CLINICAL, DERMOSCOPIC AND HISTOPATHOLOGICAL STUDY OF SKIN

TUMORS: A CROSS-SECTIONAL STUDY

BY

Dr. NAMRATHA SHIVARAJ

DISSERTATION SUBMITTED TO BLDE UNIVERSITY B.L.D.E (DEEMED TO BE

UNIVERSITY), VIJAYAPURA

In partial fulfilment of the requirements for the degree of MD

IN

DERMATOLOGY, VENEROLOGY AND LEPROSY

UNDER THE GUIDANCE OF

DR. KESHAVMURTHY ADYA

PROFESSOR & HOD

DEPARTMENT OF DERMATOLOGY, VENEROLOGY AND LEPROSY

B.L.D.E (Deemed to be University),

SHRI B M PATIL MEDICAL COLLEGE HOSPITAL AND RESEARCH CENTRE,

VIJAYAPURA 586103

DOI 10.5281/zenodo.15493869 https://zenodo.org/records/15493870

BLDE (DEEMED TO BE UNIVERSITY) SHRI B. M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE VIJAYAPURA, KARNATAKA DECLARATION BY THE CANDIDATE

I hereby declare that this dissertation entitled "CLINICAL, DERMOSCOPIC AND HISTOPATHOLOGICAL STUDY OF SKIN TUMORS: A CROSS-SECTIONAL STUDY"

is a bonafide and genuine research work carried out by me under the guidance of Dr. KESHAVMURTHY ADYA, Professor & HOD, Department of Dermatology Venereology and

Leprosy, at BLDE (Deemed to be University) Shri B.M. Patil Medical College and Research Centre, Vijayapura.

> Namhatha Shijakay DR. NAMRATHA SHIVARAJ

DATE:

PLACE: VIJAYAPURA

BLDE (DEEMED TO BE UNIVERSITY) SHRI B. M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE VIJAYAPURA, KARNATAKA

CERTIFICATE BY THE GUIDE

This is to certify that the dissertation entitled "**CLINICAL, DERMOSCOPIC AND HISTOPATHOLOGICAL STUDY OF SKIN TUMORS: A CROSS-SECTIONAL STUDY**" is a bonafide and genuine research work carried out by Dr NAMRATHA SHIVARAJ in partial fulfilment of the requirement for the degree of MD in Dermatology, Venereology and Leprosy.

DATE:

X Mi

DR. KESHAVMURTHY ADYA PROFESSOR & HOD DEPARTMENT OF DERMATOLOGY, VENEREOLOGY AND LEPROSY B.L.D.E (DEEMED TO BE UNIVERSITY) SHRI. B. M. PATIL MEDICAL COLLEGE HOSPITAL & RESEARCH CENTRE, VIJAYAPURA.

BLDE (DEEMED TO BE UNIVERSITY) SHRI B. M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE VIJAYAPURA, KARNATAKA

ENDORSEMENT BY THE HOD, PRINCIPAL/HEAD OF THE INSTITUTION

This is to certify that the dissertation entitled "CLINICAL, DERMOSCOPIC AND

HISTOPATHOLOGICAL STUDY OF SKIN TUMORS: A CROSS-SECTIONAL STUDY"

is a bonafide research work done by Dr NAMRATHA SHIVARAJ under the guidance of

Dr KESHAVMURTHY ADYA, Professor & HOD, Department of Dermatology, Venereology

and Leprosy, Shri B. M. Patil Medical College and Research Centre, Vijayapura.

M

Seal & Signature: DR. KESHAVMURTHY ADYA Professor and HOD, MBBS, MD Department of Dermatology, Venereology and Leprosy BLDE (Deemed to be University) Shri. B. M. Patil Medical College, Hospital & Research Centre, Vijayapura. DATE:

PLACE: VIJAYAPURA

Seal & Signature: Dr. ARVIND PATIL PRINCIPAL B.L.D.E (Deemed to be university) Shri. B. M. Patil Medical College, Hospital & Research Centre, Vijayapura.

DATE:

PLACE: VIJAYAPURA

BLDE (DEEMED TO BE UNIVERSITY) SHRI B. M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE VIJAYAPURA, KARNATAKA

COPYRIGHT DECLARATION BY THE CANDIDATE

I hereby declare that the BLDE University, Karnataka shall have the right to preserve, use and disseminate this dissertation/thesis in print or electronic format for academic/research purposes.

DATE:

PLACE: VIJAYAPURA

DR. NAMRATHA SHIVARAJ

Namhatha Shiraray

ACKNOWLEDGEMENT

I wish to express my deep sense of gratitude and regards to my guide Dr KESHAVMURTHY ADYA, Professor & HOD, Department of Dermatology, Venereology and Leprosy, for his able guidance and valuable suggestions, cont supervision, and encouragement which he rendered in pursuit of my postgraduate studies and during the preparation of this dissertation.

I wish to express gratitude and respect to my teachers Dr Arun C. Inamadar, Dr Ajit B. Janagond, Dr Sanmitra Aiholli, Dr. Shruti Kulkarni, Dr N. S. Deshmukh, Dr Uma Maheshwari for their valuable help and guidance during my study.

I share the credit of my work with my my fellow postgraduates Dr. Salman, Dr. Thrupthi, Dr. Mayuri and Dr. Pooja, all my seniors and juniors for their co-operation and help.

I would like to express my thanks to Mrs. Vijaya Sorganvi, statistician, Department of Community Medicine, for his patient help in statistical analysis.

This dissertation would not have been possible without the cooperation and understanding of the patients involved in this study.

Finally, I thank the Almighty for all the blessings.

DATE: PLACE: VIJAYAPURA

DR. NAMRATHA SHIVARAJ

LIST OF ABBREVIATIONS

BCC- Basal Cell Carcinoma

SK- Seborrheic Keratosis

MN- Melanocytic Nevi

BD- Bowens disease

SCC- Squamous cell carcinoma

PL- Polarized light

NPL- Non Polarized light

ILVEN- Inflammatory Linear Verrcous Epidermal Nevus

AC- Actinic Chelitis

ABSTRACT

BACKGROUND:

Skin tumors are commonly encountered, yet some are difficult to diagnose as they mimic other conditions. Dermoscopic evaluation is a non invasive diagnostic technique, although histopathology is the gold standard. Thus, diagnosis can be done by correlating clinical features, dermoscopy and histological features, which helps in early detection and treatment. This study documents the prevalence of skin tumors in Southern India, with its dermoscopic and histopathological features.

AIMS AND OBJECTIVES:

To assess prevalence, dermoscopic features, histopathological characteristics of various skin tumors attending the OPD in the Northern part of Karnataka

MATERIALS AND METHODS:

A hospital based, cross-sectional study

Patients presenting with clinically diagnosed cases of skin tumors were subjected to clinical and dermoscopic evaluation and histopathological confirmation.

Tumors were classified into 5 categories- keratinocytic, melanocytic, appendageal, soft tissue and miscellaneous tumors. These were sub divided into benign, pre malignant and malignant tumors. The prevalence and dermoscopic features of these tumors was noted.

RESULTS:

Among 37589 patients attending dermatology OPD at Shri BM Patil medical college during this period, 116 patients had skin tumors; with a prevalence of 0.30

Out of 116 skin tumors observed, 65% were benign tumors (most prevalent- Melanocytic nevi in 13.79%; most common dermoscopic feature- brown globules), 14% were pre-malignant tumors (most prevalent- Actinic chelitis in 5.17%; most common dermoscopic feature- vascular polymorphism) 21% were malignant (most prevalent- basal cell carcinoma in 12.07%; most common dermoscopic feature- blue gray globules). Among the groups, 44.83% were keratinocytic tumors, 28.31% soft tissue tumors, 13.79% melanocytic tumors, 10.34% appendageal tumors, 3.45% miscellaneous tumors were seen.

CONCLUSION:

Benign tumors were most prevalent (most prevalent- pyogenic granuloma), followed by were malignant (most prevalent- basal cell carcinoma) and then the pre-malignant tumors (most prevalent- Actinic chelitis). There was a good agreement between clinic-dermoscopic diagnosis and histopathological confirmation. Hence it appears that the use of dermoscopy improves the clinical diagnostic protocol.

LIST OF CONTENTS

SL NO.	CONTENTS	PAGE NO.
1	INTRODUCTION	16
2	AIMS AND OBJECTIVES	19
3	REVIEW OF LITERATURE	20
4	METHODOLOGY	53
5.	RESULTS	56
6	DISCUSSION	97
7	CONCLUSION	102
8	SUMMARY	104
9	BIBLIOGRAPHY	106
10	ANNEXURES	112
	ETHICAL CLEARANCE	112
	CONSENT FORM	113
	PROFORMA	117
	KEY TO MASTER CHART	119
	MASTER CHART	123

LIST OF TABLES

TABLE	PAGE NO.
Table 1: Few dermoscopic structures and their histopathological	30
correlation	
Table 2: Vessel morphologies	35
Table 3: Vessel distributions	36
Table 4: The SEVEN point checklist	43
Table 5: Menzies scoring method	44
Table 6: The CASH algorithm	45
Table 7: Dermoscopic features of pigmented BCC	47
Table 8: Clinical presentation and dermoscopic features of few other	50
tumors involving the skin	
Table 9: Distribution of cases in our study	56
Table 10: Age distribution among various skin tumors	60
Table 11: Gender distribution among various skin tumors	61
Table 12: Similarity of dermoscopy and histopathology diagnosis	62
Table 13: Distribution of cases based on tumor catergory	62
Table 14: Distribution of tumors based on classification	63
Table 15: Distribution of tumors based on sub-classification	64

Table 16: Demographic details of patients with BCC	66
Table 17: Dermoscopic features of BCC	67
Table 18: Demographic details of patients with Melanocytic nevi	70
Table 19: Dermoscopic features of Melanocytic nevi	71
Table 20: Demographic details of patients with Pyogenic granuloma	72
Table 21: Dermoscopic features of Pyogenic granuloma	73
Table 22: Demographic details of patients with Syringoma	75
Table 23: Dermoscopic features of Syringoma	76
Table 24: Demographic details of patients with SCC	77
Table 25: Dermoscopic features of SCC	79
Table 26: Demographic details of patients with Actinic chelitis	80
Table 27: Dermoscopic features of Actinic chelitis	82
Table 28: Dermoscopic features of few other skin tumors	83
Table 29: Comparison of demographic and dermoscopic findings of	99
BCC in the present study to that by Suppa et al. and Trigoni et al.	

