"A PROSPECTIVE CROSS-SECTIONAL STUDY TO DETERMINE THE BACTERIOLOGICAL

PROFILE AND ANTIBIOTIC SENSITIVITY PATTERNS OF CUTANEOUS LESIONS IN

IMMUNOBULLOUS DISORDERS"

BY

Dr. MAYURI B M

DISSERTATION SUBMITTED TO B.L.D.E (DEEMED TO BE UNIVERSITY), VIJAYAPURA

In partial fulfilment of the requirements for the degree of MD

IN

DERMATOLOGY, VENEROLOGY AND LEPROSY

UNDER THE GUIDANCE OF

DR. AJIT B JANAGOND

ASSOCIATE PROFESSOR

DEPARTMENT OF DERMATOLOGY, VENEROLOGY AND LEPROSY

B.L.D.E (Deemed to be University),

SHRI B M PATIL MEDICAL COLLEGE HOSPITAL AND RESEARCH CENTRE,

VIJAYAPURA 586103

BLDE (DEEMED TO BE UNIVERSITY)

SHRI B. M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE VIJAYAPURA, KARNATAKA

DOI 10.5281/zenodo.15493853 https://zenodo.org/records/15493854

1

DECLARATION BY THE CANDIDATE

I hereby declare that this dissertation entitled "A PROSPECTIVE CROSS-SECTIONAL STUDY TO DETERMINE THEBACTERIOLOGICAL PROFILEANDANTIBIOTIC SENSITIVITY PATTERNS OF CUTANEOUS LESIONS IN IMMUNOBULLOUS DISORDERS" is a bonafide and genuine research work carried out by me under the guidance of Dr. AJIT B JANAGOND, Associate Professor, Department of Dermatology Venereology and Leprosy, at BLDE (Deemed to be University) Shri B.M. Patil Medical College and Research Centre, Vijayapura.

DATE: 30.06.24

DR. MAYURI B M

PLACE: VIJAYAPURA

2

BLDE (DEEMED TO BE UNIVERSITY)

SHRI B. M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE VIJAYAPURA, KARNATAKA

CERTIFICATE BY THE GUIDE

This is to certify that the dissertation entitled "A PROSPECTIVE CROSS-SECTIONAL STUDY TO DETERMINE THEBACTERIOLOGICAL PROFILEANDANTIBIOTIC SENSITIVITY PATTERNS OF CUTANEOUS LESIONS IN IMMUNOBULLOUS DISORDERS" is a bonafide and genuine research work carried out by Dr MAYURI B M in partial fulfilment of the requirement for the degree of MD in Dermatology, Venereology and Leprosy.

Ah-

DR. AJIT B JANAGOND ASSOCIATE PROFESSOR DEPARTMENT OF DERMATOLOGY, VENEREOLOGY AND LEPROSY

DATE:30.6.24

B.L.D.E (DEEMED TO BE UNIVERSITY)

SHRI. B. M. PATIL MEDICAL COLLEGE

HOSPITAL & RESEARCH CENTRE,

VIJAYAPURA.

BLDE (DEEMED TO BE UNIVERSITY)

SHRI B. M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE VIJAYAPURA, KARNATAKA <u>ENDORSEMENT BY THE HOD, PRINCIPAL/HEAD OF THE INSTITUTION</u>

This is to certify that the dissertation entitled "APROSPECTIVE CROSS-SECTIONAL STUDY TO DETERMINE THEBACTERIOLOGICAL PROFILEANDANTIBIOTIC SENSITIVITY PATTERNS OF CUTANEOUS LESIONS IN IMMUNOBULLOUS DISORDERS" is a bonafide research work done by Dr MAYURI B M under the guidance of Dr AJIT B JANAGOND, Associate Professor, Department of Dermatology, Venereology and Leprosy, Shri B. M. Patil Medical College and Research Centre, Vijayapura.

K.M.

Seal & Signature:

DR. KESHAVMURTHY ADYA

M.D,

Professor and HOD,

Department of Dermatology, Venerology

Broker.

Seal & Signature: DR ARVIND PATIL MS,

PRINCIPAL,

B.L.D. E (Deemed to be university)

Shri. B. M. Patil Medical College,

Leprosy

BLDE (Deemed to be University)

Shri. B. M. Patil Medical College,

Hospital & Research Centre, Vijayapura.

DATE:30.6.24

PLACE: VIJAYAPURA

Hospital & Research Centre,

Vijayapura.

DATE: 30.6.24

PLACE: VIJAYAPURA

BLDE (DEEMED TO BE UNIVERSITY)

SHRI B. M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE VIJAYAPURA, KARNATAKA

COPYRIGHT DECLARATION BY THE CANDIDATE

I hereby declare that the BLDE (Deemed to be University, Karnataka shall have the right to preserve, use and disseminate this dissertation/thesis in print or electronic format for academic/research purposes.

DATE: 30.06.2024

PLACE: VIJAYAPURA

DR. MAYURI B M

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to Dr. Ajit Janagond, whose invaluable guidance, encouragement, and support have been instrumental in the completion of this thesis. His expertise and insightful suggestions have greatly enriched my research and learning experience.

I extend my sincere thanks to Dr.Keshavmurthy Adya, our esteemed Head of Department, for his constant encouragement and support. I am also profoundly grateful to Dr. Arun Inamadar, our beloved professor, for his wisdom, motivation, and continuous support. His dedication to teaching and mentorship has left a lasting impact on my academic journey.

Special thanks to Dr. Niranjan Deshmukh, Dr. Shruti Kulkarni, and Dr.Sanmitra Aiholli for their invaluable assistance, encouragement, and constructive feedback throughout my research.

I owe my deepest gratitude to my parents, in laws, siblings, and husband for their unwavering support and encouragement. Their love and belief in me have been a constant source of strength and motivation.

A special mention to my friends, Dr. Aishwarya Kalgurki and Dr. Vaishnavi Kamlapurkar, for their camaraderie, support, and encouragement. Their friendship has been a pillar of strength throughout this journey.

I am profoundly grateful to my colleagues, who are close as family: Dr. Salman Hyder, Dr. Pooja Kotian, Dr. Namrata Shivraj, and Dr.Thrupthi AL. Your unwavering support and companionship have been invaluable.

I also wish to thank my juniors: Dr. Vaishnavi Pran, Dr. Vinay Kumar, Dr. Tvisha Prasad, Dr.Anaswarashree, Dr.Devarat Gore, Dr. Sanjana, Dr. Monisha, and Dr. Parvati, for their assistance and encouragement.

I express my heartfelt thanks to Mrs. Shamshad Gulbarga, Mr. Hiremath, Mrs. Yalawwa, and all other hospital

staff for their kind cooperation and support during my study.

I thank the Almighty for all the blessings. Finally, I am grateful to all those who have supported me in any respect during the completion of this thesis.

Thank you all

DATE: 30.6.24

PLACE: VIJAYAPURA

DR. MAYURI BM

7

ABSTRACT

Background - The immune bullous disorders are characterized by a pathogenic immune response against structural proteins of keratinocyte.es or dermo-epidermal basement membrane zone. Septicemia and bacterial skin infections are the main causes of mortality and morbidity in immunobullous disorders.

Aim -To study the bacteriological profile of active cutaneous lesions present in immunobullous disorders and their antibiotic sensitivity patterns.

Materials and methods–A prospective cross-sectional study conducted from September 2022 to June 2024. Cases confirmed by biopsy and /or immunofluorescence with clinically active cutaneous lesions were included for culture and sensitivity

Results: Pemphigus vulgaris, pemphigus foliaceus and bullous pemphigoid were observed in 48(56.5%),18(21.2%) and 15 (17.6%) of the 85 patients with a diagnosis of AIBDs, respectively. The study included patients ranging in age from 0 to 85 years old. The most commonly affected groups were young adults in the 20–29 age range and older patients in the 60–69 age range, with a bimodal distribution. Females outnumbered males by a ratio of 0:0.77. The percentage of non-sterile swabs on pus culture and sensitivity was 47.1%, which was lower than the percentage on sterile swabs (54.5%). The most common organism isolated was *Staphylococcus Aureus* (92.25%) in which 37.5% was resistant to methicillin, followed by *Pseudomonas Aeruginosa* (5%) and *Klebsiella Pneumoniae* (2.5%).Pemphigus foliaceus patients (55%) had the highest rate of bacterial growth, followed by pemphigus vulgaris (39.86%) and bullous Pemphigoid patients (33.33%).The majority of bullous Pemphigoid cases (66.67%) had sterile

pus cultures, which were subsequently followed by pemphigus foliaceus (45%) and Pemphigus vulgaris (63.14%).*Staphylococcus aureus* was 100 % sensitive to antibiotics teicoplanin, linezolid, nitrofurantoin, vancomycin, tigecycline, followed by trimethoprim/sulfamethoxazole (94.44%), rifampicin (88.89%), oxacillin (88.89%), daptomycin (88.89%) and azithromycin (77.27%).The most resistant antibiotic to *Staphylococcus aureus* was benzyl penicillin (83.33%), which was followed by erythromycin (38.88%), ciprofloxacin (77.77%), and levofloxacin (61.11%).The sensitivity pattern for MRSA to vancomycin was 100% followed by tetracycline (93.33%), tigecycline (93.33%), trimethoprim/sulfamethoxazole (93.33%) and nitrofurantoin (86.67%).The

8

antibiotics with the highest MRSA resistance were erythromycin (73.88%), ciprofloxacin (86.777%), levofloxacin (86.67%), and benzyl penicillin (100%).

Conclusion: In 45% of the cases, bacterial growth was seen, and S. Aureus was the most commonly isolated organism. Secondary cutaneous bacterial infection was more common in Pemphigus Foliaceus. The most resistant antibiotic was benzyl penicillin, while vancomycin was 100% sensitive to MRSA.

Docusign Envelope ID: 80A04949-2BFB-424C-8B09-79854EC66C42

·

LIST OF ABBREVIATIONS

AIBD	Autoimmune bullous disease
	Dermoepidermal junction
DEJ	
IF	Immunofluorescence
ELISA	Enzyme linked Immuno-sorbent Assay
SMR	Standardised mortality ratio
Dsg	desmoglein
BP	Bullous pemphigoid
PV	Pemphigus vulgaris
PF	Pemphigus foliaceus
LPP	Lichen planus pemphigoids
CBDC	Chronic bullous disease of childhood
PNP	Paraneoplastic pemphigus
DH	Dermatitis herpetiformis
BMZ	Basement membrane zone
DIF	Direct immunofluorescence
IIF	Indirect immunofluorescence
HHV	Human herpes Virus
BP 230/180	Bullous pemphigoid Antigen
LAD -1	Linear IgA Bullous Dermatosis Auto Antigen
TG3/eTG	epidermal transglutaminase
TG2/tTG	Tissue transglutaminase
IB	Immunoblotting
NHS	Normal human skin
МО	Monkey oesophagus
SIBD	subepidermal immunobullous disorder
IEM	Immunoelectron microscopy
COL 7	type VII collagen
Dsc	Desmocollin
BMF	Basement membrane fluorescence
ICF	Intercellular fluorescence
SSS	Salt-split skin

LIST OF CONTENTS

	PAGE NO.
INTRODUCTION	15
AIMS AND OBJECTIVES	17
REVIEW OF LITERATURE	18
METHODOLOGY	43
RESULTS	47
DISCUSSION	69
CONCLUSION	72
SUMMARY	73
BIBLIOGRAPHY	72
ANNEXURES	76
ETHICAL CLEARANCE	78
CONSENT FORM	79
PROFORMA	81
KEY TO MASTER CHART	83
MASTER CHART	84
	AIMS AND OBJECTIVES REVIEW OF LITERATURE METHODOLOGY RESULTS DISCUSSION CONCLUSION SUMMARY BIBLIOGRAPHY ANNEXURES ETHICAL CLEARANCE CONSENT FORM PROFORMA KEY TO MASTER CHART

LIST OF TABLES

SL no	TABLES	PAGE NO
1	Age and gender distribution among various subepidermal blistering disorders	29
2	Intraepidermal blistering disorders and target antigens	37
3	Subepidermal blistering disorders and target antigens	38
4	Description of clinical features of various AIBDs	40-42
5	Histopathogical features and Immunofluorescence findings in AIBD	47- 52
6	Treatment guidelines for various AIBDs	59-61
7	Distribution of cases	66
8	Age (years) distribution	67
9	Pus culture	69
10	Microorganisms cultured	70
11	Microorganism isolated from lesions in Pemphigus Vulgaris	71
12	Microorganism isolated from lesions in Pemphigus foliaceus	72

13	Microorganism isolated from lesions in Bullous Pemphigoid	73
14	Microorganism isolated from lesions across various group of AIBDs	75
15	Antibiotics sensitivity and resistance pattern Of <i>Staphylococcus aureus</i>	
16	Other Antibiotics sensitivity and resistance pattern	80
17	Antibiotics sensitivity and resistance pattern Methicillin of resistant <i>Staphylococcus aureus</i>	82

LIST OF FIGURES

SL NO	FIGURES	PAGE NO
1	Structural proteins between keratinocytes	52
2	Distribution of cases	58
3	Age (years) distribution	60
4	Pus culture	69
5	Microorganisms cultured	70
6	Microorganism isolated from lesions in Pemphigus Vulgaris	70
7	Microorganism isolated from lesions in Pemphigus foliaceus	71
8	Microorganism isolated from lesions in Bullous Pemphigoid	73
9	Microorganism isolated from lesions across various group of AIBDs	74
10	Antibiotics sensitivity and resistance pattern <i>Staphylococcus aureus</i>	75
11	Antibiotics sensitivity and resistance pattern Methicillin resistant <i>Staphylococcus aureus</i>	77

Docusign Envelope ID: 80A04949-2BFB-424C-8B09-79854EC66C42

Introduction:

Immunobullous diseases are blistering cutaneous disorders caused by pathogenic antibodies binding to protein targets within the epidermis and dermis.¹ Depending on the severity, these diseases may present with vesicles, blisters, pustules, erosions, excoriations, and erythema affecting the skin and mucous membranes.² In autoimmune bullous disorders (AIBDs), autoantibodies target epidermal or dermo-epidermal junction (DEJ) components responsible for cell-to-cell adhesion. The antigen-antibody interaction triggers an inflammatory cascade that ultimately leads to vesicle formation.

AIBDs are classified as intraepidermal or subepidermal based on the level of blister formation.³Depending on the level of split, AIBDs can be grouped into pemphigus with autoantibodies against desmosomal adhesion molecules, pemphigoid with autoantibodies against structural proteins of the dermal-epidermal junction, and dermatitis herpetiformis, where epidermal and tissue transglutaminase are targeted.

