತ ಸಂಭವನೆಯ ಅಸ್ ಸಾಥ ತೆಗಳು ಮತ್ತ ನನನ ಸ್ ಂತಭಾಷೆಯಳಿ ನಾತುಅನುಭರ್ವಸ್ಪಹುದಾದ ಪ್ರ ಯೇಜನಗಳನುನ ರ್ವವರಿಸಿದ್ದ ೇನೆ ಎಂದು ನಾನು ಖಚಿತಪ್ಡೆ ಸುತೆಗಿನೆ. ಮೆಗೆಲ್ಲನ ಎಲ್ಲಿ ವಕಷಯಗಳನುನ ನನನ ಸ್ ಂತಭಾಷೆಯಳಿ ವಕಷರವಾR ರ್ವವರಿಸ್ಲ್ ಲRದ್ ಮತ್ತ ನಾನು ಅದನುನ ಅಥೆ ಮಾಡಿ ಕಂಡಿದ್ ದೆನೆ. ಆದದ ರಿಂದ, ಈ ಸಂಶೇಧನಾಯೇಜನೆ ಯಳಿ ವಕಷಯವಾR ಭಾಗವಹಿಸ್ಲು ಒಷ್ಠೆ ಗೆ ನೇಡಲು ನಾನು ಒಪ್ ತೆಗೆನ

(ಭಾಗವಹಿಸುವವರು) (Øನಾಂಕ)

PERFORMA

PRO-FORMA FOR CASE TAKING

TOPIC: CHOROIDAL THICKNESS ASSESSMENT IN DIABETES MELLITUS PATIENTS

DEPARTMENT OF OPHTHALMOLOGY

B.L.D.E UNIVERSITY'S SHRI B.M.PATIL MEDICAL COLLEGE HOSPITAL AND RESEARCH CENTRE, VIJAYAPURA-586103

CASE NO:	OPD/IPD NO:	DATE:	
NAME:	AGE:	SEX:	
KNOWN CASE OF TYPE	E 2 DM: YES / NO		
DURATION OF TYPE 21	DM:	ON REGULAR MEDICATION :	YES/ NO
HISTORY OF HYPERTE	NSION :	IF YES : ORAL / INS	SULIN:
ANY OTHER RELATED	COMPLICATIONS:	ANY OCULAR COMPLAINTS:	
PERSONAL HISTORY		PAST MEDICAL HISTORY:	
PAST SURGICAL HISTO	DRY:	FAMILY HISTORY:	
HBA1C level:	RBS:	FBS	
Sr. CREAT	UREA:	URINE ALBUMIN	
EGFR:			

HISTORY OF PVD:

OPHTHALMIC EXAMINATION

	RIGHT EYE	LEFT EYE
External Appearance		
Ocular Motility		
Lids		
Conjunctiva		
Cornea		
Anterior Chamber		
Iris		
Pupil		
Lens		
Unaided		
Pinhole		
Near Vision		