LIST OF FIGURES

FIGURE	PAGE NO.
Figure 1: Optics of light in dermoscope	24
Figure 2. Colors in dermoscopy	30
Figure 3: The Two step algorithm for pigmented skin lesions	41
Figure 4: ABCD rule of dermoscopy	42
Figure 5: Graphical representation of distribution of cases	59
Figure 6: Graphical representation of age distribution	60
Figure 7: Graphical representation of gender distribution	61
Figure 8: Graphical representation of similarity of dermoscopy and	62
histopathology diagnosis	
Figure 9: Graphical representation of distribution of cases based on tumor	63
catergory	
Figure 10: Graphical representation of distribution of tumors based on	64
classification	
Figure 11: Graphical representation of distribution of tumors based on sub-	65
classification	
Figure 12: Graphical representation of gender distribution among BCC cases	67
Figure 13: Graphical representation of age distribution among BCC cases	67
Figure 14: Graphical representation of gender distribution among	70
Melanocytic nevi cases	

Figure 15: Graphical representation of age distribution among Melanocytic	70
nevi cases	
Figure 16: Graphical representation of gender distribution among Pyogenic	73
granuloma cases	
Figure 17: Graphical representation of age distribution among Pyogenic	73
granuloma cases	
Figure 18: Graphical representation of gender distribution among Syringoma	75
cases	
Figure 19: Graphical representation of age distribution among Syringoma	75
cases	
Figure 20: Graphical representation of gender distribution among SCC cases	78
Figure 21: Graphical representation of age distribution among SCC cases	78
Figure 22: Graphical representation of gender distribution among Actinic	81
chelitis cases	
Figure 23: Graphical representation of age distribution among Actinic	81
chelitis cases	
Figure 24 a & b: Dermoscopy of BCC	86
Figure 25: Histopathology of BCC	86
Figure 26: Dermoscopy of melanocytic nevi	87
Figure 27:_Histopathology of melanocytic nevi	87
Figure 28: Dermoscopy of Pyogenic granuloma	88
Figure 29: Histopathology of pyogenic granuloma	88
Figure 30: Dermoscopy of Syringoma	89
Figure 31: Histopathology of Syringoma	89
Figure 32: Dermoscopy of Agiokeratoma circumscriptum	90

Figure 33: Dermoscopy of actinic keratosis	90
Figure 34: Dermoscopy of irritational fibroma	91
Figure 35: Dermoscopy of ILVEN	91
Figure 36: Dermoscopy of SCC	92
Figure 37: Dermoscopy of Keratatoacantoma	92
Figure 38: Dermoscopy of Encapsulated neuroma	93
Figure 49: Dermoscopy of Actinic chelitis	93
Figure 40: Dermoscopy of Dermatofibroma	94
Figure 41: Dermoscopy of nevus lipomatosus	94
Figure 42 a & b: Dermoscopy of Schwannoma	95
Figure 43: Dermoscopy of Acral melanoma	95
Figure 44: Dermoscopy of cutaneous lymphoma	96
Figure 45: Dermoscopy of Bowens disease	96

INTRODUCTION

Skin is a complex organ composed of epidermis, dermis and skin adnexa giving rise to a multitude of tumours. A "tumor" is an atypical mass of tissue whose growth outpaces and deviates from normal tissue growth, and whose growth continues in an uncontrollable way even after the stimuli causing the change have stopped.

Tumours are broadly classified as benign and malignant¹.

Skin tumors are generally divided into surface epidermal tumors and tumors of epidermal appendages.² Different cell types give rise to different types of tumors and differentiating them is very important.

Malignant skin tumours account for 1% to 2% of all cancer cases in India. The Indian Council of Medical Research's National Cancer Registry Programme's Consolidated Report on Population-Based Cancer Registries revealed a cumulative incidence of skin cancer ranging from 0.5 to 2 per 100,000 people.³ Variations in skin types, geographic latitudes, occupational exposure, sun exposure and skin protection behaviour, and variations in disease knowledge and monitoring can all contribute to variations in skin cancer trends and rates.⁴

Dermoscopy is a non-invasive, in vivo technique used for examination of skin lesions. It is performed with a handheld instrument called "dermoscope," which allows to visualize subsurface skin structures in the epidermis, dermo-epidermal junction, and upper dermis that are mostly not visible to the naked eyes⁶

The histological examination is an invasive and time-consuming procedure that can aid in diagnosis establishment.⁵ Dermoscopy establishes a direct clinical and histological association between the microscopic and macroscopic features of a skin tumour. Dermoscopic examination can be conducted with $10-20\times$ magnification in conventional handheld dermoscopes and $10-200\times$ magnification in videodermoscopes.⁷

While skin cancers are less common in India than they are in Western nation, studies have reported malignant skin tumors prevalence as high as 65.29%, which could be attributed to an increase in the number of referrals received in higher centres.^{3,8}

The idea is to duplicate a specific dermoscopic pattern for a particular tumour to diagnose it before or without histopathological examination, although histopathology is still the gold standard.⁸ However, this is an invasive technique and requires time for processing and reporting of results.

The study on the prevalence of skin tumours in Northern part of Karnataka is not well documented, and hence this study intends to document the same, along with dermoscopic and histopathological features. The study will serve as an opportunity for conglomeration of inter-departmental compilation of all skin tumours under one roof.

Dermoscopic evaluation of skin tumors is an expanding area of research. Thus, any skin tumor can be diagnosed by correlating clinical features, dermoscopy and histopathological features, which in turn can be supported by histochemistry, immunohistochemistry and electron microscopy. Early diagnosis and treatment are necessary for a better cure.

AIMS & OBJECTIVES OF THE STUDY:

- To assess the prevalence of different types of skin tumours in Northern part of Karnataka.
- To study the dermoscopic features of skin tumours in skin of colour.
- To study the histopathological characteristics of different skin tumors.
- To correlate the clinical, dermoscopic and histopathological characteristics of various

skin tumors.

REVIEW OF LITERATURE

The growth of one or more skin components can lead to the development of skin tumors. The benign tumors mostly are of mere cosmetic concern. Morphologically these present as smooth papules, nodules or keratotic lesions that grow slowly and are usually multiple. Malignant tumours are solitary, irregular, rapidly growing plaques or nodules that may ulcerate and metastasize.

PREVIOUS STUDIES::

- In a study by Rekha et al., conducted in 2021, it was inferred that benign appendageal tumors outnumbered malignant appendageal tumors and that pilomatrixoma was the commonest benign appendageal tumor and neurofibroma was the commonest neural tumor.
- A 2019 study by Pappala et al. found that, across a broad age range, skin cancers were comparatively more prevalent in females than in males. Squamous papilloma is the most frequent benign tumor, and keratocytic tumors were more common than other skin tumors.
- In a 2017 study, Bhuvan et al. came to the conclusion that histology is still the gold standard for the identification, treatment, and monitoring of patients with malignant skin cancers.
- According to a 2021 study by Behera et al., the patients' dark skin color contributed to the variability in the dermoscopic features found in this study when compared to previously published aspects.

20

•

٠

- In 2018, Samanta et al. did a study which indicated that the standard technique for diagnosing tumors is still light microscopic inspection. However, in cases when it cannot be verified using hematoxylin and eosin, special stain and immunochemistry can be used.
- According to a 2019 study by Shrivatsava et al., the keratinocytic group is responsible for the majority of common malignant neoplasms, while the skin adnexal group accounts for the majority of benign neoplasms. Although skin adnexal tumors can occur anywhere on the body, they most frequently occur in the head and neck area. Since skin adnexal tumors are frequently misinterpreted clinically, histological investigation is still the gold standard for making the diagnosis and separating benign from malignant tumors.
- Goel et al.'s 2021 study found that skin cancers can impact individuals of all ages.
 Compared to malignant tumors, benign tumors are more common in younger age groups.
 The most common place is the face, and the most common skin tumors in both the benign and malignant categories are keratinocytic tumors.

DERMOSCOPE:

Dermatoscopy, sometimes referred to as dermoscopy, incident light microscopy, epiluminescence microscopy, or skin-surface microscopy, is a low-cost, non-invasive in vivo method that makes it possible to see morphologic characteristics that are invisible to the unaided eye.⁹

German dermatologist Johann Saphier (1920) introduced the term "dermatoscopy". The term "dermoscopy" was later coined by Goldman. The first dermoscope was developed in 1989 by Stolz and Braun- Falco¹⁰.

The dermoscope is a mobile, non-invasive diagnostic tool that enlarges some skin substratal structures that are unseen to the unaided eye or even a magnifying lens, as well as the tiny surface features of skin lesions..¹¹ It connects macroscopic clinical dermatology with microscopic dermatopathology.¹²

Pigmented and non-pigmented skin tumours can be diagnosed with a higher sensitivity and specificity by a dermoscope as compared to clinical examination. This obviates the need for unnecessary excision of benign skin tumours and early detection of malignant tumours.