The incidence of pemphigus in dermatological outpatients in India ranges from 0.09% to 1.8%, which show a different trend than Western literature.⁴

Accurate diagnosis is crucial for the treatment and prognosis of AIBDs. Diagnosis is based on clinical features and the presence of skin/mucous membrane-bound and circulating autoantibodies.³. For patients with suspected AIBD, a lesional biopsy for histopathological examination and a perilesional biopsy for IF (immunofluorescence) are indicated. Serum autoantibodies can be detected using: human salt-split skin (for pemphigoid diseases) and monkey oesophagus (for pemphigus and pemphigoid disorders). Serological analyses, such as multivariant IF microscopy, ELISA (Enzyme-linked Assay) systems, or a multistep method with separate ELISA and immunoblot assays, are necessary for a precise diagnosis.⁵

Overall mortality in pemphigus patients is 2.4 times greater than the average population, mainly due to infections.⁶The introduction of corticosteroids in the early 1950s significantly reduced mortality from 75% to 30%.7The use of immunosuppressants in the 1980s further decreased mortality to below 5% in study populations. Cause-specific standardized mortality ratios (SMRs) death in pemphigus are owing to infections (pneumonia and septicemia) as well as cardiovascular disorders.⁶

Bacteriological superficial skin infections are the most common cause of death among these patients.⁸ This study aims to determine the bacterial profile in active skin lesions and their sensitivity to antibiotics, which will guide dermatologists on the appropriate usage of antibiotics and prevent resistance. Thus, this, in turn, reduces mortality and morbidity of patients with AIBDs.

AIMS & OBJECTIVES OF THE STUDY:

- To study the bacteriological profile of active cutaneous lesions, present in immunobullous disorders.
- To study antibiotic sensitivity patterns of isolated bacteria.

Review of Literature

Autoimmune bullous disorders (AIBDs) are a diverse group of diseases characterised by erosions and blisters on the skin and mucous membranes.

These diseases can be categorized into two main types: pemphigus diseases, which involve intraepidermal blistering and autoantibodies targeting desmosomal proteins such as desmoglein (Dsg) 1 and Dsg3.Subepidermal AIBDs, which include pemphigoid diseases and dermatitis herpetiformis.⁵

History:

The concept of blisters has been documented historically with terms like "pemphix" in Greek, "nufakkha" in Arabic, "ababu'oth" (bu'ah) in the Old Testament, and "pao" in ancient Chinese texts. Of these, "pemphigus," derived from the Greek root pemphix, has endured in modern medical terminology.⁹

Boissier de Sauvages (1706–1767) first introduced the term "pemphigus" in his classification of skin diseases. Hebra later divided pemphigus into pemphigus vulgaris and pemphigus foliaceus, further classifying pemphigus vulgaris into malignus and benignus. In 1881, Auspitz's classification identified pemphigus by the absence of intercellular bridges between keratinocytes, a phenomenon he termed "acantholysis." Walter Lever differentiated bullous pemphigoid (BP) from pemphigus vulgaris (PV) by noting the absence of acantholysis in BP.^{9,10}

Auspitz's classification of skin diseases (1881) identified pemphigus is characterised by the absence of intercellular bridges between keratinocytes, resulting in loss of cohesiveness. He coined the term "akantholysis" to explain the phenomena. Walter Lever (1909-1992) identified a distinct difference between BP (bullous pemphigoid) and PV (pemphigus vulgaris) by observing the absence of acantholysis in the former.⁹

Pemphigus foliaceus was recognized as a distinct type by Hebra and Civatte, with Civatte identifying acantholysis

in the upper epidermal layer. Neumann first described pemphigus vegetans in 1876. In 1925, Senear and Usher

reported a unique form of pemphigus combining features of lupus erythematosus and seborrheic dermatitis. Lever introduced the term "pemphigoid" in 1953 to describe subepidermal bullous diseases distinct from pemphigus.

Jordan and Beutner used immunofluorescence techniques to detect autoantibodies in BP patients.^{9,10,11,12}

Epidemiology:

The distribution of PV and PF varies across countries. PV affects 13% of pemphigus patients in Mali and 95% of those in Saudi Arabia ^{14,15}In Europe and Northern America, 65- 90% of pemphigus cases are PV, which was reviewed by Kridin (2018). In Southern America and North Africa, there is an increased incidence of PF compared to PV, hence the term endemic pemphigus.¹⁶In 2011, a clinic-based questionnaire survey in Kerala's Thrissur area showed an annual incidence of 4.4 per million people.⁴The epidemiology of paraneoplastic pemphigus (PNP), an uncommon pemphigus variants accounting for around 5% of cases.¹⁷

IgA pemphigus and pemphigus herpetiformis are far less common, with limited epidemiological data available. ^{18,19}

The annual incidence of BP is estimated to be between 2.4 and 23 cases per million in the general population. However, this incidence increases dramatically to 190-312 cases per million in people above the age of 80 years. Additionally, an increasing number of stuides shows an alarming trend of increased BP incidence, with a 1.9- to 4.3-fold increase over the last twenty years.²⁰

Age and gender:

Pemphigus can occur at any age; however, the majority of individuals are between the ages of 45 and 65 when

diagnosed.¹⁶Outside of endemic areas, up to 30% of patients are reported to be less than 20 years old .^{21,22} Bulgaria

has an average presentation age of 72.4 years, while Kuwait's average is 36.5 years.

In India, many patients are under 40 years old. In contrast to other regions of the world, pemphigus typically

emerges between the ages of 40 and $60.^4$

Except for two research studies from Kuwait and Saudi Arabia, all other study cohorts showed increased proportion of females, with the F:M ratio ranging 1 and 2 and it was high as 5.0 in the United States.^{23,24,25}India's gender predisposition has projected diverse outcomes. However, it appears that both sexes are equally affected.⁴

In some rural areas of South America (Brazil, Northern Colombia, and Peru) and Northern Africa, PF is not only the predominant pemphigus form, but it is also more common in the population. Four per million was the perineal incidence of pemphigus foliaceus patients in southern Tunisia.²⁵

Bullous pemphigoid (BP) is the most common subepidermal autoimmune bullous disease in India and Western Europe. However, its prevalence is lower and with younger onset of age compared to West, as shown below table 1.²⁶Other subepidermal autoimmune bullous disorders, such as mucous membrane pemphigoid (MMP)and linear immunoglobulin A bullous dermatosis(LABD), lichen planus pemphigoids'(LPP), pemphigoid gestationis (PG), epidermolysis bullosa acquisita (EBA), and bullous systemic lupus erythematosus (BSLE)are pretty rare among the Indian patients .Table 1 shows data about age and gender distribution among various subepidermal blistering disorders.

TABLE 1: Age and gender distribution among various subepidermal blistering disorders²⁶

Subepidermal AIBDs	Age	Male: Female
BP	59(33-80 years)	1.2;1
DH	41.5(17-75 years)	0.8:1
MMP	60(48-67 years)	1:5
CBDC	4.3(1-7 years)	3:1
LPP	63(53-70years)	1:2

Prevalence

Data on the prevalence of pemphigus are sparse. In 2006, the Danish National Patient Registry estimated that the prevalence of pemphigus was 60 per million.¹⁶ Data on prevalence of pemphigus from India are not available.

Classification of Immune-mediated bullous disorders²⁷:

- I. Intraepithelial blistering group of disorders:
 - 1. Pemphigus Vulgaris (includes pemphigus vegetans)
 - 2. Pemphigus foliaceus:
 - a. Endemic pemphigus (Fogo selvagem)
 - b .Pemphigus erythematosus
 - 3. Pemphigus herpetiformis
 - 4. IgA Pemphigus
 - a. Intraepidermal neutrophilic type
 - b. Subcorneal pustular type
 - 5. Paraneoplastic pemphigus
 - 6. Drug-induced pemphigus

II. Subepidermal immune-mediated disorders:

- 1. Bullous pemphigoid
- 2. Mucous membrane pemphigoid
- 3. Linear IgA bullous dermatosis
- 4. Epidermolysis bullosa acquisita
- 5. Pemphigoid gestationis
- 6. Dermatitis herpetiformis

Intraepidermal blistering group of disorders:

Pemphigus and Variants

Etiology:

Pemphigus group of disorders onset and course are influenced by a complex interplay of predisposing and inducing factors.²⁸

Genetic factors:

The presence of a complex polygenic basis involves multiple genetic loci, and this is well-established in AIBDs. Pemphigus vulgaris (PV) specifically shows a strong immunogenetic link with HLA class II alleles such as HLA-DRB104:02 and HLA-DQB105:03.²⁹

Precipitating Factors:

Inducing or triggering environmental factors seems to be critical for disease

Precipitating factors include environmental factors such as drug intake, viral infections, physical agents, contact allergens, and food, as well as endogenous elements like emotional stress, hormonal diseases) but are somehow associated with the subject's lifestyle. Various drugs can cause acantholysis due to alteration in keratinocyte membrane biochemistry (biochemical acantholysis) and or with the immune balance (immunologic acantholysis). The host's release of interferons and cytokines in response to the viral infection, which will activate the immunological response acts as a precipitating factor.²⁸

PV can be precipitated by various physical agents including, ultraviolet or ionising radiation, thermal or electrical burns, surgery and cosmetic procedures. Contact allergens such as organophosphate pesticides, dietary factors (e.g., garlic, leek, onion, black pepper, red chilli pepper, red wine, tea), and emotional stress have been implicated.

Although these events are rare but well recorded in literature. ²⁸

Subepidermal immune-mediated disorders

Bullous Pemphigoid and variants

A complex interaction between predisposing and inducing factors determines the onset and course of bullous pemphigoid. The most important genetic factor for predisposition to autoimmunity is HLA genes. Various studies have found association between HLA-DQ β 1*0301 and specific clinical pemphigoid variants.³⁰

Drugs can trigger immunological responses or affect the antigenic properties of the epidermal basement membrane. For example, gliptins, PD-1/PD-L1 (programmed cell death proteins) inhibitors, loop diuretics, penicillin and derivatives.³¹

Physical agents such as radiation therapy, ultraviolet radiation, thermal or electrical burns, surgical procedures, and transplants can cause BP, which is a rare but well-documented event.

Infections such as human herpes virus (HHV) (cytomegalovirus, Epstein-Barr virus, and HHV-6), hepatitis B and C viruses, Helicobacter pylori, and Toxoplasma gondii may contribute to BP induction. Unlike pemphigus, no dietary cues have been linked to the induction of BP.³⁰

Dermatitis Herpetiformis

The HLA DQ2 or HLA DQ8 alleles are inherited and represent the most likely genetic link in this association, a connection that has also been observed in animals³².Gluten exposure is the primary environmental factor that causes the disease. Certain DH triggers, like UVB exposure and trauma, can increase IL-8 production, leading to the formation of cutaneous lesions.³³

Pathogenesis:

Epithelial Biology:

An understanding of pemphigus requires a basic understanding of oral and cutaneous epithelial biology. Three

complex structures—nexus junctions (gap junctions), adherens (desmosomes and adhesion plaques), and occludens

(tight junctions)—help the keratinoctyes to connect with one another.³⁴

Desosomes:

Desmosomes are essential for epithelial integrity by serving as an adhesive complex and a cell-surface attachment site for the cytoskeleton's keratin intermediate filaments.

Desmosomes are composed of adhesion proteins, mainly desmogleins and desmocollins, glycoproteins of the cadherin supergene family that attach to cytokeratins via desmoplakins and plakoglobin.³⁵, shown below in Figure.1.

Cadherins, on the other hand, consist of an extracellular domain involved in calcium-dependent interaction with the neighbouring cells, a transmembrane domain, and an intracellular domain that binds to catenins and actin.³⁶ In the skin, both desmoglein 1 (Dsg 1) and desmoglein 3 (Dsg 3) are expressed, whereas the oral epithelium primarily expresses Dsg

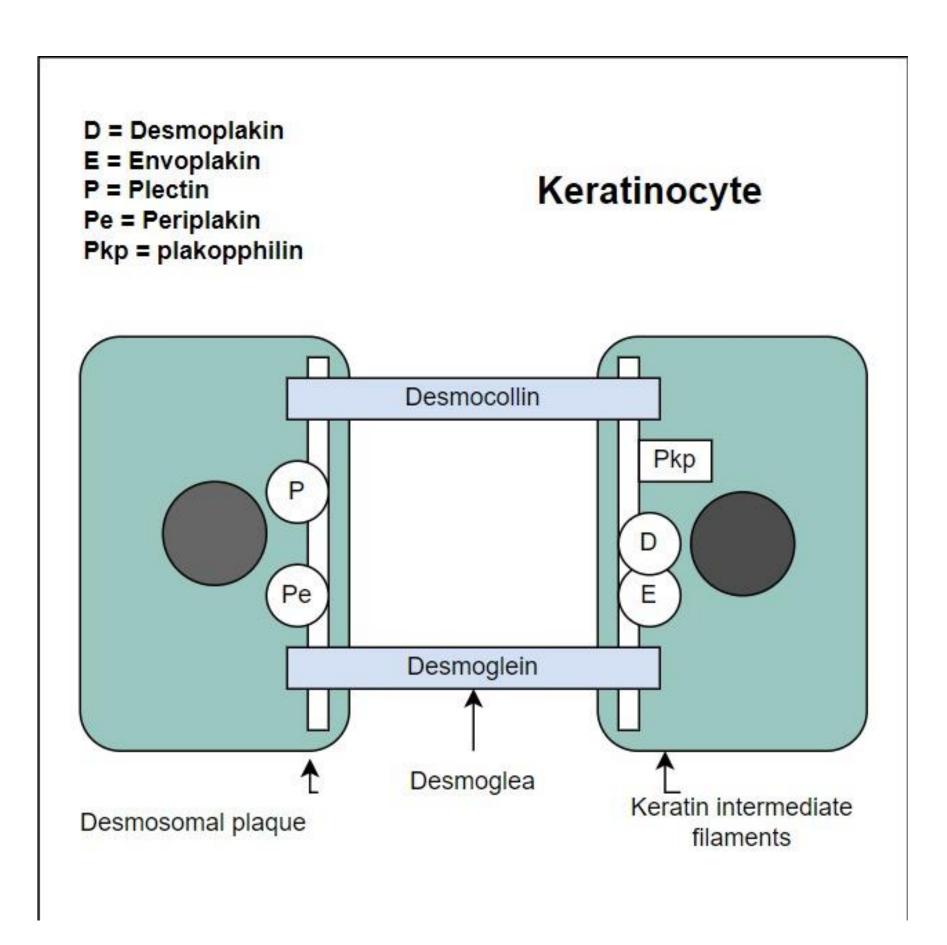


Fig.1 structural proteins in between two keratinocytes

Pemphigus is an autoimmune bullous disorder characterized by antibodies targeting the extracellular domains of cadherin-type epithelial cell adhesion molecules known as desmogleins (Dsg). This immune reaction leads to desmosomal damage, intra-epithelial immune deposits, and loss of cell-cell contact (acantholysis), resulting in intra-epithelial blister formation.³⁷

Pemphigus vulgaris (PV) leads to intercellular deposition primarily of IgG class antibodies. These antibodies target the extracellular domains of cadherin-type epithelial cell adhesion molecules, specifically desmoglein 3, resulting in damage to desmosomes. Primarily, Dsg 3 antigen is present in oral mucosa; however, the skin has both Dsg 1 and Dsg 3 antigens. Autoantibodies against Dsg 3, as in PV, result in oral lesions at an early stage, whereas skin is intact due to compensation by Dsg 1 antigen. But antibodies appear against Dsg 3, cutaneous lesions develop, and the disease is more severe.³⁴Pemphigus pathogenesis involves T-helper 2 cells producing activated B-cells and IgG in response to IL-4 activation. Patients with pemphigus foliaceus only produce autoantibodies against Dsg1.Hence has very rare oral involvement.³⁸

PNP is differs from PV and PF in that it may have autoantibodies to Desmogleins 1 and 3, but it also has more

specific antibodies to envoplakin and periplakin. PNP also has autoantibodies against desmosomal proteins,

including members of the plakin family (plectin, BP230, and desmoplakin), desmocollins, and alpha-2-

macroglobubin-like antigen-1.³⁸Table 2 summarizes all the target antigens in intraepidermal blistering disorders.