FUNDUS EXAMINATION

	RIGHT EYE	LEFT EYE
Media		
Disc		
Blood vessel		
Background		
macula		

CHOROIDAL THICKNESS	RIGHR EYE	LEFT EYE
SUB FOVIAL		
NASAL		
TEMPORAL		
SUPERIOR		

MASTER CHART FOR CASES

G	1	5 ৫ 😮	÷				Ň	IERVIN MASTER	CHART NE	W - Ex	cel	-		- Me	rvin Isi	ael 🤱	Œ	
Fi	e	Home Insert	Page Layout	Form	ulas	Data	Review View	Help 📿	Tell me w	/hat you	ı want t	o do						
		1																
B4		× - v	fx															
al.	A	ВС	DE	F	G	н	Ј К	L	м	N	0	P Q	R	S	т	U	v	W
1																		
2		PATIENT DETAILS	· · · · ·		D	IABERES				NEPHRO	DPATHY							
3	-	NAME	AGE SEX	HBA1c PP		FBS TREATMEN	DM durati GRADE OF DIABETIC	RETINOF ALBUMINUREA	EGFR	SR CREAT	UREA	URIC ACID NEPHROPATHY	MACULAR EDEMA	SUBFOVEAL	NASAL	TEMPORAL	SUPERIOR I	NFERIOR
4	_												RE		RE	RE F	E F	4E
5	1	13654 SANGAPPA M	68 M	6.9	225	163 INSULIN	2 MODERATE NPDR	33.	3 97	0.9	23	YES	YES	225	216	221	224	225
0	2	13792 NIDAGUNDI SHARANAPPA	81 M	8.9	240	175 ORAL	3 MODERATE NPDR	35.	5 76	1	26	YES	NO	218	213	216	216	214
0	5	23156 TARSEENBANU PATEL	4/ F	5.4	120	180 OKAL	1 MILD NPDR	22.	5 107	0.7		NO	NO	255	255	234	230	228
0	4	15101 INDURAL	52 M	5.0	200	104 ORAL	2 NURWAL	42.4	5 100	1.1	20	VEC	NO	290	28/	290	292	294
10	6	18080 INDUMATI SHADUD	53 F	12.1	310	200 INSULIN	2 000	43.1	3 54	1.1	20	VES	NO	186	183	185	187	243
11	7	21388 GURUBASAPPA SUNGAL	57 M	43	160	92 ORAI	0.5 MILD NPDR	29.	7 88	0.6	21	NO	NO	265	258	260	263	268
12	8	16443 PARAVATIBAI PATIL	65 F	7.4	210	143 INSULIN	2 MODERATE NPDR	21	3 63	1		YES	YES	226	225	229	230	226
13	9	11015 AGAWA KOTALY	70 M	4	144	102 ORAL	1 NORML	2	1 99	0.7		NO	NO	298	267	287	285	279
14	10	42044 SULOCHANA MATH	61 F	7.4	175	188 ORAL	5 MODERATE NPDR	21	5 98	0.7		NO	NO	305	287	295	290	283
15	11	RAJENDRA	35 M	3.3	140	97 ORAL	7 NORMAL	26.	7 81	1.2		NO	NO	280	266	273	271	179
16	12	78945 NAIK LOKU	49 M	6.9	188	140 ORAL	2 MILD NPDR	23.5	9 113	0.7		NO	NO	259	236	244	240	251
17	13	20591 INDUBAI SHAHAPUR	54 F	8.4	210	180 INSULIN	1 MODERATE NPDR	22.	4 54	0.4		4.2 NO	NO	215	201	211	216	218
18	14	SHANTABAI RAJPUT	56 F	10.7	194	108 METFORM	2 SEVERE NPDR	3	1 97	0.7		YES	YES	198	178	184	180	182
19	15	136151 ARUNODAYAN GUNDURAO	56 M	11.7	234	395 ORAL	6 PDR	36.	8 95	1.5		YES	NO	185	176	182	189	186
20	16	KALLAMA BADIGER	61 F	6.4	165	130 INSULIN	3.5 MILD NPDR	32.5	9 84	0.8		NO	NO	264	254	259	253	147
21	17	23866 KASTURBAI REVATGAON	54 F	10.6	275	225 INSULIN	3 MODERATE NPDR	38.	2 64	1.6		YES	NO	228	219	222	226	223