Other added advantages of dermoscopy are:

- It is easy to use and is less time consuming.
- It is an office procedure that facilitates quick interpretation of skin lesions.
- Helps the observer to focus on the lesion and to isolate the suspicious foci within larger lesions.
- Precisely defines the border of some lesions for better pre-surgical margin mapping.
- Can be used for post-treatment follow-up as well as periodic monitoring of any changes in tumours.

• Provides facility for storage of images for future analysis and comparison.

This diagnostic aid must be used in conjunction with thorough clinical history and examination of skin lesions. Clinical examination with dermoscopy, depending on the type of skin lesion and the clinician's experience, can improve diagnostic accuracy by 5% to 30% as compared to clinical visual inspection alone¹³

Principle of dermoscope:

The basic method of dermoscopic visualisation involves using lenses to enlarge skin lesions and several types of light sources to illuminate them.¹⁴ Depending on the type of skin, any light beam passing through it will usually be refracted, diffracted, reflected, or absorbed. (Figure 1).¹⁵

In dry scaly skin, the light gets reflected whereas in smooth oily skin the light reaches the deeper dermis and hence improves the visibility of the skin sub-surface. The latter principle is used in case of contact technique dermoscopy, which helps to visualize the skin lesions after the application of linkage fluids like oil (immersion oil, olive oil and mineral oil), water, an antiseptic solution, glycerin, gels¹⁶.

Figure 1: Optics of light in dermoscope

The skin lesion's surface and subsurface areas are illuminated by light from a source that is magnified by a lens. The fluid interface between the dermoscope and the skin surface improves light penetration into the lesion

Parts of dermoscope:^{11,12}

A. Achromatic lens: Most dermoscopes have a 10X magnification. However, a video-

dermoscope can attain magnifications of up to 1000X.

B. In-built illumination system: Compared to traditional halogen lights, which emit yellow light, light-emitting diodes (LEDs) are the standard sources for high-intensity white light utilising 70% less energy.

- C. Power supply: This portable equipment is battery-powered or has rechargeable handles
- D. *Contact plate*: The components of the contact technique dermoscopy are large contact plates (20 mm in diameter) and small contact plates (8 mm in diameter). 2%
 glutaraldehyde or methylated spirit can be used to sterilise the multi-located silicone glass used in the contact plates.

The purpose can also be achieved by boiling or autoclaving for five minutes at 134⁰ C. These plates come in both graded and non-graduated varieties, some of which have scales.

- E. *Display system*: Unlike the video-dermoscope, which can be connected to a computer or other displays or even have its own screen, the hand-held dermoscope has a see-through viewing window.
- F. *Inbuilt photography system*: Except for the hand-held dermoscope, these now constitute a vital part of a dermoscope. The camera could be an integrated video camera, an attachable conventional or digital camera, or both. In the former situations, supporting software is implemented for capturing images, storage, retrieval, analysis.

Technique of dermoscopy

The dermoscope can be used either by contact or non-contact techniques. In contact technique dermoscopy, using the non-polarized light (NPL), the glass plate or contact plate is applied to the surface of the lesion with an interface fluid. In non-contact technique, using the polarized light

(PL) there is no contact with the skin surface, which gives an added advantage of avoiding nosocomial infections¹⁸

While NPL provides greater imaging of tissues that are more superficial, polarized light provides better visualization of those that are placed deeper in the skin.

Given that the dermoscope makes it easier to see skin in a horizontal orientation, blood vessels that run parallel to the skin's surface are shown as lines, and those that run perpendicular to the skin's surface are shown as dots or loops. The non-contact approach does not squeeze the vascular architecture, making vessels easier to visualize²⁰

IMMERSION FLUID

The literature provides reports on the use of several immersion liquids. Water-based gels, oils, disinfection solutions, and water comprise the four categories of immersion liquids.^{11,21}

The characteristics of an optimal immersion liquid are:

- Obtainable with ease
- Allows the structural parameters of the lesion to be well seen
- Remaining color-neutral, inexpensive
- Fewer air bubbles and less volatility
- Suitable for use in specific areas such as the mucosa, around the eyes
- Not producing an overly bright or matte images

Immersion oil is a better choice for an immersion fluid in visualizing the pigment network. Ultrasound gel or immersion oil can be employed for structural elements other than pigment networks. Ultrasound gel is a preferable option to immersion oil for dermoscopic inspection of non-pigmented skin lesions. In inflammatory dermatoses, alcohol is more beneficial and may slow the spread of infections. Ultrasound gel can be used for dermoscopy of solid curving areas, particularly at the edge of the nail plate.²³ It is also appropriate for assessing the mucosa, nail bed, genitalia, and eyelids.

Limitations of dermoscopy:^{24,25}

Since, dermoscopy is a non-invasive procedure, there are very few potential side effects. The sole drawback is the extremely slim chance of patient-to-patient cross-infection, particularly when using contact dermoscopy. There are numerous ways to avoid the chance of cross-infection:

- 1. Application of non-contact polarised dermoscopy
- After each patient examination, use isopropyl alcohol to disinfect the USB videodermatoscope's rim or lens

Usage of disposable transparent lens shielding material, such as cling film or soft plastic covers over the instrument; these caps are now included free of charge with most high-quality dermatoscopes and can be used with USB and handheld video dermatoscopes.

Minor issues worth consideration²⁴

- Dermoscopy artefacts that could be interpreted incorrectly should be avoided. Vermillion
 powder, colored powders, dust particles, hair dye, henna, hair fibers, minoxidil crystals,
 hair styling gel, etc. are common artifacts in trichoscopy; in onychoscopy, common
 artifacts include nail paint and varnish, as well as topical applications, especially sunscreen
 and makeup ingredients. Hence thorough prior cleaaning of the area is advised.
- 2. Colour disparity amongst devices: Images obtained with various dermatoscopes typically have a slightly different colour balance. That is something to be mindful of.
- 3. Differences between Fitzpatrick skin types: It is now clear that many characteristics that are easy to recognize in Fitzpatrick skin types I–II are either invisible or hard to spot in darker skin types. The colors (black, brown, grey, and blue) that originate at the histology level are hard to perceive and comprehend on people with dark skin. Given that ethnic skin conditions frequently exhibit post-inflammatory hyperpigmentation, brown pigmented structures on dermoscopy should be interpreted with caution.
- 4. Absence of "dermoscopic nomograms": To be an expert in histopathology interpretation, one needs to be well-versed in normal histology, accounting for expected physiological differences resulting from age, gender, and specific body parts. For instance, many vessels are visible in the buccal mucosa's normal mucoscopic images; this is not to be mistaken for a malignant characteristic. To reduce errors in the interpretation of dermoscopic structures,

an image library including such site-specific and skin type-specific dermoscopic monograms

is desperately needed.

MAJOR CATEGORIES OF DERMOSCOPIC CRITERION:

Dermoscopically, each disease can be identified based on one or two distinguishing features. A "predominant" criteria is a structure that is more noticeable than other coexisting structures in the larger section of a lesion. When performing a dermoscopy, the following are the most important variables to consider:

Color:

It is the melanin in the skin, whether inside the melanocytes, nevic cells, or keratinocytes that determines the color in dermoscopy (Figure 2)¹⁵

The other important chromophore is the hemoglobin²⁶

Figure 2. Colors in dermoscopy: different contrasts of the colors imparted by the three essential chromophores of the skin namely keratin, melanin and hemoglobin²⁷

Dermoscopic structures:

The appearance of melanin as clusters within different cells, in isolation, or concentrated around the edge of the lesion also helps to identify certain "structures." Similarly, haemoglobin distribution within the lesion dictates the vascularization patterns and structures (Table 1).^{10,}

Table 1: Few dermoscopic structures and their histopathological correlation

Pigment network	- Honeycomb like network consisting of pigmented lines
	(rete ridges) and hypopigmented holes (dermal papillae).

Dots	 Small round structures < 0.1mm in diameter representing focal melanin accumulation in upper part of epidermis.
Globules	 Symmetrical round to oval well demarcated structures > 0.1mm in diameter. Represent melanocytes, clumps of melanin and/or melanophages situated in lower epidermis, dermoepidermal junction, or in papillary dermis.
Branched streaks	 An altered pigment network Represents remnants of pigmented rete ridges and bridging nests of melanocytic cells within epidermis and papillary dermis.
Radial streaming	 Fringe type structure at periphery of lesion. Representing confluent pigmented junctional nests of pigmented melanocytes.
Pseudopods	 Finger-like projections of dark pigment at periphery of lesion. They may have knobs at their tips. Correspond to intra-epidermal or junctional confluent radial nests of melanocytes.

Streaks	- Term used interchangeably with radial		
	streaming or pseudopods.		
	- Can be irregular or regular.		
Structureless areas	- Amorphous or homogenous areas devoid		
A.	of any dermoscopic structures Usually hypopigmented.		
Blotches	- Large collection of melanin pigment localized		
	throughout epidermis and/or dermis visually obscuring the underlying structures.		
Regression pattern	- White scar like depigmentation or peppering		
	 (speckled multiple blue-gray granules within a hypopigmented area). Shows fibrosis. 		
Blue-white veil	- Irregular, indistinct, confluent blue pigmentation with		
	 an overlying white, ground-glass haze. Correspond to aggregation of heavily pigmented cells or melanin in dermis with compact orthokeratosis. 		
Milia like cysts	- Round white or yellowish structures that shine brightly		
	under NPL. Correlate with intraepidermal keratin filled cysts. 		