TABLE 2: Intraepidermal blistering disorders and target antigens^{2,3,5}

Disease	Target autoantigen
Pemphigus Vulgaris	Dsg 3 >Dsg 1
Pemphigus Foliaceus	Dsg 1
IgA Pemphigus	Dsc 1, 2, 3; Dsg 1, 3
PNP	Dsg 3, periplakin, desmoplakin I/II, α-2-
	macroglobulin-like antigen-1, envoplakin,
	plectin, Dsc1, 2, 3

Dsg – desmoglein ,Dsc - Desmo Collin

Bullous Pemphigoid

The Th17/IL-17 pathway, the stimulation of toll-like receptors, and a disparity between autoreactive T helper and T regulatory cells are the main immunological triggers for BP. The pathogenesis of BP involves an autoantibody production to hemidesmosome structural components (BP180 and BP230). Autoantibodies bind and activate complement, recruit inflammatory cells, and release proteolytic enzymes. Th17 cell activation may induce the inflammatory cascade without the involvement of autoantibodies. The inflammatory cascade induces complement activation and mast cell degranulation. Following that, eosinophils and neutrophils are recruited, which release proteolytic enzymes such as neutrophilic elastase and matrix metaloproteinase-9, resulting in subepidermal blistering.³⁰

TABLE 3: Subepidermal blistering disorders and target antigens^{2,3,5}

Disease	Target Antigen
Bullous pemphigoid	BP180, BP230
Mucous membrane pemphigoid	BP180, (LAD-1), laminin 332,
	BP230, α4β6-Integrin
Pemphigoid gestationis	BP180 NC16A, BP230
Anti-p200/ laminin γ1 pemphigoid	p200 protein, laminin γ1
Linear IgA disease	BP180 (LAD-1), type VII collagen
Epidermolysis bullosa acquisita	Type VII collagen

BP 180/230- Bullous pemphigoid Antigen LAD-1 - Linear IgA Bullous Dermatosis Auto Antigen

Dermatitis Herpetiformis

Tissue transglutaminase (TG2/ tTG), present in the gut, is the main autoantigen in Coeliac disease. After absorption into the lamina propria of the gastrointestinal tract (GIT), TG2 converts glutamine to glutamic acid inside gliadin, an alcohol-soluble gluten portion. Gliadin is then presented to CD4+ T-cells, leading to inflammation and the apoptosis of mucosal epithelial cells. The modified glutamine residues of gliadin cross-link with TG2 and are presented with gliadin-specific helper T-cells, which subsequently triggers the B-cells to form circulating IgA antibodies directed against TG2 and circulating IgA autoantibodies targeting the epidermal transglutaminase (TG3/eTG), is present in the skin. Unlike TG2 in CD, TG3 is the main autoantigen in DH.³³Table 3 depicts all target antigens present in subepidermal blistering disorders.

<u>Clinical Features:</u> In detail descriptions of clinical feature of all AIBDs is given below table 4.

<u>Table 4:</u> Description of clinical features of various AIBDs ^{4,27}
--

Pemphigus and Variants	Clinical presentations
	_
Pemphigus vulgaris	Erosions of mucous membranes,
	flaccid blisters/erosions of the skin
Pemphigus foliaceus	Flaccid blisters/erosions of the skin,
	scaling erosions and plaques in
	seborrheic areas of distribution
IgA pemphigus	Pustules predominant distribution in
	intertriginous areas. Fragile, annular,
	vesicles or pustules, or crusted
	erosions on the skin; rarely involves
	mucous membranes
Paraneoplastic pemphigus (PNP)	Recalcitrant oral stomatitis,
	polymorphic cutaneous lesions
	including \rightarrow lichenoid lesions
	predominant acral distribution;
	common associations: haematologic
	malignancy and solid malignancy
	like thymoma, Castleman tumour
Pemphigoid and Variants	
Bullous pemphigoid	Tense blisters, erosions, erythema,
	urticarial plaques, severe itch
Mucous membrane pemphigoid	Predominant mucous membrane

lesions (oral > conjunctival > nasal)

Erosions and ulcers with mucous

membrane atrophy (conjunctivitis,

symblephara), skin involvement in

25% of cases, head, and upper trunk.

	** • • • • • •
Pemphigoid gestationis	Vesicles, urticarial plaques,
	erythema mainly in the
	periumbilical area; severe itch
Anti-p200/ laminin γ1 pemphigoid	As in bullous pemphigoid
Linear IgA disease	Vesicles at the lesion margins (string
	of pearls sign) sometimes; otherwise
	like bullous pemphigoid
Epidermolysis bullosa acquisita	Tense vesicles and red raw areas on
	skin and mucous membranes
	Two types: Mechanobullous,
	inflammatory type or atrophic type,
	common involvement of mucous
	membranes; scarring and milia
	formation
Dermatitis herpetiformis (DH)	Prominent papule or vesicles on
	extensor aspect of body or small
	blisters; erythematous plaques,
	intense pruritus; coeliac disease may
	not be evident clinically
;	<u> </u>

Diagnosis:

Histopathology

Histopathology of a lesional skin biopsy can distinguish between pemphigus and subepidermal blistering.⁴An early vesicle's histopathological examination demonstrates the level of split as well as the presence and composition of an inflammatory infiltrate. However, histopathological examination (HPE) frequently does not yield an accurate diagnosis in every case. Investigations to detect tissue bound or circulating antibodies should be performed for final confirmation of the diagnosis^{39,40}

Immunofluorescence tests

IF has become an essential tool in diagnosing the AIBDs. It is commonly used to complement the clinical and histological diagnosis of various vesiculobullous disorders. Additionally, along with confirmation of the diagnosis, it also provides a basis for other advanced tests, such as ELISA and IB (immunoblotting), provided necessary facilities are available.⁴⁰

Direct immunofluorescence

The gold standard test identifies the antibodies bound in vivo to the tissue antigens in the biopsy specimen, thereby confirming the diagnosis of AIBDs.⁴⁰Five features are used to comprehend the results: the class of immunoglobulin, the number of immune deposits, the patterns of the immune deposit (granular or linear), the locations of immune deposition, and deposition in sites other than the primary site. Utilizing these factors, a pattern approach will help in diagnosis in the majority of specimens.⁴⁰

Indirect immunofluorescence

IIF is a two-step serological approach that detects circulating antibodies. The patient's serum is diluted with phosphate-buffered saline in serial dilutions (beginning at 1:10) and then incubated with an appropriate substrate. IIF's sensitivity is often lower than DIF's and differs based on the substrate applied. However, in pemphigus, sensitivity can be improved by combining substrates, like normal human skin (NHS) and monkey oesophagus (MO).⁴²

Salt-split technique

This technique involves incubation of skin in 1M sodium chloride for 48–72 h, leading to a split in the skin between the epidermis and dermis at the level of lamina Lucida. This simple procedure is highly helpful for categorizing subepidermal immunobullous disorders (SIBDs) .Some antigens attach to the epidermal side ('roof') of the split, while others migrate to the dermal side ('floor'). SIBDs can be identified as "roof-" or "floor-" binding patterns based on the position of the BMZ band in relation to the split. ^{40,43}

Enzyme-linked immunosorbent assay

Recently, recombinant and cell-derived forms of the target antigens have been employed to develop sensitive and specific ELISA for identifying circulating autoantibodies.⁴⁰

ELISA is a quantitative assessment for the determining the specific circulating antibody levels, similar to IIF. Hence, ELISA is helpful for both diagnosing and monitoring disease activity. The drawback of ELISA is that it may not identify all cell surface antibodies involved in the pathogenesis of AIBD; unlike IIF, it may detect antibodies directed against a wide range of nonpathogenic antigens present in normal epithelium. As a result, ELISA should be used as a supplementary test to IIF rather than a substitution.⁴⁰

Others

The molecular weight of the target antigen in AIBDs can be determined using immunoblotting and immunoprecipitation methods. Immunoelectron microscopy (IEM) demonstrates the precise ultrastructural location of antigens in AIBDs. A brief summary of all investigations HPE, DIF, IIF and ELISA of various AIBDs is shown in table 5.

Disease	Histopathological	Immunofluorescence
	<u>features</u>	<u>tests</u>
Pemphigus vulgaris	Suprabasilar	• <u>DIF</u> : ICF IgG/C3
	acantholysis. Since	• IIF monkey
	basal keratinocytes	esophagus: ICF
	adhere to the	IgG
	hemidesmosome, they	• ELISA, IIF:
	create a pattern known	Dsg3+ Dsg1±
	as "tombstoning."	
Pemphigus foliaceus	Subcorneal	• DIF: ICF IgG/C3
	acantholysis, with the	• IIF monkey
	split taking place	esophagus: ICF
	within the granular	IgG
	layer	• ELISA, IIF:
		Dsg1+
IgA pemphigus	Mild acantholysis and	• DIF: ICF IgA/C3
	neutrophilic infiltration	• IIF monkey
	in the epidermis	esophagus: ICF
	IEN type: suprabasilar	IgA
	pustules in the lower or	• ELISA, IIF: Dsc1,
	complete epidermis are	2, 3 Dsg 1, 3
	present. SPD type:	IgA+
	pustules are sub	
	corneally positioned in	
	the upper epidermis.	
Paraneoplastic	a pattern of vacuolar or	• DIF: ICF IgG/C3
pemphigus	lichenoid interface	$\pm BMF$
	dermatitis.	

Table 5: Histopathogical features and Immunofluorescence findings in AIBDs^{4,27,43,44,45}

		Γ
	Acantholysis and	• IIF monkey
	intraepidermal cleft,	esophagus: ICF
	and subepidermal	$IgG\pm BMF$
	blisters, which are less	Rat/monkey
	common.	bladder:
		urothelium +
		• ELISA, IIF:
		Dsg3+,
		envoplakin +
Pemphigoid diseases		
Bullous pemphigoid	Subepidermal bullae	• DIF: BMF
	with eosinophils +/-	• IIF monkey
	neutrophils in upper	oesophagus: BM
	dermis	florescence
		• IIF SSS: roof of
		blister
		• ELISA, IIF:
		BP180+, BP230+
Mucous membrane	Same as BP	• DIF: BMF, n-
pemphigoid		pattern
		• IIF monkey
		esophagus: BMF
		• IIF SSS: roof of
		blister and/or
		floor of blister
		ELISA: BP230+
		BP180+.
		IB: LAD-1
		IB, IIF:
		laminin332+
Pemphigoid gestationis	Same as BP	• DIF: n-pattern,
		BM florescence

		• IIF monkey
		oesophagus:
		Basement
		florescence
		• IIF complement-
		SSS: roof of
		blister
		• ELISA, IIF
		BP180+, BP230+
Anti-p200/ laminin γ1	Same as BP	• DIF: n-pattern,
pemphigoid		BM
		• IIF monkey
		oesophagus: BM
		• IIF SSS: blister
		floor
		• IB: p200+
	<u> </u>	-
Linear IgA disease	Subepidermal bullae	• DIF: BMF, n-
	with neutrophils evenly	pattern
	distributed in upper	• IIF monkey
	dermis	oesophagus: BM
		• IIF SSS: roof of
		blister
		• IB, ELISA:
		BP180+(IgA),
		LAD -1
Epidermolysis bullosa	Subepidermal bulla	• DIF: u-pattern
acquisita	with neutrophils	• IIF monkey
		esophagus: BMF
		• IIF SSS: blister
		floor ELISA, IIF:
		COL7+
Dematitis	Subepidermal bullae	Granular IgA deposits
herpetiformis	with papillary tip	at pappilary tips
		•

•

neutrophilic	
microabscess	

BMF: basement membrane fluorescence, COL-17, type VII collagen, Dsc: desmocollin, Dsg: desmoglein, DIF/IIF: direct/indirect immunofluorescence microscopy, GAF: coeliac disease-specific gliadin epitopes, IB: immunoblotting, ICF: intercellular fluorescence, LAD-1: soluble ectodomain of BP 180, SSS: salt-split skin

Secondary bacterial infection in AIBDs

- Septicemia and bacterial skin infections are the main causes of mortality and morbidity in these patients.⁴⁷The changing bacteriological profile and antibiotic sensitivity patterns necessitate systematic research at regular intervals.
- The challenges to global public health in the twenty-first century have brought to light the rising threat of antimicrobial resistance, which makes patients more prone to bacterial infections that could previously be treated with available antibiotics.⁴⁸
- The incidence of resistant bacterial pathogens is rising, which necessitates that pattern of infection and bacteriological profiles of cutaneous lesions be reviewed periodically, and the information used to guide dermatologists regarding antibiotic usage.⁴⁹

Treatment:

Chronic autoimmune bullous diseases can have a substantial morbidity and mortality rate in patients who fail to receive treatment. Introduction of immunosuppressive drugs, as decreased mortality rate significantly. However, adverse reactions from the drugs are common causes of morbidity in these patients. Consequently, individuals with autoimmune bullous disorders have limited treatment options due to the need for long-term drugs regimens that have adverse effects. ⁵⁰⁹Summary of treatment guidelines is depicted in table 6.

Systemic Steroids

For all of AIBDs, glucocorticoids are the cornerstone of therapy. As they inhibit the production of proinflammatory cytokines, they have anti-inflammatory and immunosuppressive effects. They decrease T-cell lymphocyte reactivity to antigens and decrease the number of circulating T-cell lymphocytes. Glucocorticoids also reduce the synthesis of antibodies.