22	18	23901 ANNARAY BIRADAR	67 M	7.9	288	210 ORAL	4 MODERATE NPDR	1	8 94	0.9		NO	NO	231	227	230	233	236
23	19	50076 JAYASHREE SADASHIV	58 F	9.6	320	171 INSULIN	6 MILD NPDR	21.5	9 81	0.8	26	NO	NO	283	293	298	295	292
24	20	136151 ARUNODAY KOTWAL	56 M	11.7	296	395 INSULIN	8 SEVERE NPDR	29.	9 95	0.9		NO	YES	191	185	190	194	191
25	21	94489 SUNIL BIRADAR	60 M	3.6	134	110 ORAL	2 NORMAL	23.	8 105	0.7		NO	NO	294	269	287	284	293
26	22	87242 B M ANGADI	62 M	7.5	289	150 GLYCOME	8.5 MILD NPDR	28.	2 104	0.7		NO	NO	276	253	266	120	286
27	23	77117 shalan kale	60 M	13.2	365	356 INSULIN	11 PDR	36.1	8 118	0.5		YES	NO	204	183	189	186	343
28	24	73888 MUGALCHAND jain	58 M	10.5	221	236 METFORM	3 MILD NPDR	5	2 112	0.6	23	NO	NO	322	312	319	314	407
29	25	KOTE	52 F	9.2	198	210 INSULIN	5 MILD NPDR	3.	3 77	1.4	38	1.4 YES	YES	294	274	288	290	344
30	26	116244 REKHA YADAV	43 F	4	128	97 ORAL	2 NORMAL	21.9	9 114	0.6		NO	NO	322	310	320	313	310
31	27	114839 SAVITRI BIRADAR	52 F	3.4	122	88 ORAL	3 NORMAL	23.0	5 113	0.5		NO	NO	312	299	307	302	304
32	28	11062 SAVANT RAMESH	74 M	4.5	189	177 ORAL	2 MILD NPDR	22.	5 90	0.9		NO	NO	277	265	270	265	263
35	29	BIRADAR REVATI	63 F	8.2	240	190 INSULIN	6 MODERATE NPDR	25.1	5 97	0.7		NO	NO	255	231	248	244	248
34	30	118162 RAJESHWARI GOUR	48 F	6.2	198	168 INSULIN	1 MILD NPDR	29.	62	11		NO	NO	266	258	261	256	251
30	51	127451 JAYADEVIHIREMATH	52 F	5.4	202	188 UKAL	2 MILD NPDR	30.	. //	0.9	10	NU	TES	269	260	263	258	264
30	32	70907 VENKAPPA MADAR	52 M	8.4	3/4	174 METFORM	9 MODERATE NPDK	44,	48	1/	48	1.7 YES	NO	2/4	266	269	263	269
37	22	65674 GIRIJADAI DAGALLI	40 F	14.1	404	198 INSULIN	S PUK	4	. 01	1.2	51	1.2 155	NO	252	120	250	228	251
30	34	03868 CANADATI DAWAD	55 F	6.9	114	204 GLICHECK	5 SEVERE NPUK	241	2 24	1.9	33	111102	NO	207	270	282	276	279
40	26	02500 SHIVANDAD	51 F	6.5	212	195 0041	9 MUD NDDD	24.	79	14	25	2 VEC	NO	297	2/8	203	276	278
41	30	93546 PRAMIA REVAPPA	42 F	6.5	244	148 OPAL	4 MILD NPDR	26.	1 64	1.4	23	NO	YES	257	224	255	224	252
47	38	312265 NINGAPPA	50 M	15.7	342	253 INSULIN	11 SEVERE NRDR	20.	- 04	0.9		NO	NO	189	183	186	188	184
43	39	95974 VEERSANGAYYA	57 M	83	197	92 ORAL	20 MODERATE NPDR	27	1 107	0.7		NO	NO	260	255	258	259	261
44	40	92699 MAKANDAR	61 M	6.3	183	143 ORAL	4 MILD NPDR	19.	2 110	0.6		NO	NO	294	285	291	287	292
4	*	GENERAL NEPH	ROPATHY	MACUAI	RED	DEMA DIA	BETICS (+)					•	10770					