Comedo-like openings (crypts,	- Blackhead like follicular keratin plugs on surface of	
pseudofollicular openings)	lesion.	
	- Corresponds to keratin filled invagination of epidermis.	
Fissures and ridges	- Irregular, linear keratin filled depressions.	
A REAL PROPERTY AND A REAL	-	
Fingerprint-like structures	- Tiny ridges running parallel.	
Moth eaten border	- Concave borders	
Leaf-like areas	- Brown to gray-blue discrete bulbous blobs forming a leaf	
(maple leaf like areas)	like pattern.	
2 the		
Spoke wheel-like structures	- Well circumscribed, brown to gray-blue-brown, radial	
***	projections meeting at darker brown central hub.	

Blue-gray ovoid nests	- Large, well circumscribed, confluent or near confluent
	pigmented ovoid areas, larger than globules.
Multiple blue-gray globules	- Round, well circumscribed structures.
Chrysalis	- White shiny streaks due to increased dermal collagen.
Ulceration	- Absence of epidermis, not associated with a history of trauma seen as large, irregular shaped, dull red or red-brown structureless areas.

VESSEL PATTERNS:

Table 2:_Vessel morphologies

VASCULAR MORPHOLOGY	DESCRIPTION	DIAGRAM
Arborizing vessels or telangiectasias	Large primary vessels that divide into smaller secondary vessels	YFK
Hairpin vessels	Vessels that curve back on themselves ,forming loops.	e_{v}^{n}
Crown vessels	Peripheral vessels that rarely branch and do not cross the centre of the lesion.	
Comma	Thick linear curved lines with few branches and occasionally having one end thicker than the other.	r?
Dotted	Small red dots closely aligned to each other in a highly regular pattern.	
Glomerular	Tortuous capillaries often clustered together resembling the glomerular apparatus of the kidney	60 00 6 8 8

Corkscrew	Spiral vessels with irregular linear pattern.	and the second
Milky-red areas/globules	Unfocused milky-red colour usually typically associated with elevated part of lesion	
Strawberry pattern	Structureless erythematous areas with whitish areas in between creating a type of pseudo network	
Linear irregular	Straight vessels that differs in shape and size	
Polymorphous	Various vascular patterns within the same lesion.	

Table 3: Vessel distributions

VESSEL PATTERN	DESCRIPTION	DIAGRAM
Regular	Vessels distributed equally all over the lesion	
String of pearls	Dotted vessels arranged linearly in a a string of pearl pattern.	
---------------------	--	--------
Clustered	Tendency to cluster together in a lesional area	
Radial	Vessels located at periphery of lesion which does not cross or occupy the centre.	
Branching	Large vessels branching into smaller ones.	
Irregular	Vascular polymorphism lacking a specific pattern	1601
Rope-ladder pattern	Short slightly dilated loops that arise from edges of scar and cross it completely.	JEAN I

CLASSIFICATION OF SKIN TUMORS:²⁸

1.	Neoplasms with epithelial differentiation
	a. Keratinocytic differentiation
	b. Appendageal differentiation
	i. Follicular differentiation
	ii. Eccrine or apocrine differentiation
	iii. Sebaceous differentiation
2.	Melanocytic neoplasms
3.	Soft tissue neoplasms
	a. Fibrous and fibro histiocytic tumors
	b. Vascular tumors
	c. Smooth muscle tumors
	d. Skeletal muscle tumors
4.	Neural tumors
5.	Tumors of subcutaneous tissue

- Merkel cells Melanocytes, Langerhans cells, and Merkel cells make up the remaining 10% of the epidermal layer, which is 90% composed of keratinocytes.²
- Most common epithelial tumors are keratinocytic tumors, which are derived from epidermal and adnexal keratinocytes. They can range from benign lesions that merely cause cosmetic concern to premalignant and aggressive lesions.²⁸

Keratinocytic tumors are classified as:²⁸

1.	Benign acanthomas		
	a)	Clear cell acanthoma	
	b)	Epidermolytic acanthoma	
	c) Warty dyskeratoma		
	d) Large cell acanthoma		
	e) Seboacanthoma		
	f) Basosquamous acanthoma		
	g) Seborrheic keratosis		
	h)	Keratoacanthoma (KA)	
2.	Actinic Kerate	osis	
3.	Bowen's disease (BD) and bowenoid papulosis (BP)		
4.	Basal cell carcinoma (BCC)		
5.	Squamous cell carcinoma (SCC)		

• Melanocytic tumors are tumors of melanocytic differentiation.

Classified as -

- a. Benign tumors i.e., nevi
- b. Malignant tumors i.e., malignant melanoma

Skin adnexa, or epidermal appendages, are specialized cells that extend from the epidermis to the dermis. These cells include follicular epithelial cells, sebaceous cells, and apocrine and eccrine gland cells.²⁹

The skin adnexal tumours are classified into sub-groups, depending on their differentiation.
 Appendageal tumours are classified as:²⁸

zion
1–
) —
<u>*</u>
Hidrocystoma
Syringoma
Poroma
Syringofibradenoma
Hidradenoma
Spiradenoma
Cylindroma

2. Tumors with follicular differentiation	
<u>Malignant –</u>	Benign –
a) Pilomatrical carcinoma	a) Trichoblastoma
b) Proliferating tricholemmal tumor	b) Pilomatricoma
	c) Tricholemmoma
	d) Trichofolliculoma

3. Tumors with sebaceous differentiation			
a)	Sebaceous carcinoma		
b)	Sebaceous adenoma		
c)	Sebaceoma		
d)	Cystic sebaceous tumor		

Evaluation of pigmented lesions:

The Board of the Consensus Net meeting proposes a two-step process for the classification of skin pigmented lesions. (Figure 3)³⁶

The algorithm's initial step separates the non-melanocytic lesions from the melanocytic lesions. A lesion must have one of the following features in order to be classified as melanocytic: pigment network, pseudonetwork, aggregated globules, branched streaks, or parallel pattern. Look for particular features to diagnosis pigmented BCC, SK, or haemangioma if these are lacking. Treat the lesion as melanocytic if none of these lesions can be detected³³

Figure 3: The Two step algorithm for pigmented skin lesions

The second step is to determine if the melanocytic lesion is benign or malignant, using one of the following approaches:^{33–36}

• *Pattern analysis*: It was the first melanocytic algorithm developed by Pehamberger et al.

This method is the most sensitive and specific amongst all but is quiet cumbersome and requires a detailed, qualitative assessment of multiple dermoscopic criteria. It is most often used by experienced dermoscopists³²

• ABCD rule of dermoscopy(Figure 4): It was described by Stolz et al in 1993³²

False positive results can occur in globular-patterned nevi, lentiginous, papillary, or

congenital nevi, as well as spitz nevi. This rule is not applicable for pigmented lesions on

face, palms and soles³⁷

DERMOSCOPIC CRITERION DEFINITION SCORE WEIGHT FACTOR Asymmetry in 0, 1, or 2 perpendicular axes; assess contour, colors and structures 0-2. Border abrupt ending of pigment pattern at periphery in 0-8 segments 0-8. Color presence of up to 6 colors (white, red, light-brown, dark-brown bluegray, black) 1-6. Dermoscopic structures presence of network, structureless(homogeneous) areas, branched streaks, dots, and globules 1-5. Formula for calculating total dermatoscopy score (TDS) = (A score x 1.3) + (B score x 0.1) + (C score x 0.5) + (D score x 0.5) Interpretation of total score: Benign melanocytic lesion <4.75; Suspect lesion (close follow-up or excision recommended): 4.75-5.45; Lesion highly suspect for melanoma >5.45.

Figure 4: ABCD rule of dermoscopy

- 7- *point checklist:* An algorithm was created by Dal Pozzo et al. using three major and four minor criteria (Table 4).³⁷ Every minor criterion receives one point, while each major criterion is worth two points. The diagnosis of melanoma requires a minimum total score of three, which can be obtained by simply adding the individual scores.
 - *Menzies scoring method:* Menzies et al in 1996 identified 11 features for their high specificity and low sensitivity (Table 5)³⁷ For the diagnosis of melanoma, both the negative features (which must be absent) and the positive features (one or more must be present) are taken into consideration.
- *CASH method*: This is a new algorithm put forward by Kopf et al. (Table 6)^{32,37} Four parameters were analyzed to give a total score of 2 to 17. If the score is seven or lower, it is probably benign; if it is eight or higher, melanoma may be suspected.

Table 4: The SEVEN point checklist

DERMOSCOPIC CRITERION SCORES

Major criteria:

- 1. Atypical pigment network
- 2. Blue-whitish veil
- 3. Atypical vascular pattern

Minor criteria:

1. Irregular streaks

2. . Irregular dots/globules

- 3. Irregular blotches
- 4. Regression structure

Table 5: Menzies scoring method

Dermoscopic criterion

Negative Features

- Symmetry of pattern
- Presence of single color

Positive Features

- Blue-veil
- Multiple brown dots
- Pseudopods (streaks)
- Radial streaming (streaks)
- Scar-like depigmentation
- Peripheral black dots/globules
- Multiple (5 or 6) colors
- Multiple blue/gray dots
- Broadened network

CASH		SUSPICION FOR MELANOMA	
Color	1-2	3-4	5-6
Architectural	No/Mild	Moderate	Marked
Disorder			
Symmetry	Biaxial	Monoaxial	None
Homogeneity/	1 Structure	2 Structures	3+ Structures
Heterogeneity			

Table 6: The CASH algorithm

Algorithm for dermoscopic evaluation of the non-pigmented skin lesions:^{34,38}

Step 1: Evaluation of the lesion number (single: tumour or multiple: inflammatory/ infectious

disease).