Patients who are immunosuppressed are more susceptible to infections. Prolonged use may also cause acid reflux, cushingoid fat redistribution, osteoporosis, and osteonecrosis of neck of femoral bone. In addition, hyperglycaemia, hypertriglyceridemia, proximal myopathy, hyperactivity, glaucoma, and cataracts may develop in patients.⁵¹

Azathioprine

Azathioprine is urine analog that serves as a steroid-sparing agent for vesiculobullous diseases. It is a prodrug, which means it is converted in the body to its active forms. First it is converted to 6-mercaptopurine, later metabolized to 6-thioguanine. The active metabolite, thioguanine inhibits the synthesis of adenine and guanine nucleotides, azathioprine acts during the S-phase of the cell cycle. The dosage range is 2-3mg/kg/body weight. It takes a while to start working; normally six to eight weeks are needed. Every two weeks, initial monitoring should

include a complete blood count (CBC) and liver enzyme tests. Alopecia, hepatotoxicity, pancreatitis,

gastrointestinal toxicity and bone marrow suppression are among the uncommon side effects of azathioprine.⁵²

Mycophenolate mofetil (MMF)

Through noncompetitive inhibition of inosine monophosphate dehydrogenase (IMPDH), MMF suppresses de-novo purine production. MMF primarily affects B-cell and T-cell lymphocytes since they do not have a purine salvage pathway. Compared to other immunosuppressive drugs, this one might be considered safer because the salvage pathway is still active. At 0.5 - 1.5g should be taken twice a day. Following consumption, MMF is changed into mycophenolic acid, which the liver then metabolises.

The most common adverse effect of MMF, which is well tolerated, is gastrointestinal distress. Leukopenia, thrombocytopenia, and dose-related, reversible anaemia are side effects.⁵³

Cyclophosphamide

During the cell cycle, it is an alkylating agent that attaches to DNA in a non-specific way. This nitrogen mustard derivative stops the cell cycle and triggers apoptosis in cells that multiply quickly, such as lymphocytes. Acute myelosuppression is common. Mucosal ulcers, alopecia, nephrotoxicity, cardiotoxicity, hepatotoxicity, and interstitial lung fibrosis are other adverse effects. Male patients may very rarely get azoospermia. Up to 40% of patients experience hemorrhagic cystitis, which is associated with the development of transitional cell carcinoma.⁵⁴

Cyclosporine

It is an immunosuppressive drug that inhibits T-cell lymphocytes. By forming a compound with cytoplasmic cyclophilin, it prevents calcineurin from being activated. NFAT-1, a transcription factor that starts the synthesis of IL-2 and stimulates the proliferation of helper and cytotoxic T-cells, is typically phosphorylated by activated calcineurin.

Electrolyte imbalances, including hyperkalaemia, hyperuricemia, and hypomagnesemia, are the most frequent adverse reactions. Nephrotoxicity is a dose-related side effect of cyclosporine that may initially be reversible. Tremors, hirsutism, hyperlipidaemia, hypertension, and gingival hyperplasia are other side effects.⁵⁵

Dapsone

A sulfone antibiotic, dapsone primarily acts against polymorphonuclear leukocytes to reduce inflammation. Through inhibition of myeloperoxidase activity, the medication prevents neutrophil toxicity and chemotaxis.

All patients experience variable degrees of methemoglobinemia and haemolytic anaemia as a common side effect. Patients with glucose-6-phosphate dehydrogenase deficiency have the most severe symptoms, which are doserelated. Dapsone is also linked to psychosis and idiosyncratic peripheral motor neuropathy. During the first three months of treatment, agranulocytosis is an uncommon but serious side effect.Last but not least, a dapsone hypersensitivity syndrome may manifest, encompassing severe symptoms akin to mononucleosis, including fever, erythroderma, hepatitis, eosinophilia, or even death.

Rituximab

It is a chimeric, murine/human monoclonal antibody produced through genetic engineering. Rituximab targets CD20-positive B cells specifically, which causes their depletion and subsequent immune response regulation. Rituximab is an effective treatment for establishing disease remission and reducing the need for long-term immunosuppressive medication because it interferes with the B cell-mediated immune response.⁵⁷

Intravenous immunoglobulin (IVIG).

High-dose IVIG is made from pooled plasma and is a human source of pure immunoglobulin G (IgG). Three separate procedures are used to inactivate and eliminate viral contaminants, such as the human immunodeficiency

virus and hepatitis, from IVIG preparation. It is administered as a gradual IV infusion over the course of three to

five days, at a dose of 2g/kg every cycle. Every four weeks, the treatment is repeated.

Multiple theories exist; however, the exact mechanism is unknown.

Renal failure and transfusion-related acute lung injury (TRALI), which is rare, are potential side effects of IVIG.

Premedication with steroids or antihistamines is recommended if there has previously been a history of infusion reactions.

Fever, headache, myalgia, nausea, tachycardia, hemolysis, aseptic meningitis, thrombotic event, and anaphylaxis

are some other uncommon side effects.⁵⁷

Treatment guidelines for all AIBDs is show below in table 6.

TABLE 6: Treatment guidelines for various AIBDs

Disease	Line of therapy	Drugs
Pemphigus Vulgaris	First Line	High dose
		Corticosteroids
		Azathioprine
		MMF
	Second Line	Rituximab
		IVIg
		Cyclophosphamide
		Chlorambucil
		Plasmapheresis
	Third Line	Dapsone
		Cyclosporine
Pemphigus Foliaceus	First Line	Systemic
		Corticosteroids
	Second Line	Azathioprine
		MMF
Paraneoplastic	First Line	High dose
Pemphigus		Corticosteroids
		Azathioprine
	Second Line	MMF
		IVIg
		High dose
		Chlorambucil
	Third Line	Plasmapheresis
		Rituximab

Bullous Pemphigoid	First Line	Systemic
		Corticosteroids
		Dapsone
		Azathioprine
		MMF
	Second Line	Methotrexate
		IVIG
Dermatitis	First Line	Dapsone
herpetiformis		Gluten Free Diet
		Sulphapyridine
		Tetracycline
		/Nicotinamide
	<u> </u>	0.1
	Second Line	Cyclosporine
		Colchicine
		Systemic Steroids
Linear IgA	First Line	Dapsone
dermatosis		Sulphapyridine
		Colchicine
	Second Line	Tetracycline
		/Nicotinamide
Epidermolysis bullosa	First Line	Systemic
acquisita		Corticosteroids
		Azathioprine
		Supportive therapy /
		Avoidance of trauma
	Second Line	Methotrexate

	Cyclophosphamide
	Colchicine
	Cyclosporine
Third Line	Immunoadsorption
	/Rituximab

IVIG – Intravenous Immunoglobulin

METHODOLOGY

SOURCE OF DATA:

Inpatients and outpatients in the Department of Dermatology, Venereology, and Leprosy, Shri B.M. Patil Medical

College, Hospital and Research Center

Period of study:

The study was conducted from September 2022 to June2024.

Study design: Prospective cross-sectional study

Sample size:

With anticipated sensitivity to tetracycline 66.6%,³ the study required a sample size of **85 subjects** with 95% level of confidence and 10% absolute precision, Using Statulator software (http://statulator.com/SampleSize/ss1P.html) Formula used

$$\mathbf{n} = \underline{\mathbf{z}^2 \mathbf{p}^* \mathbf{q}}$$

 \mathbf{d}^2

Where Z=Z statistic at α level of significance

d²= Absolute error

P= Proportion rate

q= 100-p

Statistical Analysis

• The data obtained was entered into a Microsoft Excel sheet, and statistical analysis was performed using the

software JMP[®], Version 16. SAS Institute Inc., Cary, NC, 1989-2021.

Results are presented as Mean \pm SD, Median and interquartile range, frequency, percentages, and diagrams

METHOD OF COLLECTION OF DATA:

Inclusion criteria:

Cases confirmed by biopsy and /or immunofluorescence with clinically active cutaneous lesions areincluded.

Cases were including **intraepidermal** blistering disorders like pemphigus and its variants and **sub-epidermal** blistering disorders like bullous pemphigoid, cicatricial pemphigoid, linear IgA disease, dermatitis herpetiformis, pemphigoid gestationis, lichen planus pemphigoides, epidermolysis bullosa acquisita , and bullous systemic lupus erythematosus^[1].

Exclusion criteria

Patients having only crusted or dried cutaneous lesions.

Patients having only active mucosal lesions.

Methods

Informed consent for the study was obtained from the patients. All subjects underwent a complete clinical and cutaneous examination. These findings were recorded in the proforma. Clinical samples were collected using a sterile cotton swab stick following universal aseptic precautions and sent to the microbiology lab, Shri B M Patil Medical College, Hospital, and Research Center.

METHODOLOGY

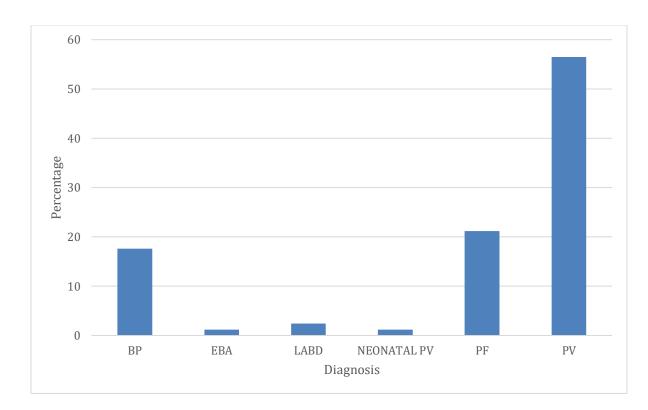
Eighty-five samples were gathered from the active skin lesions of both inpatients and outpatients suffering from immunobullous disorders at the Department of Dermatology, Venereology, and Leprosy at Shri B M Patil Medical College, Hospital, and Research Centre in Vijayapura, Karnataka. All collected samples were transported in capped plastic tubes and then processed in the microbiology lab. Gram staining was done to identify gram-positive or negative bacteria. Culture specimens were inoculated onto blood agar, Mac-Conkey agar, and nutrient agar media by standard technique.¹⁰ All cultures were observed for growth after 24 hours of incubation. Further identification and antimicrobial susceptibility pattern of bacteria was made using the fully automated VITEK 2 machine (bioMerieux).¹⁰

ETHICAL CLEARANCE BEEN OBTAINED FROM BLDE UNIVERSITY:

YES (BLDE(DU)/IEC/698/2022-23)

RESULTS

A hospital based prospective cross-sectional study was conducted from September 2022 to June 2024.


A total of 85 patients with AIBDs were included in the study

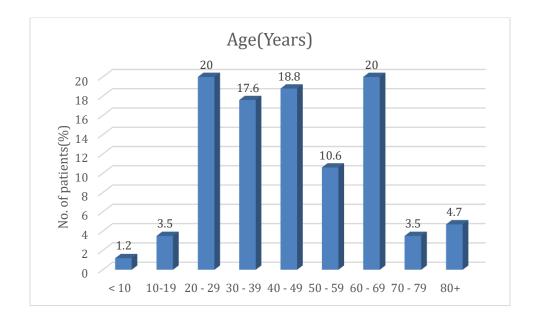
Distribution of cases

Of the eighty-five patients diagnosed with AIBDs, the distribution of cases included in the study: PV 48 (56.5%), PF 18 (21.2%), BP 15 (17.6%), EBA 1 (1.2%), LABD 2 (2.4%), and neonatal pemphigus 1 (1.2%), respectively in shown figure 3 and table 7.

Table 7: Distribution of cases

DIAGNOSIS	FREQUENCY	PERCENT
NPV	1	1.2
EBA	1	1.2
LABD	2	2.4
BP	15	17.6
PF	18	21.2
PV	48	56.5
Total	85	100.0

Figure 3: Distribution of cases

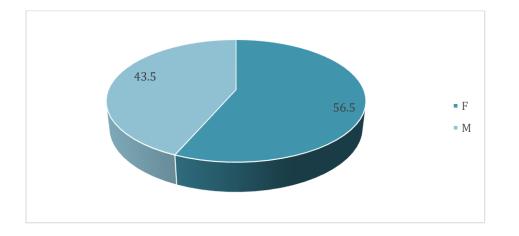

AGE DISTRIBUTION:

The age of the patients enrolled in the study ranged from 10 days to 85 years with a mean age of 45.28 years. Age distribution of the patients included in the study is presented in Table 8 and Figure 4. Population in the age group between 20 to 29 and 60 to 69 years constituted the majority of the study subjects.

Table 8: Age (years) distribution

Age(Years)	No. of	Percentage
	patients	
< 10	1	1.2
10 – 19	3	3.5
20 - 29	17	20.0
30 - 39	15	17.6
40 - 49	16	18.8
50 - 59	9	10.6
60 - 69	17	20.0
70 - 79	3	3.5
80+	4	4.7
Total	85	100.0

Figure 4: Age distribution in AIBDs



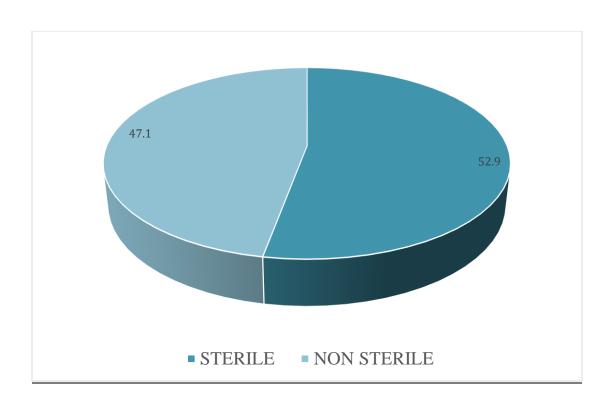
Gender distribution:

Among 85 patients, 37 (43.5%) were males and 48 (56.5%) were females. The gender distribution of the participants in the study is presented in Table 9 and Figure 5.

Table 9: Gender distribution in study population

	No. of patients	Percentage
F	48	56.5
М	37	43.5
Total	85	100.0

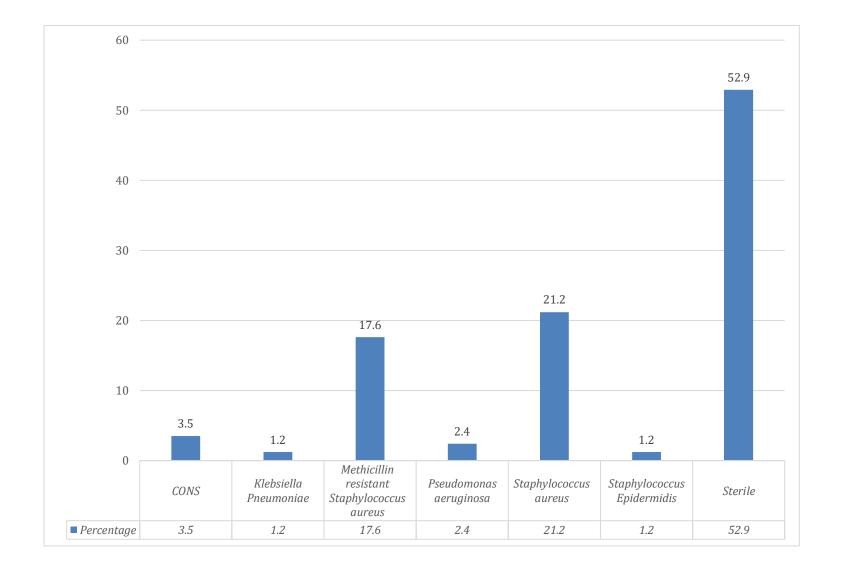
Figure 5: Distribution of patients based on gender


Pus culture:

Out of 85 swab samples sent for pus culture and sensitivity, 45 (52.9%) were sterile and 40 (45.2%) were nonsterile, as shown in Table 9 and Figure 6.