	5	े ६ -	Ŧ					MERVIN N	MASTER C	HART NEW	- Exc	el	5		0	Merv	vin Israel	*	Ð	
File	Home Insert		Page Layout	For	mulas	Data	Review View	v Help	Ŷ	Tell me wh	at you	want t	o do							
B4		• : × •	f _x																	
A	8	с	DE	F	G	н	J		ι	м	N	0	P	Q	R S		т	U	v	w
54 51)	HIRAL LAXMIBAI	62 F	6.7	183	143 ORAL	4 MILD NPDR		20.4	83	0.8		NO	NO		287	283	291	283	278
55 5:	110902	SHEKAPPA HALLI	60 M	7.4	200	122 ORAL	0.5 NORMAL		22.2	86	1		NO	NO		296	290	293	300	299
56 53	112974	HUSENABI	60 F	12.8	325	223 INSULIN	9 MODERATE NP	DR	23.5	113	0.4	26	NO	NO		276	270	278	270	274
57 5	114488	CHANAMMA	72 F	7.3	220	185 ORAL	6 MILD NPDR		16.9	100	0.5		NO	NO		297	290	288	295	298
58 54	116086	SIDDAPPA	55 M	5.4	177	154 ORAL	5 MILD NPDR		41.3	65	1.3	21	YES	YES		296	283	287	291	294
59 51	3343	SHIVAMMA HOSAMANI	60 F	4.4	167	144 ORAL	3 NORMAL		23.4	99	0.7		NO	NO		303	297	301	306	300
60 51	5 133816	MALIKARJUN	50 M	12.5	343	48 INSULIN	7 PDR		27.6	104	0.9		NO	NO		184	176	181	180	179
61 5	133820	SHIVAPUTRA YALWAR	57 M	11	360	262 INSULIN	9 PDR		39	69	1.4	47	YES	NO		179	173	176	181	179
62 51	3	HAWALDAR MALI	58 M	6	243	177 ORAL	5 MODERATE NP	DR	30.1	112	0.6		NO	YES		243	238	241	240	242
63 55	151767	MAHADEVI RAIMANI	55 F	7	189	155 ORAL	3 MILD NPDR		22.1	111	0.5	15	NO	NO		288	280	289	291	278
64 61)	SHAFEEQ KALADGI	65 M	7.2	233	189 ORAL	6 MILD NPDR		38.9	56	1.4	32	YES	NO		190	187	183	189	191
65 6	151678	RAMABAI CHAVAN	68 F	5.6	165	123 ORAL	5 NORMAL		37	94	0.7		NO	YES		293	289	295	291	290
66 63	180364	MAHADEVI MATHAPATI	65 F	5.3	170	150 ORAL	1 NORMAL		19.7	71	0.9		NO	NO		310	305	308	311	303
67 6.	180165	SHIVAPPA	62 M	10.8	230	180 INSULIN	7 MODERATE NP	DR	15.6	76	1.1		NO	NO		275	260	263	267	271
68 61	5 187545	VITTAL ANGADI	52 M	6.2	185	146 ORAL	4 MILD NPDR		23.4	106	0.8		NO	NO		290	283	287	285	293
69 6	20965	BHIMU JADHAV	62 M	16.1	371	284 INSULIN	11 PDR		47.2	48	1.6	33	YES	NO		182	176	178	180	181
70 61	3 203242	KAVERI HADAPAD	60 F	5.1	301	188 INSULIN	16 MODERATE NP	DR	35.8	43	1.4	42	YES	NO		185	179	181	183	180
71 6	207287	SANGANABASSAPA	58 M	13	148	80 ORAL	1 NORMAL		24.5	112	0.6		NO	NO		299	287	289	293	291
72 70	220108	BASSAPA GOKANVI	74 M	9.1	220	186 ORAL	5 SEVERE NPDR		25.3	90	0.9		NO	NO		210	205	208	213	215
73 7		GIRISH MANGULI	63 M	11	276	187 ORAL	4 PDR		27.3	75	1.1		NO	YES		193	186	188	191	190
74 7.	223665	GURUSWAMI HIREMATH	55 M	5.5	190	133	2 MILD NPDR		25.3	89	1		NO	NO		296	291	288	293	294