- Step 2: Assessment of the vascular pattern's morphologic type
- Step 3: Assessing how the vascular patterns are arranged architecturally within the lesion
- Step 4: Assessing extra dermoscopic standards.
- Step 5: Making a diagnosis.

DERMOSCOPIC FINDINGS IN COMMON BENIGN AND MALIGNANT TUMOURS:

MELANOCYTIC NEVI:

Melanocytic nevi (MN), often known as common acquired MN or moles, are benign nevus cell proliferations that are commonly found in dermatology clinics as one of the most common neoplasms.⁴¹

Melanocytic nevi are classified into two categries: congenital and acquired. It can be challenging to distinguish between the two forms clinically. A more recent method categorizes all smaller nevi (less than 15 cm) regardless of when they first appeared based on dermoscopic results In addition to the well defined groups, there are numerous more nevi kinds that are both clinically and microscopically unique. These include recurrent nevus, cockade nevus, Meyerson nevus, and halo nevus⁵⁵

Based on the dermoscopic findings, the current dermoscopic categorization system distinguishes four patterns: homogenous blue type, globular, reticular, and star-burst pattern⁵⁵

A globular pattern is frequently accompanied by a uniform brown coloured backgrund. Children frequently exhibit globular pattern, but adults typically exhibit reticular pattern⁵⁵

BASAL CELL CARCINOMA:

BCC is a malignant epithelial skin tumor that grows slowly and primarily affects people with pale skin who are middle-aged or older. It is becoming more commonplace globally and is more common in younger age groups. Menzies et al. devised the dermoscopic algorithm for the

detection of BCC in 2000 (table 7). For a pigment BCC to be diagnosed using this approach, it

must have both a negative feature and at least one positive feature.

Table 7: Dermoscopic features of pigmented BCC

Negative feature: Absence of pigment network.		
Positive features:		
- Linear and arborizing telangiectasia		
- Leaf-like or structureless areas on the periphery of the lesion		
- Multiple blue-gray globules		
- Large blue-gray ovoid nests		
- Focal ulceration		
- Spoke wheel areas		

Clinical types:

- 1. Nodular or nodulo- ulcerative (rodent ulcer)
- 2. Micronodular
- 3. Morpheaform
- 4. Pigmented BCC
- 5. Superficial BCC (sBCC)
- 6. Fibroepithelioma of Pinkus
- 7. Ulcerated

8. Metastatic

There are various histopathological variants of BCC, which include solid nodular, nodular, adamantinoid, baso-squamous, clear cell, cystic, giant cell, granular cell, keloidal cell, keratotic and trichilemmal types.

The common sites of occurrence of BCC are eyelids, inner canthus of eye and behind the ears. Typically, early BCCs have elevated telangiectatic borders, are translucent or pearly, and are tiny. A characteristic rodent ulcer with an ulcerated center and an indurated margin might appear as advanced lesions.^{28,44} Increased palpability of the lesion indicate a chronic lesion and more likelihood that it belongs to a male as they are less likely to attend skin cancer clinics.⁴⁵ Compared to pigmented BCCs, non-pigmented BCCs are far more prevalent. The features that set non-pigmented BCC apart from other skin lesions during a dermatological examination are their asymmetric arborizing vessels, pink color, and localized ulceration. Areas of white regression are visible.

Pigmented BCC can be clinically indistinguishable from melanoma⁴⁶

Arborizing vessels are a specific dermoscopic finding of nodular, cystic and morpheaform BCC. Superficial BCC can be diagnosed by fine micro-arborizing vessels, shiny red-white structure-less areas and multiple small erosions. Other features rarely seen are scattered global pattern of vessels, featureless areas, atypical red vessel, corkscrew vessels, comma vessels, brown globules and dots, telangiectasia, atypical red vessels, red dots, hemorrhage, ulceration, hypopigmented areas, bluegrey ovoid nests, spoke-wheel areas, maple leaf-like areas and red globules on dermoscopy.

SYRINGOMA:

A benign adnexal tumor; develops from the eccrine sweat glands' ducts.

Usually multiple in number and most commonly seen in females at puberty. The lesions are limited to the lower eyelids and cheeks. The individual lesions are yellowish colour, with a tendency to look transparent and cystic at times. The surface might have a flat top or a dome form, and the outline can occasionally be angular.^{28,44} Dermoscopy shows homogenous light brown area and a partial delicate, light brown pigment network is seen at the periphery. Multifocal hypopigmentation may be seen in some lesions⁴⁷

PYOGENIC GRANULOMA:

A skin and mucosal membrane benign acquired vascular lesion.

Begins as a single papular or polypoid lesion that bleeds and grows quickly in response to small

trauma.43

Dermoscopy features:⁴⁸

- Reddish homogenous areas
- White collarette
- Ulceration
- White rail lines intersecting the lesion.

Table 8: Clinical presentation and dermoscopic features of few other tumors involving the

skin:

Skin tumour	Clinical presentation	Dermatoscopic features	
SCC ^{12,49,57}	Characterized by the invasion of	Polymorphous vascular	
	dermal tissue by keratinocytes	pattern- hallmark	
	proliferating in a neoplastic	• Irregularly shaped and	
	manner through a break in the	distributed hairpin vessels,	
	basal layer.	irregularly distributed dotted,	
		glomerular and linear vessels.	
	Variable presentations-	• White scales, white circles,	
	erythematous patch,	white clods, white lines	
	plaque, nodule which may show	• Ulceration, keratin crust and	
	prominent or little scaling and	surface scales, structureless	
	pigmentation	areas may be present	
Actinic	Caused by chronic exposure to		
cheilitis ⁵⁰	ultraviolet radiation mainly		
	involving the lower lip.		
Bowen's	In-situ squamous cell carcinoma	Classic signs of Bowen disease	
disease	of epidermis	include surface scales and	
$(BD)^{12,57}$		glomerular (coiled) and dot vessels	
	Lesions are erythematous and	gathered in clusters with a white halo	
	velvety in form in areas lacking	surrounding them, indicating	
	keratinization. Scaling lesions	keratinization. ¹²	

	overlying keratinized epithelium		
	conceal this erythema.		
Seborrheic	Usually asymptomatic but may	Hyperkeratosis/fissures/ridges; milia-	
Keratosis ^{28,44,51}	be itchy.	like cysts; pseudofollicular (comedo-	
	Begin as multiple, well	like) openings; light brown finger-	
	circumscribed, dull, flat, tan or	like structures; hairpin blood vessels;	
	brown patches.	cerebriform appearance (sulci and	
	Follicular prominence- clinical	gyri)	
	hallmark.		
	As SK grow, they become more		
	papular or polypoidal with a		
	waxy, verrucous or "stuck-on"		
	appearance.		
Actinic	Direct precursor of SCC that	Vessels-linear, and branched with	
keratosis ^{9,12,57}	arises from prolonged exposure	white globular structures that have a	
	to UV radiation.	"strawberry pattern"	
		Erythematous base	
	Macules, papules, or	White scales and keratotic plugs	
	hyperkeratotic plaques on	Pigmented AK: brown pseudo	
	photoexposed areas.	network.	
Acral	A histological subtype of	Parallel ridge pattern, pigmentation	
melanoma ⁵²	cutaneous melanoma arising on	on the surface ridges that resembles	
	the acral areas	bands (dermatoglyphics).	

Fibrokeratoma ⁵⁶	Benign lesion, is possibly a	Dotted or globular vessels;	
	reaction to trauma, which occurs	hyperkeratotic white scaly collarette;	
	on the fingers and toes.	homogenous rosy white areas in the	
		centre	
	Solitary dome-shaped lesion,		
	with a collarette of slightly raised		
	skin at its base.		

METHODOLOGY

SOURCE OF DATA

Patients presented to Shri B.M. Patil Medical College Hospital and Research Centre, VIJAYAPURA.

Period of study:

The study was conducted during the period of September 2022 to May 2024

Study design:

A hospital based, prospective cross-sectional study.

Sample size:

Using JMP SAS 16 software for sample size calculation, the proportion of Keratinocytic tumors (most common type) is 31.4%, this study requires a sample size of 72. So to achieve a power of 90% for detecting a difference in Proportion (Exact - Proportion: Difference from constant (binomial test, one sample case)) with 5% level of significance.

Statistical Analysis: The data obtained was entered in a Microsoft Excel sheet, and statistical analyses was performed using a statistical package for the social sciences (SPSS) (Version 20). Results are presented as Mean, SD, counts and percentages, and diagrams. For normally distributed continuous variables between the two groups was compared using an independent sample t-

test. For not normally distributed variables, the Mann-Whitney U test was used. For Categorical

variables between the two groups are compared using the Chi-square test exact test. If p value <

0.05 was considered statistically significant. All statistical analysis were performed two-tailed.

METHOD OF COLLECTION OF DATA:

Inclusion criteria:

1. Patients presenting with any growth over skin and mucous membrane, irrespective of

age and gender were enrolled in the study after informed written consent.

Exclusion criteria:

1. Patients refusing biopsy

Methodology:

Methods:

Detailed history with respect to the onset, course, duration and symptomatology of skin tumors along with clinical photographs, dermoscopic images was recorded. Biopsy samples was collected for histopathological assessment.

Methodology:

All patients willing to enroll for the study were subjected to detailed clinical assessment in which history regarding the onset, duration and symptomology of the disease was recorded following which dermoscopy was performed. For dermoscopy, a hand held dermoscope (DermLite DL3, 3Gen Inc., San Juan Capistrano, CA, USA) was used. Technique employed was polarized dermoscopy with interface fluid. Dermoscopic images were recorded using a digital camera attached to the dermoscope. Dermoscopic observations were recorded as per the descriptive analytical terminologies for pattern analysis.²

After clinical and dermoscopic evaluation, a provisional diagnosis was made and biopsy (wedge or excisional as applicable) was performed for histopathological confirmation.