Table 9: Pus culture

Pus culture after 48 hours of incubation	PERCENTAGE
STERILE	52.9
NON-STERILE	47.1


Figure 5: Pus Culture

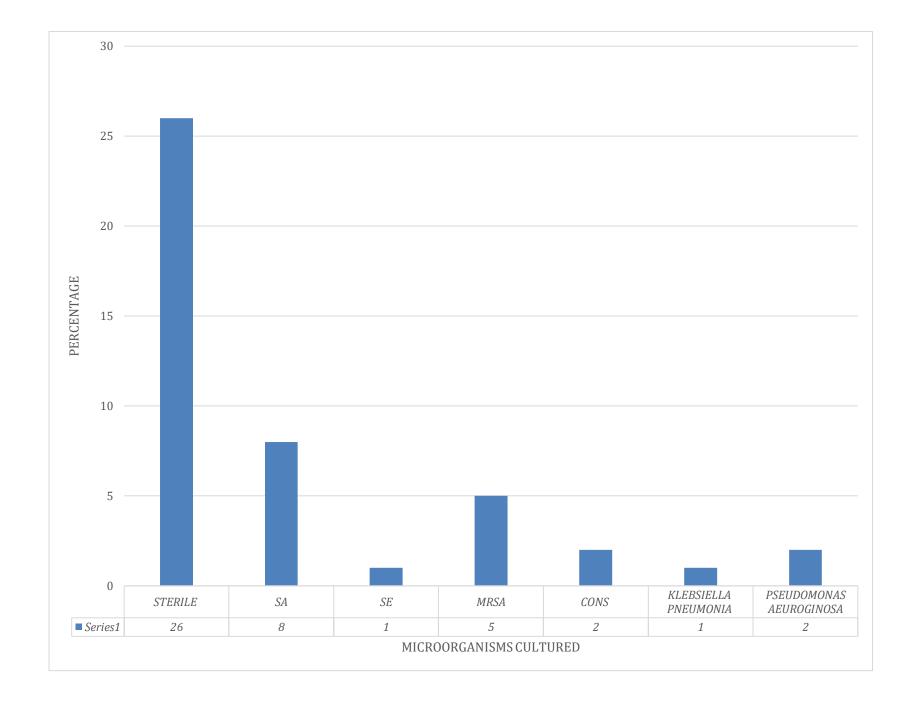
Microorganisms cultured:

Of the 40 samples that exhibited bacterial growth, 37 had *Staphylococcus aureus*, of which 15 (37.5%) were methicillin-resistant, 3 (7.5%) were coagulase-negative, and 1 (2.5%) contained *Staphylococcus epidermidis*. These results are displayed in Table 10 and Figure 6.

Table 10: Microorganisms cultured

Pus culture	Frequency	Percent
Klebsiella pneumoniae	1	2.5
Pseudomonas	2	5
aeruginosa		
Coagulase negative	3	7.5
Staphylococcus		
Methicillin resistant	15	37.5
Staphylococcus aureus		
Staphylococcus aureus	18	45
Staphylococcus	1	2.5
epidermidis		
Total	40	100.0

Figure 6: Microorganisms cultured


Microorganism isolated from lesions Pemphigus vulgaris:

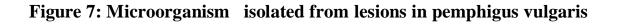

Pemphigus vulgaris cases on pus culture showed no growth in 29 (60.14%) and growth in 19 (39.86%) cases, as

Table 11 and Figure 7 illustrate.

Table 11: Microorganisms isolated from lesions in pemphigus vulgaris

Pemphigus Vulgaris	Number of cases	Percentage
Sterile	29	60.14
Staphylococcus aureus	8	16.66
Methicillin resistant	5	10.41
Staphylococcus aureus		
Pseudomonas aeruginosa	2	4.16
Coagulase negative	2	4.16
Staphylococcus aureus		
Klebsiella pneumoniae	1	1.25
Staphylococcus epidermidis	1	1.25
Total	48	100

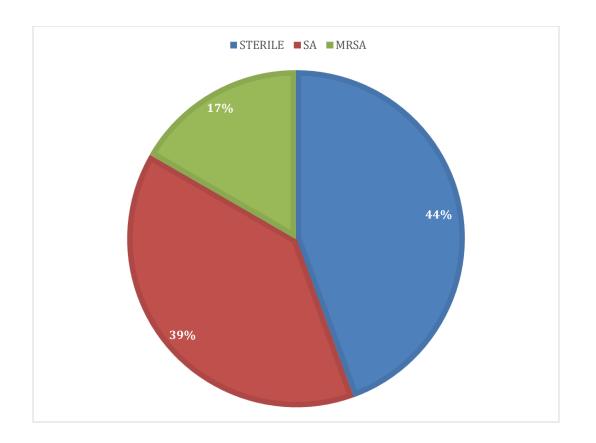
Microorganism isolated from lesions in Pemphigus Foliaceus:

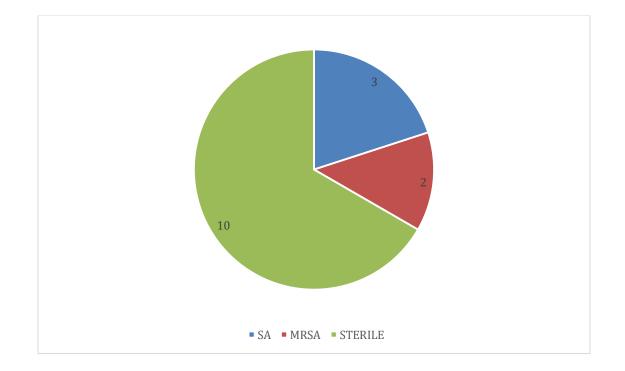
Pemphigus foliaceus cases on pus culture and sensitivity, 8 (44.44%) cases showed no growth and 10(55.56%)

cases showed growth, as depicted in table 12 and figure 8.

Table 12: Microorganisms isolated from lesions in Pemphigus Foliaceus:

Pemphigus Foliaceus	Number of cases	Percentage
Sterile	8	44.44
Staphylococcus aureus	7	38.33
Methicillin resistant	3	16.67
Staphylococcus aureus		
Total	18	100




Figure 8: Microorganisms isolated from lesions in Pemphigus Foliaceus:

Microorganisms isolated from lesions in Bullous Pemphigoid:

The data on bullous pemphigoid cases is displayed in Table 13 and Figure 9. Ten patients (66.67%) on pus culture showed no growth, while five cases (33.33%) exhibited growth

Table 13: Microorganisms isolated from lesions in Bullous Pemphigoid:

Bullous Pemphigoid	Number of cases	Percentage
Sterile	10	66.67
Staphylococcus aureus	3	20
Methicillin resistant	2	13.33
staphylococcus aureus		

Figure 9: Microorganism isolated from lesions in Bullous Pemphigoid:

Microorganisms isolated from lesions across various group of AIBDs

In the Pemphigus foliaceus, Pemphigus vulgaris bacterial growth outnumbered sterile swabs; in contrast, a higher number of Bullous pemphigoid patients showed no growth as illustrated in table 14 and figure 10.

Table 14: Microorganisms isolated from lesions across various group of AIBDs

Disease	Pus culture						
	Sterile	SA	MRSA	CONS	SE	KP	PA
BP	10	3	2				
PV	29	8	5	2	1	1	2
PF	8	7	3				

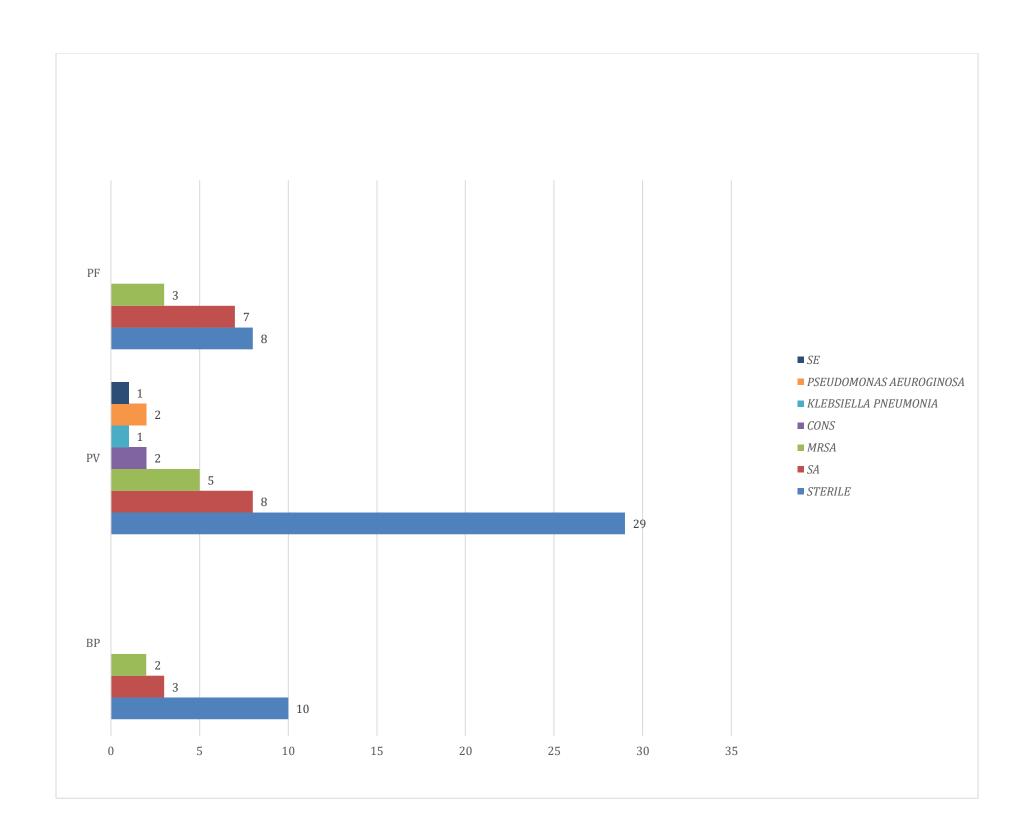
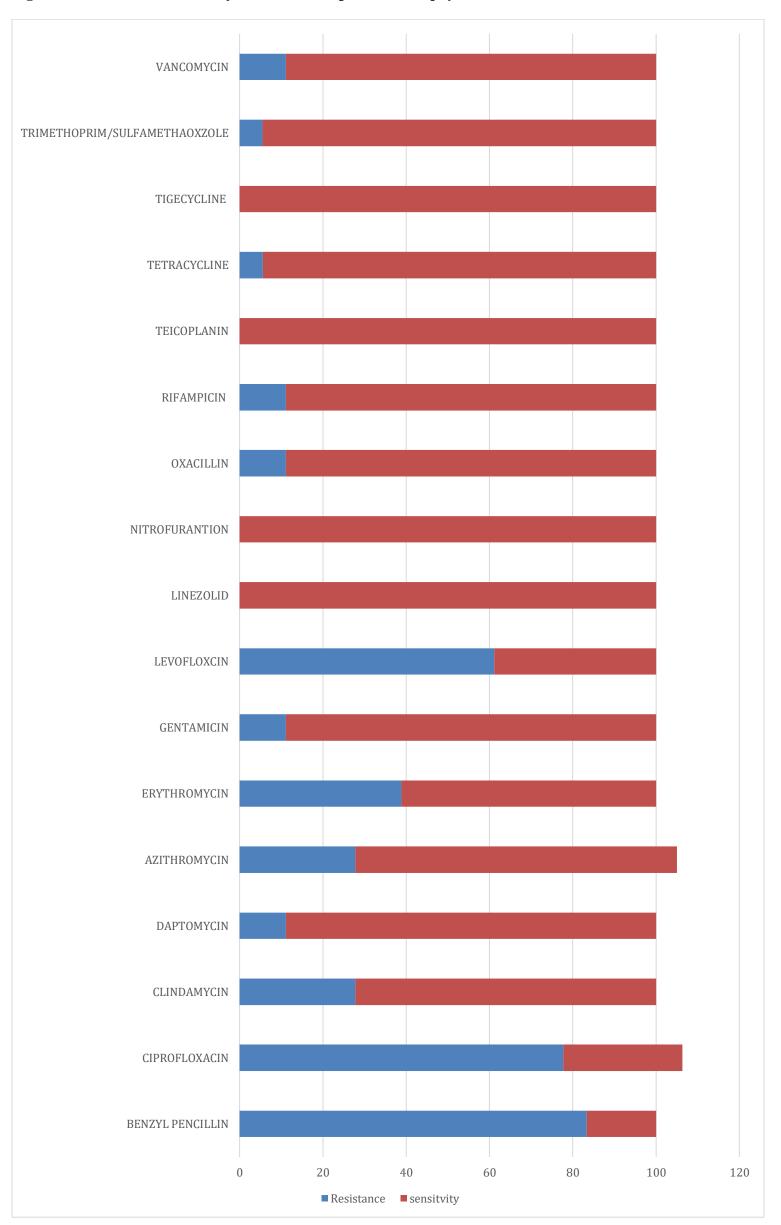


Figure 10: Microorganisms isolated from lesions across various group of AIBDs


Antibiotics sensitivity and resistance pattern *Staphylococcus aureus*

Antibiotics teicoplanin (100%), linezolid (100%), nitrofurantoin (100%), vancomycin (100%), tigecycline (100%) showed the highest sensitivity, followed by trimethoprim/sulfamethoxazole (94.44%), rifampicin (88.89%), oxacillin (88.89%), daptomycin (88.89%) and azithromycin (77.27%), as shown in table 16 and figure 16.

Benzyl Penicillin (83.33%) was the most resistant antibiotic, followed by ciprofloxacin (77.77%), levofloxacin (61.11%), and erythromycin (38.88%).