75 7	3	NORAND RAIPUT	61 F	6	193	155 ORAL	4 NORMAL		29.3	98	0.7		NO	NO		298	296	301	308	300
76 74		TALWAR MHADEVI	57 F	8	201	166 ORAL	7 MODERATE NP	DR	19.5	86	0.8		NO	YES		237	229	234	239	232
77 7		MADIWALAR RAVINDRA	60 M	6.7	187	155 ORAL	14 SEVERE NPDR		27.1	69	1.2		NO	NO		193	189	187	191	188
78 71	5	SAKKARI MALIKARJUN	55 M	8.6	360	294 INSULIN	7 SEVERE NPDR		44.3	71	1.2	29	NO	YES		182	176	188	183	185
79 7	355940	SUNANDA KOMAR	50 F	5.5	188	143 ORAL	3 MILD NPDR		26.6	109	0.6		NO	YES		286	282	290	286	289
80 71	356221	MALIKARJUN SHANTAPPA	53 M	6	193	164 ORAL	6 NORMAL		27.3	102	0.9		NO	NO		306	299	302	287	303
81 /2		BASANTAPAP	59 M	11.5	580	484 INSULIN	8 SEVERE NPDR		39.4	58	1.4	31	YES	NO		180	1/3	1/5	182	1/4
02 0	36/555	JAGADEVAPPA VITTAL	55 M	11.9	156	137 INSULIN	5 MUDERATE NP	DR	52.5	59	1.4	39	YES	NU		184	1/2	1/4	1/8	184
04 00	203204	RUDRITA HIREMAIN	0 M	0.9	200	176 UKAL	11 CD EDE NOOD		20.8	107	0.7		NO	TES		300	200	298	305	303
05 05	203294	RAVINURA MADIWALAR	49 M	9	301	244 INSULIN	11 SEVERE NPDR		22.9	108	0.8		NU	NU		210	206	201	212	208
05 0.	2044/9	SURESH SHANKAR	52 M	0	150	134 UKAL	4 MILD NPDR		21.0	110	0.6		NO	NU		289	290	285	293	283
00 07	300/10	KAYI	51 M	4.7	150	152	1 NURMAL		25.2	105	0.9		NO	NO		510	302	507	202	500
00 0	36/53/	MAPIADEVI	04 F	6.2	180	144 OKAL	8 MILD NPDR		20.3	65	1.0		NU	TES		295	299	100	293	298
00 01	10281	VUATAKUMAK	00 M	0	220	170 ORAL	9 MILD NPDR		57.0	34	1.5	33	163	NO NO		195	10/	199	205	190
00 00	290950	MALLAPPA HADIPPA	68 M	0	180	120 ORAL	S NURMAL		28.9	/3	1.1		NO	TES		316	305	309	201	314
01 0	102690		55 F	0.0	140	176 ORAL	4 MILD NPUK	0.0	20.7	100	0.7		NO	NU		269	280	204	291	293
97 07	193680	CHANDRAK ANT	5/ F	8.5	240	176 URAL	0 NODEKATE NP	UR	19.5	100	1.2		NO	YES		109	105	107	201	253
02 0	196300	KAMI ARALIWADAR	52 E	9./	140	06 ORAL	2 NORMA		17.6	109	1.2		NO	Ver		210	193	206	201	210
95 9	105466	DADADASAA	54 P	5.8	240	184 ORAL	S NURMAL		25.1	108	0.6		NO	YES		215	204	200	210	311
95 01	105429	SHANKADADDA	70 M	1.5	249	222 INCLUM	11 SEVERE NPDR		20.4	75	0.9		NU	NO		200	202	209	213	210
32 33	105433	MALLANA HALKATI	70 M	10	297	124 ORAL	C MUD NOOD		28.5	81	1		NO	NO		209	203	205	201	210
97 97	1054429	COMMANNIA MADAD	60 M	10	185	112 ORAL	8 MILD NPDR		19.5	110	0.8		NO	NU		230	230	291	289	287
00 0	105521	DUDDAAAA HIDEAAATH	69 F	0.9	190	162 ORAL	15 MODERATE NR	0.0	46.2	110	0.5		VEC	TES		100	170	102	102	100
()	G	ENERAL NEPH	ROPATHY	MACU	ALR ED	FMA DIA	BETICS		an.z		1.9		4	NL1		inh	174	103	143	_