For histopathology, skin biopsies and resected specimens was included. The tissues were fixed in 10% formalin and sections were taken. Then they were processed and embedded in paraffin wax. Thin sections of 3-5 microns were made and stained with hematoxylin and eosin after which histopathological examination was done and final diagnosis was established. Special stains and/or immunohistochemistry was performed in cases as required.

Compiled data was analysed statistically.

ETHICAL CLEARANCE:

Institutional ethical commitee clearance was undertaken for the study

RESULTS

A hospital based cross-sectional study was conducted from September 2022 to May 2024

Among 37589 patients attending dermatology OPD at Shri BM Patil medical college during this

period, 116 patients had skin tumors; with a prevalence of 0.30

DISTRIBUTION OF CASES

Based on dermoscopy and histopathological examination, distribution of cases was as follows:

Skin tumors	No. of patients	Percentage
Actiinic chelitis	6	5.17
Actinic keratosis	2	1.72
Angikeratoma circumscriptum	2	1.72
Acral melanoma	1	0.86
Basal cell carcinoma	14	12.07
Bowens disease	4	3.45
Benign spindle cell lesion	1	0.86
Bowenoid papulosis	1	0.86
Buschke Lowenstein tumor	1	0.86
Cherry angioma	1	0.86
Cutaneous horn	3	3.45
Capillary hemangioma	1	0.86
Cutaneous lymphoma	1	0.86
Dermatofibroma	4	3.45

Table 9: Distribution of cases in our study

Dermatofibrosarcoma protuberans	2	1.72
Dilated pore of winer	1	0.86
Encapsulated neuroma	1	0.86
Epidermal nevus	2	1.72
Fibrokeratoma	4	3.45
Fibrous papule of nose	1	0.86
Irritational fibroma	1	0.86
Keratoacanthoma	2	1.72
Mucocele	1	0.86
Melanocytic nevi	16	13.79
Neurofibroma	1	0.86
Nevus lipomatosus	1	0.86
Nevus sebaceous	3	2.59
Papillary eccrine adenoma	1	0.86
Periungual fibroma	1	0.86
Pyogenic granuloma	13	11.21
Pilomatricoma	1	0.86
Sebaceous adenoma	1	0.86
Schwannoma	1	0.86
Squamous cell carcinoma	7	6.03
Seborrheic keratosis	2	1.72
Syringoma	4	3.45
Trichoepithelioma	1	0.86
Verrucous epidermal nevus	4	4.31

Vascular hemangioma	1	0.86
Total	116	

Figure 5: Graphical representation of distribution of cases

AGE DISTRIBUTION:

Population in the age group between 11- 20 years constituted the majority of the study population with a maximum of 23 (19.83%) patients followed by 20 (17.24%) in the age group 21-30 years.

Age(Years)	No.of patients	Percentage
<= 10	8	6.90
11 - 20	23	19.83
21 - 30	20	17.24
31 - 40	19	16.38
41 - 50	11	9.48
51 - 60	13	11.21
61 - 70	16	13.79
71+	6	5.17
Total	116	100

Table 10: Age distribution among various skin tumors

Figure 6: Graphical representation of age distribution

GENDER DISTRIBUTION:

Among 116 patients, 61 (52.29%) were females and 55 (47.41%) were males.

Gender	No. of patients	Percentage
Female	61	52.59
Male	55	47.41
Total	116	100

Table 11: Gender distribution among various skin tumors

Figure 7: Graphical representation of gender distribution

Comparing dermoscopy diagnosis versus histopathology diagnosis:

Out of 116 cases, 105 (90.52%) histopathological examination diagnosis correlated to the dermoscopic examination, where as in 11 cases(9.48%) it was discrepancy.

Similar Diagnosis	No. of patients	Percentage
Yes	105	90.52
No	11	9.48
Total	116	100.0

 Table 12: Similarity of dermoscopy and histopathology diagnosis

Figure 8: Graphical representation of similarity of dermoscopy and histopathology diagnosis

Tumor category distribution:

Out of 116 cases, predominantly the tumors were benign- 75 (64.66%), followed by pre malignant 25(21.55%) and malignant tumors 16(13.79%)

Tumor category	No. of patients	Percentage
Benign	75	64.66
Malignant	25	21.55
Pre Malignant	16	13.79
Total	116	100

Figure 9: Graphical representation of distribution of cases based on tumor catergory

Classification of tumors:

Out of 116 cases, predominantly the tumors were keratinocytic- 52 (44.83%), followed by Soft tissue tumors 34 (28.31%), Melanocytic tumors 16 (13.79%), Appendageal tumors 12 (10.34%), Others 4 (3.45%)

Table 14: Distribution of tumors based on classification

Tumor classification	No. of patients	Percentage
Keratinocytic	52	44.83
Melanocytic	16	13.79
Soft tissue tumors	34	28.31
Appendageal	12	10.34
Others	04	3.45
Total	116	100

Figure 10: Graphical representation of distribution of tumors based on classification

Sub-classification of tumors:

Table 15: Distribution (of tumors based	on sub-classification
--------------------------	-----------------	-----------------------

Tumor sub-classification	No. of patients	Percentage
Keratinocytic	52	44.83
Benign	16	13.79
Pre malignant	15	12.93
Malignant	21	18.10
Melanocytic	16	13.79
Benign	15	12.93
Pre malignant	0	0.00
Malignant	1	0.86
Soft tissue tumors	34	29.31
Benign	32	27.59
Pre malignant	0	0.00
Malignant	02	1.72

Appendageal	12	10.34
Benign	12	10.34
Pre malignant	0	0.00
Malignant	0	0.00
Others	4	3.45
Benign	2	1.72
Pre malignant	1	0.86
Malignant	1	0.86
Total	116	100

Figure 11: Graphical representation of distribution of tumors based on sub-classification

Following are the findings among the most commonly encountered skin tumors:

BASAL CELL CARCINOMA:

Distribution of cases of Basal cell carcinoma and their dermoscopic features:

A total of 14 patients were diagnosed clinically and histopathologically as BCC, of which 10 were superficial and 4 nodular or ulceronodular BCC. There was a significant female preponderance (F=8, M=6). Most of the patients were in the age group of 56-65 years (n=7) followed by patients above 66 years (n=4).

Half of the patients (n=7) had scales on dermoscopic examination, which were white in colour.

Background colour was noted to be blue gray (n=9) for most of the study patients. Polymorphic

vessel morphology (n=5), distributed peripherally (n=7) were seen most commonly.

Predominant dermoscopic features were blue grey globules & dots (n=9), white lines (n=6) and

maple leaf structures (n=6)

Sex	No. of cases (14)	% (out of total 14 cases)
Male	6	42.86
Female	8	57.14
Age (Years)		
0-35	1	7.14
36-55	2	14.29
56-65	7	50.00
≥66	4	28.57

Table 16: Demographic	details of	f patients	with	BCC
-----------------------	------------	------------	------	-----

Figure 12: Graphical representation of gender distribution among BCC cases

Figure 13: Graphical representation of age distribution among BCC cases

Table 17: Dermoscopic features of BCC:

	No. of cases (14)	% (out of total 14 cases)	
Scales color		•	
Absent	7	50.00	
White	7	50.00	
Scale distribution			
Absent	7	50.00	
Central	2	14.29	
Diffuse	3	21.43	

Peripheral	2	14.29			
Background Colour					
Pink	4	28.57			
Blue Gray	9	64.29			
Dark Brown	1	7.14			
Vessel Type	Vessel Type				
Absent	2	14.29			
Telangiectasias	3	21.43			
Arborizing	2	14.29			
Linear	2	14.29			
Polymorphic vessels	5	35.71			
Vessel Distribution					
Absent	2	14.29			
Peripheral	7	50.00			
Diffuse	6	42.86			
Other Features					
Maple leaf structures	6	42.86			
Spoke wheel structures	1	7.14			
White lines	6	42.86			
White structureless areas	2	14.29			
Pink homogenous areas	1	7.14			
Keratin plugs	4	28.57			
Cerebriform pattern	2	14.29			
Fingerprint like structures	2	14.29			
Ulceration	3	21.43			
Brown globules	2	14.29			
Blue gray globules	9	64.29			
Concentric structures	2	14.29			
Brown dots	2	14.29			

MELANOCYTIC NEVI:

Distribution of cases of Melanocytic nevi and their dermoscopic features:

Out of 116 cases, 16 patients were diagnosed with melanocytic nevi, with a notable predominance of females (11 females, 5 males). The majority of patients belonged to the 21-30 year age group (n=6), followed by 11-20-year age group (n=5).

Scales were predominantly absent (n=14), although white scales were observed in a minority of cases (n=2). Most nevi exhibited an absent scale distribution (n=12), with patchy and diffuse distributions observed in isolated cases (each n=1).

The background colour of the nevi was primarily dark brown (n=13), while pink and light brown backgrounds were observed in a small number of cases (n=2 and n=1, respectively). Vessel types were generally absent (n=14), although dotted and linear vessels were noted in isolated cases (each n=1). Vessel distribution was mostly absent (n=14), with diffuse distribution noted in a few cases (n=2).

Principal dermoscopic features included brown globules (n=9), pigment lines (n=4), and milia-like cysts and white structureless areas (each n=3). Additional features such as comedo-like openings, white globular structures, white dots, blue-grey globules, and brown dots were observed in a limited number of cases (each n=1-2).