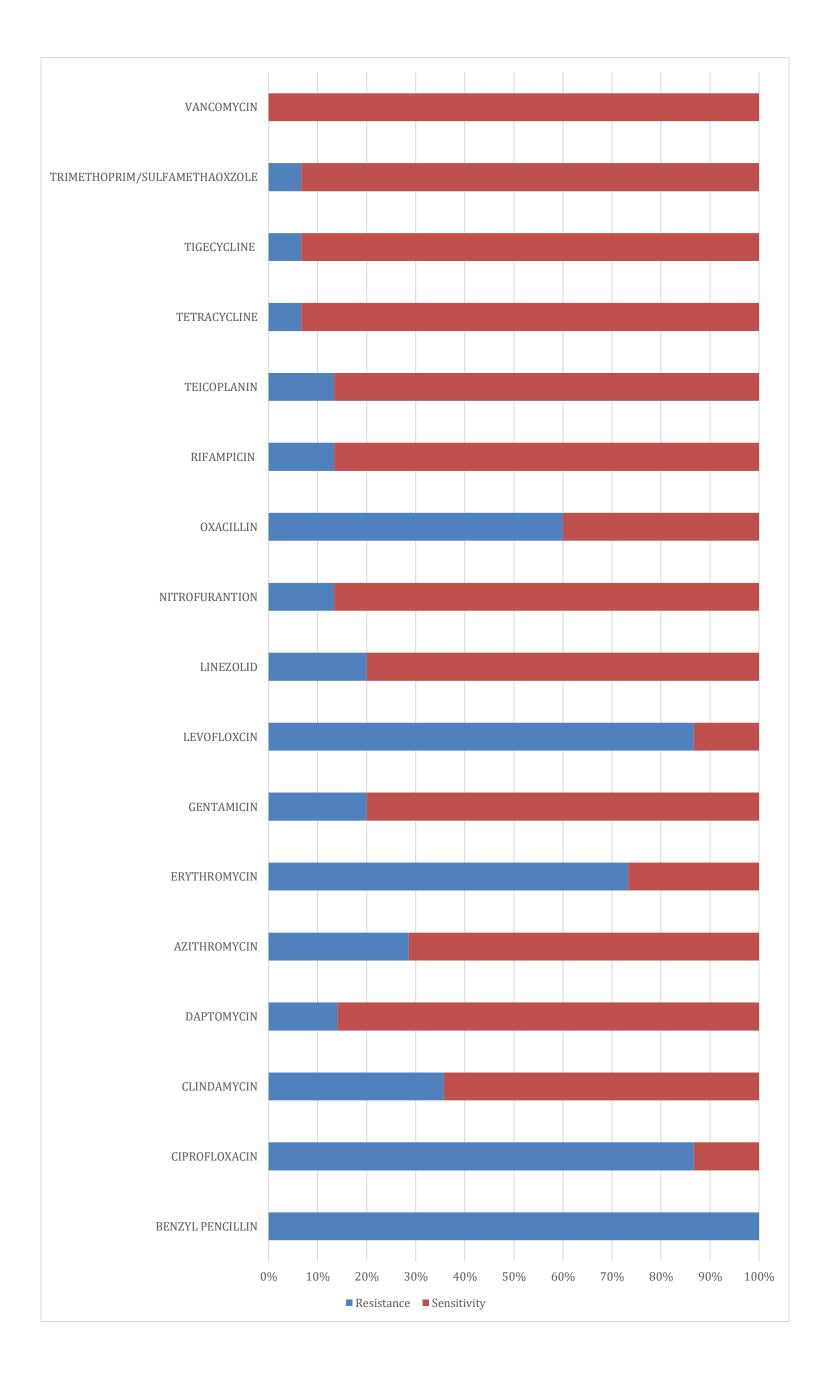
Table 15: Antibiotics sensitivity and resistance pattern of Staphylococcus aureus

ANTIBIOTICS	SENSTIVITY		RESISTANCE		
	FREQUENCY	PERCENTAGE	FREQUENCY	PERCENTAGE	
Benzyl penicillin	3	16.66	15	83.33	
Ciprofloxacin	4	28.57	14	77.77	
Clindamycin	13	72.22	5	27.77	
Daptomycin	16	88.89	2	11.11	
Azithromycin	13	77.27	5	27.77	
Erythromycin	11	61.11	7	38.88	
Gentamicin	16	88.88	2	11.11	
Levofloxacin	7	38.88	11	61.11	
Linezolid	18	100			
Nitrofurantoin	18	100			
Oxacillin	16	88.89	2	11.11	
Rifampicin	16	88.89	2	11.11	
Teicoplanin	18	100			
Tetracycline	17	94.49	1	5.56	
Tigecycline	18	100			
Trimethoprim/sulfa	17	94.44	1	5.55	
methoxazole					
Vancomycin	16	`100	2	11.11	

Figure 11: Antibiotics sensitivity and resistance pattern of *Staphylococcus aureus*

Few antibiotics like Colistin, Amikacin, Cefoperazone +sulbactam showed sensitivity and resistance in only two cases hence they are grouped separately

TABLE: 16: Other Antibiotics sensitivity and resistance pattern


	SENSTIVITY		RESISTANCE		
ANTIBIOTICS	FREQUENCY	PERCENTAGE	FREQUENCY	PERCENTAGE	
Colistin	3	100			
Amikacin	2	100			
Cefoperazone +sulbactam	2	100			
Cefuroxime axetil	1	100			
Ertapenem	1	100			
Imipenem	1	50	1	50	
Meropenem	2	100			
Piperacillin / tazobactam	1	100			
Amoxicillin clavulanic acid	1	100			

Antibiotics sensitivity and resistance pattern of Methicillin Resistant Staphylococcus aureus

Antibiotics are depicted in Table 17 and Figure 15 below. The maximum sensitivity was seen for Vancomycin (100%) and was followed by Tetracycline (93.33%), Tigecycline (93.33%), Trimethoprim/Sulfamethoxazole (93.33%), Nitrofurantoin (86.67%), Rifampicin (86.66%), Oxacillin (86.66.%), and Daptomycin (81.42-2.6%). Benzyl Penicillin (100%) was the most resistant antibiotic, followed by Ciprofloxacin (86.777%), Levofloxacin (86.67%), and Erythromycin (73.88%).

 Table 17: Antibiotics sensitivity and resistance pattern of Methicillin resistant Staphylococcus aureus

ANTIBIOTICS	SENSTIVITY		RESISTANCE		
	FREQUENCY	PERCENTAGE	FREQUENCY	PERCENTAGE	
Benzyl penicillin			15	100	
Ciprofloxacin	2	13.33	13	86.66	
Clindamycin	9	60	5	33.33	
Daptomycin	9	81.42	2	13.33	
Azithromycin	9	71.42	2	28.57	
Erythromycin	5	26.67	11	73.33	
Gentamicin	4	80	3	20	
Levofloxacin	12	13.3	13	86.67	
Linezolid	2	80	3	20	
Nitrofurantoin	12	86.67	2	13.33	
Oxacillin	13	86.66	9	69.2	
Rifampicin	6	86.66	2	13.33	
Teicoplanin	13	86.66	2	13.33	
Tetracycline	14	93.33	1	6.66	
Tigecycline	14	93.33	1	6.66	
Trimethoprim/sulfa	14	93.33	1	6.66	
methoxazole					
Vancomycin	15	100			

Figure 15: Antibiotics sensitivity and resistance pattern Methicillin resistant *Staphylococcus aureus*

DISCUSSION

Septicemia and superficial bacterial skin infections are the primary causes of death and morbidity in cases with Abids'. Systematic study needs to be conducted on a regular basis due to evolving bacteriological profile and antibiotic sensitivity patterns. The rising threat of antimicrobial resistance makes patients more prone to bacterial infections^{.49}

To date, studies about determining the bacteriological profile and the antibiotic sensitivity patterns of cutaneous lesions in immunobullous disorders are lacking except for a few (4 in number) studies in the literature focusing solely on pemphigus vulgaris or bullous pemphigoid and other groups of AIBDs were not included.

In our study, we found pemphigus vulgaris (56.2%) to be the most common condition, followed by pemphigus foliaceus, and this finding is in accordance with other regional and international studies.^{47,49,58,59}

The male-to-female ratio in our study was 0.77, which differed from previous studies.^{47,49,60}Male cases (45.25%) were outnumbered by female cases (54.4%).

The swab taken for pus culture and sensitivity from the active cutaneous lesions showed sterility in 52.9% of cases, much higher than 15.15% of Bharubiya et al. and 18.36% of Kiran et al.

Bacterial growth was seen in 47.1 % of cases, and the most common organism cultured is *Staphylococcus aureus* (45%), which is much lower compared to Chauhan et al. (65.2%), Solanki *et al.* (72%), Qadim *et al.* (83.9%) and Esmail *et al.* (93.7%). But similar to (40.81%) Kiran et al. and Barbhuiya et al. (45.3%). 47,29.60.61,62,63 In this study (4.16%%), Kiran et al. (12.24%) and Chauhan et al. (17.89%) noted that *P. aeruginosa* was the second most common organism following *S. aureus*.

Out of sixteen Staphylococcus-positive swabs, eight were Staphylococcus aureus, one was Staphylococcus

epidermidis, two were coagulase-negative Staphylococcus, and five had methicillin resistance.

Among forty-eight pemphigus vulgaris patients, 39.86% were non-sterile, and 60.14% were sterile, whereas, in eighteen pemphigus foliaceus patients, 55.56% showed growth, and 44.44% were sterile. In bullous pemphigoid cases, the number of sterile swabs (66.67%) outnumbered the bacterial growth (33.33%). Pemphigus foliaceus cases had the highest growth of bacteria compared to Pemphigus vulgaris and Bullous Pemphigoid.

In this study, *S. aureus* isolated from AIBD patients showed 100% sensitivity to teicoplanin, linezolid, nitrofurantoin, vancomycin, and tigecycline, while 89% sensitivity to rifampicin and 95% sensitivity to trimethoprim/sulfamethoxazole was observed. Solanki et al. found that S. aureus showed 100% sensitivity to cloxacillin, cefotaxime, and lincomycin, whereas Kiran et al. reported the highest sensitivity to tetracycline, amikacin, chloramphenicol, and netilmicin.

Staphylococcus aureus was resistant to benzylpenicillin (83.33%), followed by ciprofloxacin (77.77%) and levofloxacin (61.11%). Barbhuiya et al. noted that S. aureus had 90% and 80% resistance to benzylpenicillin and levofloxacin, respectively. This finding is consistent with our results, but Barbhuiya et al. showed higher resistance to the penicillin class of antibiotics. Comparable results were reported by Chauhan et al. and Kiran et al., who found that *S. aureus* was highly resistant to ciprofloxacin (55%) and co-trimoxazole (79%) and highly resistant to penicillin (90%), erythromycin (55%), and ciprofloxacin (55%) respectively.

The sensitivity pattern for MRSA to vancomycin was 100%, followed by tetracycline (93.33%), tigecycline (93.33%), trimethoprim/sulfamethoxazole (93.33%) and nitrofurantoin (86.67%). Antibiotics that were most resistant to MRSA were benzylpenicillin (100%) and then ciprofloxacin (86.777%), levofloxacin (86.67%), and erythromycin (73.88%).

Two swab culture isolates had *Pseudomonas aeruginosa*, which was sensitive to penicillins, lincosamides, macrolides, fluoroquinolones, tetracyclines and glycopeptide group of antibiotics as observed by Kiran et al., and one had *Klebsiella pneumoniae* was sensitive to carbapenem's, third generation cephalosporins and extended spectrum of penicillin group of antibiotics.

Limitations of this study include small sample size and there was no differentiation between infected and

noninfected cutaneous lesions. Co-morbidities, other infection risk factors, and a prior antibiotic use history were

not taken into account.

CONCLUSION

- In this study, we examined the bacteriological profile of active cutaneous lesions present in AIBDs and analysed the patterns of antibiotic sensitivity and resistance in the bacteria that were recovered.
- Pemphigus vulgaris, pemphigus foliaceus and bullous pemphigoid were observed in 48(56.5%),18(21.2%) and 15 (17.6%) of the 85 patients with a diagnosis of AIBDs, respectively.
- The study included patients ranging in age from 0 to 85 years old. The most commonly affected groups were young adults in the 20–29 age range and older patients in the 60–69 age range, with a bimodal distribution
- 3. Females outnumbered males by a ratio of 0:0.77.
- 4. The percentage of non-sterile swabs on pus culture and sensitivity was 47.1%, which was lower than the percentage on sterile swabs (54.5%).
- 5. The most common organism isolated was *Staphylococcus aureus* (92.25%) in which 37.5% was resistant to methicillin, followed by *Pseudomonas aeruginosa* (5%) and *Klebsiella pneumoniae* (2.5%)
- 6. Pemphigus foliaceus patients (55%) had the highest rate of bacterial growth, followed by pemphigus vulgaris (39.86%) and bullous Pemphigoid patients (33.33%).
- 7. The majority of bullous Pemphigoid cases (66.67%) had sterile pus cultures, which were subsequently followed by pemphigus foliaceus (45%) and Pemphigus vulgaris (63.14%).
- 8. *Staphylococcus aureus* was 100 % sensitive to antibiotics teicoplanin, linezolid, nitrofurantoin, vancomycin, tigecycline, followed by trimethoprim/sulfamethoxazole (94.44%), rifampicin (88.89%), oxacillin (88.89%), dantomycin (88.80%) and arithmethoxazole (77.27%)
 - daptomycin (88.89%) and azithromycin (77.27%).
- 9. The most resistant antibiotic to *Staphylococcus aureus* was benzyl penicillin (83.33%), which was followed

by erythromycin (38.88%), ciprofloxacin (77.77%), and levofloxacin (61.11%).

10. The sensitivity pattern for MRSA to vancomycin was 100% followed by tetracycline (93.33%), tigecycline

(93.33%), trimethoprim/sulfamethoxazole (93.33%) and nitrofurantoin (86.67%).

11. The antibiotics with the highest MRSA resistance were erythromycin (73.88%), ciprofloxacin (86.777%),

levofloxacin (86.67%), and benzyl penicillin (100%).

12. *Pseudomonas aeruginosa and Klebsiella pneumoniae* were the least common organisms and were susceptible to penicillin's, lincosamides, macrolides, fluoroquinolones, tetracyclines and glycopeptide group of antibiotics.

SUMMARY

A hospital-based, prospective cross-sectional study was conducted from September 2022 to June 2024 to analyse the bacteriological profile of active cutaneous skin lesions in AIBDs and evaluate the antibiotic sensitivity and resistance patterns.

The salient features found in this study are listed below:

- 1. Pemphigus vulgaris was most prevalent AIBDs
- 2. There were bimodal age distributions among cases.
- 3. Females were more in number than males.
- 4. The number of sterile swabs was more than the non-sterile swabs.
- 5. Pemphigus foliaceus cases showed the highest bacterial growth.
- 6. Bullous pemphigoid had a maximum number of sterile swabs.
- Staphylococcus aureus was the most organism isolated, and it was 100 % sensitive to teicoplanin, linezolid, nitrofurantoin, vancomycin, tigecycline and resistant to benzylpenicillin (83%)
- 8. Among S. aureus, 37.5% are resistant to methicillin (MRSA), and it was sensitive to vancomycin (100%) and resistant to benzylpenicillin (100%)
- 9. The least common organisms were Pseudomonas aeruginosa and Klebsiella penumoniae

BIBLIOGRAPHY

1)Benton E. Immunobullous disease. Clin Med (Lond) 2021; 2:162-65.