MASTER CHART FOR CONTROLS

		5 c	۰ 2						THE	SIS MASTER	R CHAR		OLLS -	Excel						Me	ervin Isr
File	9	Home	Insert	Page Layo	out	Formulas	Data	Review	View	Help	Q	Tell me v	vhat you	want to	do						
1400			~	£	247																
M90		·	~ ×	Jx	347																
A A	1	B C	DE	F	G	H I		J	К	L	М	N	0	Р	Q	R	S	т	U	V	W
1																					
2		PATIENT DETAILS	AND THE REPORT		1000	DIABERES				1	CHOR	OIDAL THIC	KNESS								
3	1	IP NUMBE NAME	AGE SEX	HBA1c	PP	FBS TREATN	IEN DIABETIC R	ETINOPATHY	NEPHROPATHY	SUBFOVEAL	NASAL	TEMPORAL	SUPERIOR	INFERIOR							
4	1	NINGAPPA	60 M			NO	NORMAL		NO	332	328	335	333	335							
5	2	267366 SANGAMMA	56 F	4.7	15	0 100 NO	NORMAL		NO	343	336	339	340	335							
0	3	374508 GOURAMMA	58 F	3.2	16	0 90 NO	NORMAL		NO	328	325	331	330	329							
0	4	346691 FAROOQ MU	62 M	4.8	16	0 98 NO	NORMAL		NO	346	341	336	344	339							
0	2	335348 SHANKAEGU	63 M	4.8	1/	9 105 NO	NORMAL		NO	351	340	333	338	327							
9	0	345421 CHANDRAW	55 F	6.1	14	1 80 NO	NORMAL		NO	351	344	341	348	352							
11	0	380/91 MALLAPA GO	70 M	5.8	12	0 83 NO	NORMAL		NO	327	321	329	330	326							
12	0	364033 PARSAKAIVI A	04 M	4.9	1/	7 92 NO	NORMAL		NO	519	321	524	529	210							
12	10	2004E0 TADABAL DUL	70.5	4.0	13	1 01 NO	NORMAL		NO	344	339	341	330	330							
14	11	251229 DAV/ CHIVAN	50 M	3.1	14	4 94 NO	NORMAL		NO	200	204	290	204	206							
15	12	363725 MAINABALC	71 5	3.5	17	0 91 NO	NORMAL		NO	305	302	203	817	306							
16	13	390128 SHARANAPA	65 M	4.5	14	5 95 NO	NORMAL		NO	340	336	371	346	342							
17	14	SODIES SHEKAD THE	54 M	4.5	14	8 97 NO	NORMAL		NO	362	352	3/9	3/3	340							
18	15	383909 RUKMAW/A	56 F	3.8	15	2 94 NO	NORMAL		NO	311	315	312	307	309							
19	16	383673 DONDIBAI	53 F	3.7	13	9 89 NO	NORMAL		NO	295	291	301	302	299							
20	17	376519 BHIMANNA P	55 F	3.9	16	2 84 NO	NORMAL		NO	323	320	327	330	331							
21	18	305729 SURFSH KUL	65 M	5.2	15	8 81 NO	NORMAL		NO	335	339	325	307	333							
22	19	305729 TIPPANA TAV	57 M	5.1	16	4 85 NO	NORMAL		NO	344	341	349	345	339							
23	20	363729 SHIVAMMA F	71 F	4.6	14	1 97 NO	NORMAL		NO	320	318	325	314	316							
24	21	376520 KASAPPA BAJ	64 M	5.4	16	9 88 NO	NORMAL		NO	328	325	330	323	326							
25	22	346694 MEERASAB	67 M	3.7	15	1 93 NO	NORMAL		NO	296	293	301	298	300							
26	23	306228 TARABAI PAT	55 F	4.8	15	8 98 NO	NORMAL		NO	340	338	335	340	341							
27	24	374506 LAKSHMIBAI	58 F	5.6	14	8 104 NO	NORMAL		NO	346	341	350	351	346							
28	25	349441 BASAMMA B	55 F	5.2	15	2 96 NO	NORMAL		NO	325	320	329	331	329							
29	26	335357 KALLAPA KOT	64 M	4.6	17	6 107 NO	NORMAL		NO	351	348	342	353	351							
30	27	346692 SOMUPUR	54 M	5.3	16	2 82 NO	NORMAL		NO	336	328	329	332	327							
31	28	346686 GOPAL SUNII	55 M	5.6	17	4 103 NO	NORMAL		NO	317	313	315	319	310							
32	29	360962 NEELAMMA	62 F	4.5	14	0 97 NO	NORMAL		NO	328	325	358	349	351							
33	30	363861 KASTURIBAI	60 F	5.2	14	4 99 NO	NORMAL		NO	345	342	341	344	349							
34	31	306233 RUKMAWW/	70 F	3.5	14	4 86 NO	NORMAL		NO	330	329	337	334	336							
35	32	306234 GIRIJA MIRA	69 F	4.7	15	3 90 NO	NORMAL		NO	320	317	319	324	315							
36	33	360964 SAVITA KUM	1 64 F	5.1	16	1 103 NO	NORMAL		NO	341	334	336	343	340							
37	34	305693 NAYAYYA NAI	62 M	4.4	15	9 100 NO	NORMAL		NO	311	321	317	319	309							
38	35	BISMILLABAI	58 F	4.7	15	5 100 NO	NORMAL		NO	306	310	321	311	321							
39	36	307432 SHANKARAW	59 F	4.8	14	4 100 NO	NORMAL		NO	337	330	331	334	341							
40	37	360616 SHARANNAPI	76 M	3.8	17	4 100 NO	NORMAL		NO	347	339	344	340	341							
41	38	351374 ZAMEER MUI	56 M	5.2	17	4 102 NO	NORMAL		NO	320	310	323	315	318							
42	39	363728 GOURAWWA	80 F	4.3	14	5 91 NO	NORMAL		NO	351	344	352	355	349							
43	40	297233 PREMABAI	60 F	4.7	14	5 106 NO	NORMAL		NO	333	328	326	337	331							
44	41	360626 NINGAPPA B	73 M	5.5	18	0 93 NO	NORMAL		NO	316	308	316	319	304							
	3	Sheet1	(+)												4						

		ా ి	~ 2	Ŧ				THESIS MASTER	CHAR	T CONTRO	DLLS - I	Excel	0	<u>.</u>				Me	rvin Isr
	File	Home	Insert	Page Layout	Formulas	Data	Review N	View Help	Q	Tell me w	hat you	ou want to do							
-		1	1																
A	456		× v	fx															
	A	вс	D	EF	GHI		J	K L	M	N	0	P	Q	R	s	т	U	v	w
55	52	305729 SURESH KULI	K 65 M	4.5	165 88 NO	NORMAL	NO	333	351	323	348	339							
56	53	250800 RUDRAMMA	50 F	5.8	148 111 NO	NORMAL	NO	291	289	293	278	283							
57	54	250812 YALLAPA	60 M	4.8	155 89 NO	NORMAL	NO	288	285	284	274	290							
58	55	250871 SIDDAPA GO	N 75 M	5	175 85 NO	NORMAL	NO	334	354	324	353	341							
59	56	250688 BASAPPA HA	L 60 M	4.5	168 88 NO	NORMAL	NO	344	341	348	342	337							
60	57	250782 JAYASHRI BO	0: 49 F	5.6	159 98 NO	NORMAL	NO	318	317	320	315	312							
61	58	250695 CHANDRASH	4 75 M	4.5	178 89 NO	NORMAL	NO	342	346	348	341	337							
62	59	250456 FATIMA MU	U 48 F	5.3	155 98 NO	NORMAL	NO	336	328	324	339	320							
63	60	256914 HONNAWW	A 80 F	4.8	166 60 NO	NORMAL	NO	297	280	288	285	293							
64	61	239051 YANKAPPA	66 M	5.5	180 99 NO	NORMAL	NO	356	351	359	352	358							
65	62	220162 BASAPPA MA	4 78 M	3.8	162 87 NO	NORMAL	NO	323	321	327	329	330							
66	63	247566 MADEV MAL	L 58 M	4.2	183 92 NO	NORMAL	NO	336	329	334	331	340							
67	64	222952 GURUBAI	65 F	5.1	184 106 NO	NORMAL	NO	318	312	314	320	316							
68	65	256910 NABISAB	65 M	4.3	167 78 NO	NORMAL	NO	344	338	346	381	387							
69	66	360038 SIDDAPA LAC	5 49 M	4.9	187 102 NO	NORMAL	NO	315	311	368	310	316							
70	67	259577 HANAMAWV	V 62 F	3.9	166 93 NO	NORMAL	NO	355	347	451	349	344							
71	68	348459 LALSAB JATA	K 64 M	4.6	188 94 NO	NORMAL	NO	328	317	319	314	324							
72	69	339491 SIDDAPPA	72 M	4.1	168 88 NO	NORMAL	NO	336	343	339	321	329							
73	70	323006 SHANKARAPI	P 62 M	5.1	148 83 NO	NORMAL	NO	341	340	336	345	335							
/4	71	323015 BHIMAPPA	60 M	5.3	157 89 NO	NORMAL	NO	305	297	293	306	301							
75	72	10711 MOSES MAR	U 54 M	3.6	177 107 NO	NORMAL	NO	310	307	303	305	312							