2) Beek NV, Zillikens D, Schmidt E. Bullous Autoimmune Dermatoses–Clinical Features, Diagnostic Evaluation, and Treatment Options. DtschArztebl Int 2021; 118:413-20.

3) Jindal A, Rao R, Bhogal BS. Advanced Diagnostic Techniques in Autoimmune Bullous Diseases. Indian J Dermatol 2017; 62:268-78.

4) Kanwar AJ, De D. Pemphigus in India. Indian J Dermatol VenereolLeprol 2011; 77:439-49.

5) Van Beek N, Zillikens D, Schmidt E. Diagnosis of autoimmune bullous diseases. J Dtsch Dermatol Ges 2018;
 16:1077-91.

6) Kridin K, Sagi SZ, Bergman R. Mortality and Cause of Death in Patients with Pemphigus. Acta Derm Venereol 2017; 97:607-11.

7) Bystryn JC, Steinman NM. The adjuvant therapy of pemphigus. An update. Arch Dermatol 1996; -132:203-12.

8) Barbhuiya GK, Gupta B, Kar S. Cutaneous bacteriological profile and antibiotic sensitivity pattern in patients with pemphigus attending tertiary care center, Northeast India. IP Indian J Clin Exp Dermatol 2022; -8:82-85.

9) Pemphix to pemphigus vulgaris: the journey to classifying blisters. Br J Dermatol 2021; -185:164.

10) Friday King D, Holubar K. History of pemphigus. Clin Dermatol 1983;1:6-12.

11) Neumann I. Ueber die sogennante Framboesia and mehrere andere Arten von papillaren Veubildungen der

haut. Arch Dermatol Syphilol 1869; -1:382-23.

12) Senear FE, Usher B. An unusual type of pemphigus combining features of lupus erythematosus. Arch Dermatol Syphilol 1926; -13:761-81. 13) Miyamoto D, Santi CG, Aoki V, Maruta CW. Bullous pemphigoid. An Bras Dermatol 2019; -94:133-46.

14) Mahé A, Flageul B, Cissé I, Kéita S, Bobin P. Pemphigus in Mali: a study of 30 cases. Br J Dermatol 1996; -134:114-19.

15) Tallab T, Joharji H, Bahamdan K, Karkashan E, Mourad M, Ibrahim K. The incidence of pemphigus in the southern region of Saudi Arabia. Int J Dermatol 2001; -40:570-72.

16) Kridin K, Schmidt E. Epidemiology of pemphigus. JID Innovations 2021; -1:10.

17) Jelti L, Cordel N, Gillibert A, Lacour JP, Uthurriague C, Doutre MS, et al. Incidence and mortality of pemphigus in France. J Invest Dermatol 2019; -139:49.

18) Hashimoto T, Teye K, Ishii N. Clinical and immunological studies of 49 cases of various types of intercellular IgA dermatosis and 13 cases of classical subcorneal pustular dermatosis examined at Kurume University. Br J Dermatol 2017; -176:168-69.

19) Kasperkiewicz M, Kowalewski C, Jabłonska S. Pemphigus herpetiformis: from first description until now. J Am Acad Dermatol 2014; -70:780-87.

20) Kridin K, Ludwig RJ. The Growing Incidence of Bullous Pemphigoid: Overview and Potential Explanations. Front Med (Lausanne) 2018; -5:220.

21) Aoki V, Rivitti EA, Diaz LA. Cooperative Group on Fogo Selvagem Research. Update on fogoselvagem, an

22) Diaz LA, Sampaio SAP, Rivitti EA, Martins CR, Cunha PR, Lombardi C, et al. Endemic pemphigus foliaceus

(fogoselvagem): II. Current and historic epidemiologic studies. J Invest Dermatol 1989; -92:4-12.

23) Nanda A, Dvorak R, Al-Saeed K, Al-Sabah H, Alsaleh QA. Spectrum of autoimmune bullous diseases in

Kuwait. Int J Dermatol 2004; -43:876-81.

24) Tallab T, Joharji H, Bahamdan K, Karkashan E, Mourad M, Ibrahim K. The incidence of pemphigus in the southern region of Saudi Arabia. Int J Dermatol 2001; -40:570-72.

25) Simon DG, Krutchkoff D, Kaslow RA, Zarbo R. Pemphigus in Hartford County, Connecticut, from 1972 to 1977. Arch Dermatol 1980; -116:1035-37.

26) Bastuji-Garin S, Souissi R, Blum L, Turki H, Nouira R, Jomaa B, et al. Comparative epidemiology of pemphigus in Tunisia and France: unusual incidence of pemphigus foliaceus in young Tunisian women. J Invest Dermatol 1995; -104:302-05.

27) Hashimoto T, Qian H, Ishii N, et al. Classification and Antigen Molecules of Autoimmune Bullous Diseases.Biomolecules 2023; - 13:703.

28) Ruocco V, Ruocco E, Lo Schiavo A, Brunetti G, Guerrera LP, Wolf R. Pemphigus: Etiology, pathogenesis, and inducing or triggering factors: Facts and controversies. Clin Dermatol 2013; -31:374-81.

29) Pollmann R, Schmidt T, Eming R, et al. Pemphigus: A Comprehensive Review on Pathogenesis, Clinical Presentation and Novel Therapeutic Approaches. Clinic Rev Allerg Immunol 2018; -54:1-25.

30) Lo Schiavo A, Ruocco E, Brancaccio G, Caccavale S, Ruocco V, Wolf R. Bullous pemphigoid: Etiology, pathogenesis, and inducing factors: Facts and controversies. Clin Dermatol 2013; -31:391-99.

31) Verheyden MJ, Bilgic A, Murrell DF. A Systematic Review of Drug-Induced Pemphigoid. Acta Derm Venereol 2020; -100:24.

32) Bonciani D, Verdelli A, Bonciolini V, D'Errico A, Antiga E, Fabbri P, et al. Dermatitis herpetiformis: from the

genetics to the development of skin lesions. Clin Dev Immunol 2012; - 2012:23-69.

33) Clarindo MV, Possebon AT, Soligo EM, Uyeda H, Ruaro RT, Empinotti JC. Dermatitis herpetiformis:

pathophysiology, clinical presentation, diagnosis and treatment. An Bras Dermatol 2014; -89:865-77.

34) Scully C, Challacombe SJ. Pemphigus Vulgaris: Update on Etiopathogenesis, Oral Manifestations, and

Management. Crit Rev Oral Biol Med 2002; -13:397-08.

35) Buxton RS, Magee AI. Structure and interactions of desmosomal and other cadherins. Semin Cell Biol 1992; -3:157-67.

36) Gumbiner BM, McCrea PD. Catenins as mediators of the cytoplasmic functions of cadherins. J Cell Sci Suppl 1993; -17:155-58.

37) Nishikawa T, Hashimoto T, Shimizu H, Ebihara T, Amagai M. Pemphigus from immunofluorescence to molecular biology. J Dermatol Sci 1996; -12:1-9.

38) DiMarco C. Pemphigus: Pathogenesis to Treatment. R I Med J (2013) 2016; -99:28-1.

39) Kneisel A, Hertl M. Autoimmune bullous skin diseases. Part 2: Diagnosis and therapy. J Dtsch Dermatol Ges2011; -9:927-47.

40) Jindal A, Rao R, Bhogal BS. Advanced Diagnostic Techniques in Autoimmune Bullous Diseases. Indian J Dermatol 2017; -62(3):268-78.

41) Harman KE. New laboratory techniques for the assessment of acquired immunobullous disorders. Clin Exp Dermatol 2002; -27:40-6.

42) Harman KE, Gratian MJ, Bhogal BS, Challacombe SJ, Black MM. The use of two substrates to improve the sensitivity of indirect immunofluorescence in the diagnosis of pemphigus. Br J Dermatol 2000; -142:1135-39.

43) Gammon WR, Kowalewski C, Chorzelski TP, Kumar V, Briggaman RA, Beutner EH. Direct immunofluorescence studies of sodium chloride-separated skin in the differential diagnosis of bullous pemphigoid and epidermolysis bullosa acquisita. J Am Acad Dermatol 1990; -22:664-70.

44) De D, Khullar G, Handa S, Saikia UN, Radotra BD, Saikia B, Minz RW. Clinical, demographic and

immunopathological spectrum of subepidermal autoimmune bullous diseases at a tertiary center: A 1-year audit.

Indian J Dermatol VenereolLeprol 2016; -82:358.

45) Stumpf N, Huang S, Hall LD, Hsu S. Differentiating Pemphigus Foliaceus from Pemphigus Vulgaris in Clinical Practice. Cureus2021; -13:17.

46) Porro AM, Caetano Lde V, Maehara Lde S, Enokihara MM. Non-classical forms of pemphigus: pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus. An Bras Dermatol 2014; - 89:96-06.

47) Barbhuiya GK, Gupta B, Kar S. Cutaneous bacteriological profile and antibiotic sensitivity pattern in patients with pemphigus attending tertiary care center, Northeast India. IP Indian J Clin Exp Dermatol 2022; 8:82-85.

48) Tobin EA, Samuel SO, Inyang NJ, et al. Bacteriological profile and antibiotic sensitivity patterns in clinical isolates from the outpatient departments of a tertiary hospital in Nigeria. Niger J Clin Pract2021; 24:1225-33.

49) Chauhan K, Mehta K, Shingala H. Cutaneous bacteriological profile and its antibiotics sensitivity pattern in patients of pemphigus vulgaris attending tertiary care hospital, Jamnagar, India. Saudi J PatholMicrobiol2019;
4:738-40.

50) Han A. A practical approach to treating autoimmune bullous disorders with systemic medications. J Clin Aesthet Dermatol 2009; -2:19-28.

51) Wolverton SE. Systemic corticosteroids. In: Wolverton SE, editor. Comprehensive Dermatologic Drug Therapy. Philadelphia: WB Saunders; 2001. pp. 109-138.

52) Younger IR, Harris WS, Colver GB. Azathioprine in dermatology. J Am Acad Dermatol 1991; -25:281-86.

53) Ahmed AR, Hombal SM. Cyclophosphamide (Cytoxan): a review on relevant pharmacology and clinical uses.J Am Acad Dermatol 1984; -11:1115-26.

54) Lebwohl M, Ellis C, Gottlieb A, et al. Cyclosporine consensus conference: with an emphasis on the treatment

of psoriasis. J Am Acad Dermatol 1998;-39:464-75

55) Lebwohl M, Ellis C, Gottlieb A, et al. Cyclosporine consensus conference: with an emphasis on the treatment

of psoriasis. J Am Acad Dermatol. 1998; -39:464-75.

56) Prins C, Gelfand EW, French LE. Intravenous immunoglobulin: properties, mode of action and practical use in

dermatology. Acta Derm Venereol. 2007; -87:206-18.

57) Khandelwal K, Jajoo V, Bajpai K, et al. Rituximab in Pemphigus Vulgaris: A Review of Monoclonal Antibody Therapy in Dermatology. *Cureus*. 2023; -15:34.

58)Rizvi SR, Sadiq S. Use of direct immunoflourescent microscopy in the diagnosis of vesiculobullous disorders of skin. *Pak J Med Sci.* 2010; -26:411–5.

59)Buch AC, Kumar H, Panicker N, Misal S, Sharma Y, Gore CR. A Cross-sectional Study of Direct Immunofluorescence in the Diagnosis of Immunobullous Dermatoses. *Indian J Dermatol.* 2014; -59:364-68

60)Kiran KC, Madhukara J, Abraham A, Muralidharan S. Cutaneous Bacteriological Profile in Patients with Pemphigus. *Indian J Dermatol.* 2018; -63(4):301-304.

61)Solanki RB, Shah YB, Shah AN, Jain V. Bacterial culture and sensitivity in pemphigus. *Indian J Dermatol VenereolLeprol.* 1997; -63:89–90.

62)Qadim HH, Hasani A, Zinus BM, Orang NJ, Hasani A. Etiology of pyrexia in pemphigus patients: A dermatologist's enigma. *Indian J Dermatol VenereolLeprol.* 2012; 78:74.

63)Esmaili N, Mortazavi H, Noormohammadpour P, Boreiri M, Soori T, Vasheghani Farahani I, et al. Pemphigus vulgaris and infections: A retrospective study on 155 patients. *Autoimmune Dis.* 2013; 2

ETHICAL CLEARANCE CERTIFICATE

BLDE (DEEMED TO BE UNIVERSITY) Declared as Deemed to be University u/s 3 of UGC Act, 1956 Accredited with 'A' Grade by NAAC (Cycle-2) The Constituent College

SHRI B. M. PATIL MEDICAL COLLEGE, HOSPITAL & RESEARCH CENTRE, VIJAYAPURA BLDE (DU)/IEC/ 698/2022-23 30/8/2022

INSTITUTIONAL ETHICAL CLEARANCE CERTIFICATE

The Ethical Committee of this University met on Friday, 26th August, 2022 at 3.30 p.m. in the Department of Pharmacology scrutinizes the Synopsis of Post Graduate Student of BLDE (DU)'s Shri B.M.Patil Medical College Hospital & Research Centre from ethical clearance point of view. After scrutiny, the following original/ corrected and revised version synopsis of the thesis/ research projects has been accorded ethical clearance.

TITLE: "A PROSPECTIVE CROSS-SECTIONAL STUDY TO DETERMINE THE BACTERIOLOGICAL PROFILE AND ANTIBIOTIC SENSITIVITY PATTERNS OF THE CUTANEOUS LESIONS IN IMMUNOBULLOUS DISORDERS".

NAME OF THE STUDENT/PRINCIPAL INVESTIGATOR: Dr. Mayuri B. M.

NAME OF THE GUIDE: Dr. Ajit B. Janagond, Associate professor, Dept. of Dermatology.

Dr.Akram A. Naikwadi

Chairperson IEC, BLDE (DU), VIJAYAPURA Chairman, Institutional Ethical Committee, BLDE (Deemed to be University)

Member Secretary IEC, BLDE (DU), VIJAYAPURA MEMBER SECRETARY Institutional Ethics Committee BLDE (Deemed to be University) Following documents were placed before Ethical Committee for Scrutin Zaffonpura-586103. Karnataka

- Copy of Synopsis/Research Projects
- Copy of inform consent form

Dr. Santoshkumar Jeevangi

Any other relevant document

Smt. Bangaramma Sajjan Campus, B. M. Patil Road (Sholapur Road), Vijayapura - 586103, Karnataka, India. BLDE (DU): Phone: +918352-262770, Fax: +918352-263303, Website: www.bldedu.ac.in, E-mail:office@bldedu.ac.in College: Phone: +918352-262770, Fax: +918352-263019, E-mail: bmpme.principal@bldedu.ac.in

CONSENT FORM

B.L.D.E (Deemed to be university) SHRI B.M PATIL MEDICAL COLLEGE

HOSPITAL AND RESEARCH CENTRE, VIJAYAPURA-586 103

INFORMED CONSENT FOR PARTICIPATION IN DISSERTATION/RESEARCH

TITLE OF THE PROJECT: -A Prospective cross-sectional study to the bacteriological profile and antibiotic sensitivity patterns of cutaneous lesions in immunobullous disorders.