76	73	271528 ANSUYYA	48 M	4.3	180 100 NO	NORMAL	NO	334	330	332	341	342							
11	74	280529 MEHMOOD	Y 52 M	4.4	169 84 NO	NORMAL	NO	347	342	348	338	321							
78	75	271635 MALABAI JAL	53 F	5	170 92 NO	NORMAL	NO	332	340	319	321	336							
79	76	330180 ISHWAR GRU	J 75 M	4.7	183 86 NO	NORMAL	NO	361	352	345	352	344							
80	77	332209 BHIMAPPA	65 M	5.2	190 111 NO	NORMAL	NO	306	302	321	311	315							
81	/8	332272 KALAPPA BA	L 56 M	4.6	185 95 NO	NORMAL	NO	325	327	328	333	321							
82	/9	323013 KASTURI MA	L 5/F	4.8	1// 80 NO	NORMAL	NO	337	332	327	330	327							
0.5	80	313469 SHRISHAL	68 M	4.1	18/ 99 NO	NURMAL	NO	295	28/	299	301	303							
04	81	320120 SHANTABAT	60 F	3./	166 78 NO	NORMAL	NO	334	341	337	335	329							
85	82	313481 HANAMAWA	0 60 F	4.5	169 102 NO	NORMAL	NO	350	351	342	339	348							
00	0.0	301052 MALAPPA	05 M	5.5	100 107 NO	NORMAL	NO	321	335	320	322	320							
07	04	355549 BRAKATI KA	1 34 F	4.0	192 32 MO	NORMAL	NO	527	325	324	322	303							
00	83	249452 CHAINGAR AN	00 F	4,4	172 06 NO	NORMAL	NO	305	211	307	207	202							
00	00	SECORO WITTAL LACE	D 69 M	4.0	170 92 100	NORMAL	NO	321	247	328	341	322							
01	07	SECORE CIDDAVOVA CL	00 111	4.2	170 03 NO	NORMAL	NO	342	220	341	342	202							
02	00	249460 BASACOND I	1. JO M	5.4	197 100 NO	MORMAL	NO	332	326	336	340	221							
02	00	206127 BAICHWAD I	67.14	6.2	192 102 NO	NORMAL	NO	221	216	326	222	210							
0.1	01	240107 NACNUP NA	C 54 5	3.2	167 110 NO	NORMAL	NO	261	250	257	247	2.41							
05	91	342107 IPPAWA NAC	56 F	43	182 112 NO	NORMAL	NO	317	318	313	316	341							
06	92	B20189 HANAMANTH	57 M	51	163 97 NO	NORMAL	NO	317	304	305	308	315							
97	93	210897 INDU PUKA	57 M	4.8	145 89 NO	NORMA	NO	840	334	352	342	348							
98	94	321648 RAIPUT SUR	49 M	5	174 102 NO	NORMAL	NO	323	327	323	320	319							
99	96	410938 KASIMSAR A	T 63 M	48	186 98 NO	NORMAL	NO	338	334	331	342	321							
	()⊧	Sheet1	+					.1.83				1	•						

COLOR PLATES

FIG 21 MEASUREMENT OF CHOROIDAL THICKNESS ON OCT SCANS

Fig 22. Fundus photograph of a Moderate – Severe NPDR patient