PG GUIDE DR. AJIT B JANAGOND

PG STUDENT: DR. MAYURI B M

PURPOSE OF RESEARCH:

• To identify bacteriological profile in cutaneous lesions in immunobullous disorders

BENEFITS:

• Appropriate usage of antibiotics as per susceptible organism

PROCEDURE:

I understand that relevant history will be taken, and I will undergo a detailed cutaneous examination. I will allow the

investigator to collect pus swabs from skin lesions.

RISK AND DISCOMFORTS:

I understand there is no risk involved, and I will experience no discomfort during the clinical examination.

CONFIDENTIALITY:

I understand that medical information produced by this study will become a part of my hospital records and will be subjected to the confidentiality and privacy regulation of the said hospital. Information of a sensitive personal nature will not be a part of the medical records but will be stored in the investigator's research file. If the data are used for publication in the medical literature or for teaching purposes, no names will be used, and other identifiers such as photographs and audio or videotapes will be used only with my special written permission. I understand I may see the photographs, and videotapes and hear the audiotapes before giving this permission.

REQUEST FOR MORE INFORMATION:

I understand that I may ask more questions about the study at any time concerned. DR. MAYURI B M is available to answer my questions or concerns. I understand that I will be informed of any significant new findings discovered during the course of this study, which may influence my continued participation.

REFUSAL OR WITHDRAWAL OF PARTICIPATION:

I understand that my participation is voluntary, and I may refuse to participate or may withdraw consent and discontinue participation in this study at any time without prejudice. I also understand that Dr MAYURI B M, may terminate my participation in this study at any time after he has explained the reasons for doing so and has helped arrange for my continued care by my own physician if this is appropriate.

INJURY STATEMENT:

I understand that in the unlikely event of injury to me resulting directly from my participation in this study, and if such injury were reported promptly, then medical treatment will be available to me, but no further compensation will be provided. I understand that by my agreement for my participation in this study, I am not waiving any of my legal

rights.

I have explained to (patient's / relevant guardian's name) the purpose of the research, the procedures required, and

the possible risks and benefits to the best of my ability in the patient's own language.

Investigator / P. G. Guide

Date

I confirm that Dr Mayuri B M has explained to me the research, the study procedures that I undergo, and the possible risks and discomforts as well as benefits that I may experience. I have read, and understand this consent form. Therefore, I agree to give my consent for my participation as a subject in this research project.

Participant / guardian

Date

Witness to signature

Date

B.L.D.E. U'S SHRI B. M. PATIL MEDICAL COLLEGE HOSPITAL AND RESEARCH CENTRE,

VIJAYAPURA.

Department of Dermatology, Venereology and Leprosy.

PROFORMA

SCHEME OF CASE TAKING

1. General information			
Name:	SL no:		
Age:			
Sex:		Address:	
Contact no.:			
Patient ID:		Date:	
2. History:			
• General Physical Examination:			
Weight:	Pallor:	Icterus:	Cyanosis
PR:	Edema:	Clubbing:	
BP:	Lymphadeno	pathy:	

• Cutaneous Examination

• Systemic Examination

Cardiovascular system

Respiratory system

Central nervous system

Abdominal examination

Diagnosis:

Micro-organism cultured:

Sensitive Antibiotics:

Resistant Antibiotics

KEY TO MASTER CHART

- F- Female, M- Male
- R-resistant
- S -Sensitive
- PV Pemphigus Vulgaris
- NPV Neonatal Pemphigus Vulgaris
- PF Pemphigus Foliaceus
- BP Bullous Pemphigoid
- EBA Epidermolysis Bullosa Acquista
- LABD Linear IGA bullosa dermatosis
- SA- Staphylococcus aureus
- MRSA Methicillin resistant Staphylococcus aureus
- SE Staphylococcus epidermis
- PA Pseudomonas Aeruginosa
- *KP Klebsiella pneumoniae*

MASTERCHART

Γ						AN	ITIBI	OTI	CS																							
																					LE											
	U W W N N N N N N N N N N N N N N N N N	🐱 AGE (YEARS)	יד Sex	뷰 DIAGNOSIS	S MICRO-ORGANISM	🛥 BENZYL PENCILLIN			ΔΑΡΤΟΜΥCIN	∞ AZITHROMYCIN	α ε е	တ Gentamicin	→ LEVOFLOXCIN		∽ NITROFURANTION		ν RIFAMPICIN	ν TEICOPLANIN	<pre> % ***********************************</pre>	م لتاقاد المراقع	∽ Тrimethoprim/sulfamethaoxzole	∞ VANCOMYCIN	COLISTIN	AMIKACIN	CEFOPERAZONE +SULBACTAM	CEFUROXIME AXETIL	CEFUROXIME	ERTAPENEM	IMPENEM	MEROPENEM	PIPERACILLIN / TAZOBACTAM	AMOXCILLIN CLAVULINIC ACID
2	jadhav Firam	40 61	г F	РГ	SA	r S	s S	s S	s S	r R	s S	s S	r R	s S	s S	s S	s S	s S	s S	s S	s S	r S										
	kachapur			V		3	3	3	3	n	3	3	n	3	3	3	3	3	3	3	3	3										
3	Anil appasahebk oganur	29	Μ		NI L																											
4	Mahadevi salodagi	35	F	P V	NI L																											
5	Siddaramk araveer	52	Μ	PF	SA	R	R	R	S	S	R	Ι	R	S	S	R	R	S	S	S	S	S										
6	Mahipati pundalik	60	Μ	B P	SA	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S										
7	Bhimarays oragappa	43	Μ	P V	C O NS	R	R	R	S	S	S	S		S	S	R	S	S	S	S	S	S										
8	Laxmibai pintu pujari	26	F	P V	NI L																											
9	Kantamma gunnapur	80	F	E B A	M RS A	R	R	R	S	R	R	S	R	S	S	R	R	R	S	S	R	S										
1 0	Madivallap pa s kumbhar	42	Μ	P V	SA	R	R	S	S	S	S	S	R	S	S	R	S	S	S	S	S	S										
1 1	Altaf khalifa	35	Μ	P V	NI L																											
1 2	Sajanbeeab dulgani	50	F	P V	NI L																											
1 3	Shreedevi murgod	46	F	P V	SA	R	R	S	S	S	I	S	R	S	S	S	S	S	S	S	S	S										
1 4	Bhojumano har	62	Μ	PF	M RS A	R	S	R	S	S	S	S	S	S	S	R	S	S	S	S	S	S										
1 5	Pooja duragappa	27	F	P V	NI L																											
1	Bibayesha magrabi	60	F	B P	NI																											
1 7	Shilpa hanamantra v	26	F	P V	NI L																											
1 8	Surekha	33	F	B P	SA	R	R	S	S	S	S	R	R	S	S	S	S	S	S	S	S	S										
1 9	Firam kachapur	61	F	P V	M RS A	R	R	S	S	S	R	R	R	S	S	R	S	S	S	S	S	S										
2	Anil appasahebk oganur	29	M	PF	SA	R		S					s		S				R			R										
2	Siddamma	62	F	B P	NI			5					5	-	5																	
1 2 2	navani Hamida banu	62 52		P V	L NI L																											
2 3	Surekha	33		P V	M RS A	R	R	R	R	S	S	R	R	S	S	S	S	S	S	S	S	S										
2 4	Ajith dilipkumar	18	M	P V	M RS A	R	S	R	S	S	R	S	S	S	R	R	R	S	R	S	S	S										
2 5	Shredevi r policepatil	28	F	P V	SA	R		S	S	S	R	S	S	S	S	S	R	S	S	S	S	S										

2 6	Gangadhar baslingapp a	65	М	PF	SA	R	R	s	S	S	S	S	R	S	S	S	S	S	s	S	S	S										
2 7	Apoorva	19	F	P V	SA	R	R	R	s	s	R	s	R	s	S	s	s	s	s	s	s	s										
2	Laxmi sunilsonna			Р		_	6																									Π
8	d B/o	28 0.0	F	V N	PA M	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S										\square
2 9	laxmisunils oonad	27 4	F	P V	RS A	R	R	R	S	S	R	S	R	R	S	R	S	S	S	S	S	S										Ш
3				в	M RS																											
0	Shantabai	76	F	P P	A K	R	R	S	S	0	R	S	R	S	S	S	S	S	S	S	S	S										H
1	Sharada	61	F	V P	P																			S	S	S	S	S	S	S		S
2	Ramzanbee	26	F	V	PA M		R	-				S											1	S	S				R	S		\square
3 3	Nilamma	42	F	P V	RS A	R	R	s			R	S	R	S	S	R	S	S	S	S	s	S										Ш
3 4	Dundappa madivalapp a	52	М	P V	NI L																											
3 5	Namdev	45	М	PF	SA	R	R	R	s	R	s	R	s	s	S	S	s	s	S	s	s	s										Π
3				PF	M RS																											
6 3	Sidaram	58	Μ	Р	A NI	R	R		S		S		R	S	S	R	S	S	S	S	S											H
7	Rajeshree	38	F	V	L C																											H
3 8	Abdul basha razak	37	Μ	P V	O NS	R	S	S			R	S	S	S	S				S			S										
3 9	Banu	52	F	P V	NI L																											
4				Р	C O																											\square
0 4	Padmavati	85	F	V B	NS SA	R			S		S	S	R	S	S	S	S	S	S	S	S	S										$\left \right $
1 4	Saherabanu	85	F	P PF	NI	R	R	S			R	S	R	S	S	S	S	S	S	S	R	S										$\left \right $
2 4	Meenakshi	27	F	Р	L NI																											Η
3	Shahanaj	45	F	V PF	L M																											$\left \right $
4 4	Jyoti	40	F		RS A	R	R	R	S		R	Ι	R	S	S	R	S	S	S	S	S	S										
4 5	Parvati	63	F	B P	NI L																											
4 6	Mallappak umbar	63	Μ	B P	NI L																											
4	Ganga mahadevap		_	E B	NI																											
7	pa Rajeshtees	39	F	A PF	L NI																									$\left \right $		H
8	harad Laxmibai	38	F	В	L NI																											H
9 5	meti	62	F	P B	L NI																											H
0	Nkjanvekar Prashuram	85	M	P PF	L NI																									$\left \right $		H
1	yallappa Basawaraj	43	M	В	L NI																										<u> </u>	Η
25	mallappa	67	M	Р	L NI																										+	H
3	Mahadev	20	M	Р	L NI																										+	H
4 5 5	Tippabai Basvantma	55	F	V PF	L SA	_							(_																+	H
5	dar Basappalax	55	M	Р	SA	R		S			S	S	R	S	S		S	S	S	S	S	S									+	H
6 5 7	manbagi	60	M	Р	S	R	R	S			S	S	R	S	S		S	S	S	S	S	S								<u> </u>	+	$\left - \right $
7	Ramesh	40	M	V P	E NI	R	R	S	S		R		R	S	S	R	S	S	R	S	R	S									╉	$\left - \right $
8	Indra bai	61	F	V	L																									[

5				В	NI	1																						
9	Murtaza khadri	76	м		L																							
6 0	Mahadev	20	М	P V	NI L																							
6 1	Shrikant	46	М	P V	NI L																							
6 2	Naveen rolli	19	M	P V	NI L																							
6 3	Meenakshi rathod	48	F	P V	NI L																							Π
6 4	Geeta	32	F	P V	NI																							Η
6	belagi			PF	L NI																		 					
5	Vittal Meenakshi	65	M	PF	SA			6		6	6	6	6	6	6	6	6	6	6	6	6	6						
6	bevanur	27	F	LA	М	S	S	S		S	S	S	S	S	S	S	S	S	S	S	S	S						$\left \right $
6 7	Ramesh gagabhogi	38	Μ		RS A	R	R	R			R	Ι	R	S	S	S	S	S	S	S	S	S						
6 8	Gamanabai	47	F	PF	NI L																							
6				LA B	M RS																							
9 7	Tejashwini	27	F	D P	A NI	R	R	S			R	S	R	S	S	S	S	S	S	S	S	S	 					\square
, 0 7	Husenbi	26	F	V P	L																							
1	Meenakshi	48	F	V	L																							
7 2	Shashikala	36	F	PF	NI L																							
7				Ρ	M RS																							
3 7	Indra bai Amol	61	F	V P	A NI	R	R	R			R	S	R	R	S	S	S	S	S	S	S	S		 				\vdash
4	krishna	27	Μ	V P	L SA																		 					\vdash
5 7	Geeta	33	F	V B	NI	R	R	R	R	R	R	S	S	S	S	S	S	S	S	S	S	S	 	 				\square
, 6 7	Shrishail	42	Μ		L																							Ш
7	Vittal	65	Μ	V	L																							
7 8	Ramesh gagabudi	39	Μ		NI L																							Ш
7 9	Mohmad mulla	38	Μ	P V	SA	R	R	R	R	R	S	S	S	S	S	S	S	S	S	S	S	S						
8				Р	M RS		ĺ																					
0 8	Naveem	39	Μ	V PF	A NI	R	R	S	S		S	Ι	R	S	S	R	S	R	S	R	S	S					$\left - \right $	H
1	Basamma	70	F		L M	<u> </u>	<u> </u>																	 				$\mid \mid$
8 2	Tabasuma	45	F	P V	RS A	R	R	R	R	R	R	R	R	R	R	S	S	S	S	S	S	S						
8 3	Gangalinga	26	M	Р	NI L					-	-			-							-							Π
8 4		50		Р	NI																ļ							Π
8	Ramesh		M	Р	L NI						-															-		H
5	Sagar	29	Μ	V	L																							

🗹 iThenticate [.]		Similarity Report ID: oid:3618:62141960
PAPER NAME	AUTHOR	
"A PROSPECTIVE CROSS-SECTIONAL ST UDY TO DETERMINE THE BACTERIOLOG ICAL PROFILE AND ANTIBIOTIC SENSITI	MAYURI	BM
WORD COUNT	CHARACTE	R COUNT
9231 Words	56841 Cl	naracters
PAGE COUNT	FILE SIZE	
66 Pages	230.4KB	
SUBMISSION DATE	REPORT DA	TE
Jun 29, 2024 9:52 AM GMT+5:30	Jun 29, 2	2024 9:53 AM GMT+5:30

• 7% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

6% Internet database

5% Publications database

Crossref database

Crossref Posted Content database

Excluded from Similarity Report

- Submitted Works database
- Quoted material
- Small Matches (Less then 14 words)
- Bibliographic material
- Cited material

2