Sex	No. of cases (16)	% (out of total 16 cases)
Male	5	31.25
Female	11	68.75
Age (Years)		
0-10	1	6.25
11-20	5	31.25
21-30	6	37.5
31-40	3	18.75

Figure 14: Graphical representation of gender distribution among Melanocytic nevi cases

Figure 15: Graphical representation of age distribution among Melanocytic nevi cases

Table 19: Dermoscopic features of Melanocytic nevi:

	No. of cases (16)	% (out of total 16 cases)	
Scales color			
Absent	14	87.5	
White	2	12.5	
Scale distribution			
Absent	12	75	
Patchy	1	6.25	
Diffuse	1	6.25	
Background Colour			
Pink	2	12.5	
Light brown	1	6.25	
Dark Brown	13	81.25	
Vessel Type			
Absent	14	87.5	
Dotted	1	6.25	
Linear	1	6.25	
Vessel Distribution			
Absent	14	87.5	
Diffuse	2	12.5	
Other Features	1		
Milia like cysts	3	18.75	
Comedo like openings	1	6.25	
White globular structures	1	6.25	
White structureless areas	3	18.75	
White dots	1	6.25	
Pigment lines	4	25	
Brown globules	9	56.25	
Blue gray globules	1	6.25	
Brown dots	2	12.5	

PYOGENIC GRANULOMA:

Distribution of cases of Pyogenic granuloma and their dermoscopic features:

Out of 116 cases, 13 patients were diagnosed with pyogenic granuloma, showing a slight female predominance (7 females, 6 males). The majority of patients fell within the 21–30-

year age range (n=4), followed by those aged 11-20 years (n=3).

Scales were absent in all instances (n=16), with no cases exhibiting scales. The granulomas consistently displayed a pink background colour (n=16).

There were no observed vessel types or distributions in any of the cases (n=16).

Notable dermoscopic features included white lines (n=12), pink homogenous areas (n=5), and occurrences of white collarette and white structureless areas (each n=2), as well as red

homogenous areas (n=1).

No. of cases (13)	% (out of total 13 cases)	
6	46.15	
7	53.85	
2	15.38	
3	23.08	
4	30.77	
2	15.38	
2	15.38	
	No. of cases (13) 6 7 2 3 4 2 2 3 4 2 2 2	

Table 20:	Demographic	details of	patients with	Pvogenic	granuloma
					8

Figure 16: Graphical representation of gender distribution among Pyogenic granuloma cases

Figure 17: Graphical representation of age distribution among Pyogenic granuloma cases

Table 21: Dermoscopic features of Pyogenic granuloma

	No. of cases (13)	% (out of total 13 cases)
Scales color		
Absent	16	100
Scale distribution		
Absent	16	100
Present	0	0.00

Background Colour				
Pink	16	100		
Vessel Type				
Absent	16	100		
Present	0	0.00		
Vessel Distribution				
Absent	16	100		
Present	0	0.00		
Other Features				
Pink homogenous areas	5	38.46		
Red homogenous areas	1	7.69		
White colarette	2	15.38		
White structureless areas	2	15.38		
White lines	12	92.31		

SYRINGOMA:

Distribution of cases of Syringoma and their dermoscopic features:

Out of 116 cases, 4 patients were diagnosed with syringoma. There was an equal distribution of

males and females (2 males, 2 females). The patients were mostly in the age groups of 0-30 years

(n=2) and 31-60 years (n=2).

In all cases (n=4), scales were absent. The lesions consistently exhibited a light brown background

colour (n=4).

Both vessel types and distributions were absent in all cases (n=4).

Key dermoscopic features observed included pigment lines (n=4), white dots (n=2), and single

occurrences of brown homogenous areas, white globules, and comedo-like openings (each n=1).

Table 22: Demographic details of patients with Syringoma

Sex	No. of cases (4)	% (out of total 4 cases)
Male	2	50
Female	2	50
Age (Years)		
0-30	2	50
31-60	2	50

Figure 18: Graphical representation of gender distribution among Syringoma cases

Figure 19: Graphical representation of age distribution among Syringoma cases

Table 23: Dermoscopic features of Syringoma

	No. of cases (4)	% (out of total 4 cases)			
Scales color					
Absent	4	100			
Scale distribution					
Absent	4	100			
Present	0	0			
Background Colour					
Light brown	4	100			
Vessel Type					
Absent	4	100			
Present	0	0			
Vessel Distribution					
Absent	4	100			
Present	0	0			
Other Features					
Pigment lines	4	100			
Brown homogenous areas	1	25			
White dots	2	50			
White globules	1	25			
Comedo like openings	1	25			

SQUAMOUS CELL CARINOMA:

Distribution of cases of SCC and their dermoscopic features:

A total of 7 patients were diagnosed squamous cell carcinoma out of 116 cases. There was a male preponderance (M=5, F=2). Most patients were in the age groups of 51-60 years (n=3) and 41-50 years (n=2).

Scales were absent in all cases (n=4). The background colour of the lesions was predominantly

pink (n=5) and red (n=2).

Vessel types varied with linear vessels (n=4), dotted vessels (n=3), arborizing vessels (n=2),

glomerular vessels (n=2), hairpin vessels (n=1), and polymorphic vessels (n=5). Vessel

distribution was mainly diffuse (n=6) with one case showing a lobular pattern (n=1).

Key dermoscopic features included white structureless areas (n=6), white lines (n=4), white circles (n=3), red clods (n=2), and single cases of yellow structureless areas and red homogenous areas

(each n=1).

Sex	No. of cases (7)	% (out of total 116 cases)	
Male	5	71.43	
Female	2	28.57	
Age (Years)			
<40	0	0.00	
41-50	2	28.57	
51-60	3	42.86	
61-70	1	14.29	
71-80	1	14.29	

Table 24: Demographic details of patients with SCC:

Figure 20: Graphical representation of gender distribution among SCC cases

Figure 21: Graphical representation of age distribution among SCC cases

Table 25: Dermoscopic features of SCC

	No. of cases (7)	% (out of total 116 cases)			
Scales color					
Absent	4	57.14			
Scale distribution					
Absent	4	57.14			
Present	0	00			
Background Colour					
Pink	5	71.43			
Red	2	28.57			
Vessel Type					
Absent	0	0.00			
Linear vessels	4	57.14			
Dotted vessels	3	42.86			
Arborizing vessels	2	28.57			
Glomerular vessels	2	28.57			
Hairpin vessels	1	14.29			
Polymorphic vessels	5	71.43			
Vessel Distribution					
Absent	0	0.00			
Diffuse	6	85.71			
Lobules	1	14.29			
Other Features					
White circles	3	42.86			
White structureless areas	6	85.71			
White lines	4	57.14			
Yellow structureless areas	1	14.29			
Red clods	2	28.57			
Red homogenous areas	1	14.29			

ACTINIC CHELITIS:

Distribution of cases of Actinic chelitis and their dermoscopic features:

A total of 6 patients were diagnosed with actinic cheilitis out of 116 cases. The distribution was equal between males and females (3 males, 3 females). The majority of patients were in the 21–40-year age group (n=3), with fewer cases in the 41–60-year age group (n=2) and the 61-80 year age group (n=1).

On dermoscopy, all patients exhibited scales, with white scales being the most common (n=4) and yellow scales present in the remaining cases (n=2). The scales were primarily distributed in a patchy pattern (n=4), with a few cases showing a diffuse pattern (n=2). The lesions consistently had a white-red background colour (n=6).

The types of vessels varied, including linear vessels (n=3), dotted vessels (n=3), hairpin vessels (n=1), and polymorphic vessels (n=5). The vessel distribution was mostly diffuse (n=5), with one case showing a peripheral pattern (n=1).

Significant dermoscopic features included ulceration (n=4), white structureless areas (n=4), white lines (n=2), and individual cases of white dots and white globules (each n=1).

Table 26: Demographic details of patients with Actinic chelitis

Sex	No. of cases (6)	% (out of total 116 cases)	
Male	3	50.00	
Female	3	50.00	
Age (Years)	-		
<20	0	0.00	
21-40	3	50.00	
41-60	2	33.33	
61-80	1	16.67	

Figure 22: Graphical representation of gender distribution among Actinic chelitis cases

Figure 23: Graphical representation of age distribution among Actinic chelitis cases

Table 27:	Dermoscopio	e features	of Actinic	chelitis
-----------	-------------	------------	------------	----------

	No. of cases (6)	% (out of total 116 cases)
Scales color]	I
Absent	0	0.00
White	4	66.67
Yellow	2	33.33
Scale distribution		1
Absent	0	0.00
Diffuse	2	33.33
Patchy	4	66.67
Background Colour		1
White-red	6	100.00
Vessel Type	I	I
Absent	0	0.00
Linear vessels	3	50.00
Dotted vessels	3	50.00
Hairpin vessels	1	16.67
Polymorphic vessels	4	16.67
Vessel Distribution		1
Absent	0	0.00
Diffuse	5	83.33
Periphery	1	16.67
Other Features		
White dots	1	16.67
White structureless areas	4	66.67
White lines	2	33.33
White globules	1	16.67
Ulceration	5	83.33

Table 28: Dermoscopic features of few other skin tumors:

	1				
Skin tumor	Prevalence	M/c background colour	M/c vessel morphology & distribution	M/c scales colour & distribution	Other features
Cutaneous	0.86%	Red	Polymorphic.	Absent	Red homogenous areas
Lymphoma	(N=1)		Diffuse		
Aktinic Keratosis	1.27% (N=2)	Pink	Polymorphic, Diffuse	White; Diffuse	White Structureless Areas, Keratin Plugs, White Rosettes
Cherry Angioma	0.86% (N=1)	Pink	Dotted Vessels; Diffuse	Absent	White Dots
Angiokeratoma Circumscriptum	1.27% (N=2)	Pink	Polymorphic, Diffuse	Absent	Red-Purple Lagoons, White Veil
Acral Melanoma	0.86% (N=1)	Pink	Absent	Absent	White Structureless Areas With Surrounding Keratin, Parallel Ridging Pattern
Keratoacanthoma	1.27% (N=2)	Dark Brown, Pink	Arborizing Vessels; Periphery	White; Patchy	Yellow Structureless Areas, Keratin Plugs
Benign Spindle Cell Lesion	0.86% (N=1)	Light Brown	Absent	Absent	Pigment Network
Buschke Lowenstein Tumor	0.86% (N=1)	Pink	Polymorphic, Lobules	White, Brown; Patchy	White Structureless Areas
Bowens Disease	3.45% (N=4)	Pink	Polymorphic & Glomerular; Clusters	White; Diffuse	Brown Dots, Brown Globules, White Structureless Areas
Bowenoid Papulosis	0.86% (N=1)	Pink	Polymorphic, Diffuse	Absent	White Lines
Benign Squamous Papilloma	0.86% (N=1)	Pink	Glomerular; Clusters	Absent	White Structureless Areas, White Lines
Cutaneous Horn	3.45% (N=4)	White	Absent	Absent	White Collarette, White Structureless Areas

Capillary Hemangioma	0.86% (N=1)	Pink	Linear, Diffuse	Absent	White Lines, White Structureless Areas
Dermatofibroma	3.45% (N=4)	Light Brown	Absent	Absent	White Dots, White Structureless Areas
Fibrokeratoma	3.45% (N=4)	Light Brown	Absent	White; Central	Homogenous White Areas
Dermatofibrosarco ma Protuberans	1.27% (N=2)	Pink	Linear; Periphery	Absent	Pigment Network, White Structureless Areas
Dilated Pore Of Winer	0.86% (N=1)	Light Brown	Absent	Absent	Pigment Network, White Dots
Encapsulated Neuroma	0.86% (N=1)	Light Brown	Absent	Absent	Pigment Network(Periphery), Reduced Skin Markings (Centre), White Structureless Areas
Epidermal Nevus	0.86% (N=1)	Light Brown	Absent	White; Diffuse	Brown Globules(Cerebriform Pattern), Milia Like Cysts
Verrucous Epidermal Nevus	3.45% (N=4)	Light Brown	Absent	Absent	Brown Globules, Comedo Like Openings
Fibrous Papilloma Of Nose	0.86% (N=1)	Light Brown	Absent	Absent	Brown Dots, White Dots, White Lines
Irritational Fibroma Of Oral Cavity	0.86% (N=1)	Pink	Dotted; Diffuse	Absent	Homogenous Pink Areas
Mucocele	0.86% (N=1)	Pink	Polymorphic; Periphery	Absent	White Structureless Areas
Neurofibroma	0.86% (N=1)	Light Brown	Absent	Absent	Pigment Lines, White Structureless Areas
Nevus Lipomatosus	0.86% (N=1)	Light Brown	Absent	Absent	Pigment Lines, Yellow Structureless Areas
Nevus Sebaceous	3.45% (N=4)	Light Brown	Absent	Absent	Brown Globules, Comedo Like Openings, Milia Like Cysts

Papillary Eccrine Adenoma	0.86% (N=1)	Light Brown	Polymorphic; Diffuse	White; Patchy	Pigment Lines(Periphery), Yellow Structureless Areas
Periungual Fibrokeratoma	0.86% (N=1)	Light Brown	Absent	White; Diffuse	White Structureless Areas, Hyperkeratotic Tip
Pilomatricoma	0.86% (N=1)	Pink	Arborizing; Diffuse	Absent	Yellow Structureless Areas
Sebaceous Adenoma	0.86% (N=1)	Light Brown	Linear; Diffuse	Absent	Pigment Lines, Brown Globules(Groups), Mammilated Surface
Schwannoma	0.86% (N=1)	Pink	Polymorphic; Diffuse	Absent	Yellow Structureless Areas, White Structureless Areas
Seborrheic Keratosis	1.27% (N=2)	Dark Brown	Absent	White; Diffuse	Brown Globules, Pigment Lines, Comedo Like Openings, finger print like structures
Trichoepithelioma	0.86% (N=1)	Light Brown	Absent	Absent	Pigment Network, White Dots
Vascular Hemangioma	0.86% (N=1)	Pink	Absent	Absent	White Lines

IMAGES OF DERMOSCOPY FEATURES OF FEW TUMORS FROM THE STUDY:

Figure 24 a & b: Dermoscopy of BCC: Yellow arrow-Blue grey ovoid nests; Red arrow- Maple leaf like areas; Green circle- Concentric structures; Yellow circle- Spoke like areas; Blue star-White-pink structureless areas

Figure 25: Histopathology of BCC

Dermis- tumor cells arising from basal layer arranged in nests and lobules. Tumor cells- round to oval with hyperchromatic nucleus and scanty basophilic cytoplasm. Interveining fibrocollagenous tissue +

Figure 26: Dermoscopy of melanocytic nevi; Blue arrow- brown globules

Figure 27: Histopathology of melanocytic nevi

Epidermis- junctional activity and areas of melanin deposition also noted. Dermis shows nests of naevoid cells. Individual cells are monomorphic round to oval having round to oval nucleus vesicular chromatin and scant amount of cytoplasm. Few cells show cytoplasmic melanin deposition.

Figure 28: Dermoscopy of Pyogenic granuloma: Blue star- Pinkish homogenous areas; Yellow arrow- Surrounding white rail lines.

Figure 29: Histopathology of pyogenic granuloma

Dermis shows lobules comprised of thin-walled dilated capillaries lined by plump endothelial cells

Figure 30: Dermoscopy of Syringoma

Green arrow- Distorted brown pigment; Yellow arrow- White globular stuctures

Figure 31: Histopathology of Syringoma

Epidermis shows horn cyst. Superficial dermis- tumor tissue comprised of ducts lined by two layered epithelium. Tadpole cells in fibrous stroma present

Figure 32: Dermoscopy of Agiokeratoma circumscriptum: Yellow arrow-Purple lagoons; Red

arrow- red lagoons; Green arrow- white veil.

Figure 33: Dermoscopy of actinic keratosis: Red arrow- Keratin plugs; Blue star- white

structureless areas

Figure 34: Dermoscopy of irritational fibroma: Green star- Homogenous pink areas.

Figure 35: Dermoscopy of ILVEN: Blue circle- comedone like openings; Yellow arrow- Brown globules in cerebriform pattern.

Figure 36: Dermoscopy of SCC: Yellow arrow- Clods; Green circle- Dotted blood vessels; Red arrow- White circle; Blue star- White structureless areas

Figure 37: Dermoscopy of Keratatoacantoma: Yellow arrow- Arborizing blood vessels at the periphery; Green circle- Keratin plugs; Blue star- White structureless areas.

Figure 38: Dermoscopy of Encapsulated neuroma: White structureless areas (Red star) with reduced skin markings (Green star) in the centre surrounded by pigmented lined arranged in linear and reticular patterns in the periphery (Blue star).

Figure 39: Dermoscopy of Actinic chelitis: Yellow arrow- Keratin plugs; Green circle- Red

homogenous area; Blue star- White structureless areas.

Figure 40: Dermoscopy of Dermatofibroma: Brown background with peripheral dark brown pigment (Yellow arrow) and central eccrine glands (Red arrow).

Figure 41: Dermoscopy of nevus lipomatosis: Green circle- Yellow structure less area; Blue star- Brown globules.

Figure 42 a & b: Dermoscopy of Schwannoma: Green circle- Perifollicular scaling surrounding solitary hair strand; Blue star- White structureless area, Yellow arrow- Arborizing blood vessels.

Figure 43: Dermoscopy of Acral melanoma: Yellow arrow- Parallel ridging pattern with surrounding keratin (Red arrow); Blue star- white structureless area.

Figure 44: Dermoscopy of cutaneous lymphoma: Blue star- Polymorphic blood vessels, Yellow star- white structureless areas

Figure 45: Dermoscopy of Bowens disease: Blue star- Dotted blood vessels within hyperpigmented lobules; Yellow arrow- Erosions multiple glomerular vessels.

DISCUSSION

Dermoscopy is a skin surface microscopy technique that rapidly grew during the past years enhancing the non-invasive dermatological diagnostic techniques effectively; although histopathology remains the gold standard. The prevalence of different skin tumors with their dermoscopic and histopathological features have not been well documented in the Northern part of Karnataka. Our study suggests various specific dermoscopic clues for diagnosis of skin tumours in Fitzpatrick type IV skin in this region.

In our study the most commonly seen were the benign tumors, followed by malignant and then the pre malignant tumors. The dermoscopic features of skin tumors were consistent with few other previous studies. The most prevalent skin tumors have been discussed below in detail.

BASAL CELL CARCINOMA:

Basal cell carcinoma is the most common human cancer. It has a slow progressive course of peripheral extension. There are various clinical and histopathological types known as described earlier. In the present study, 10 superficial and 4 nodular or nodulo-ulcerative clinical variants of BCC were seen, all were of pigmented variety. The diagnosis was confirmed histopathologically in all cases. There was a significant female preponderance noted. Most of the patients were above the age of 55 years. Half of the patients had scales on dermoscopic examination, most of them distributed diffusely.

Background colour was noted to be blue gray for majority of the study patients.

On comparing the demographic and dermoscopic studies by Suppa et al.⁴⁵ and Trigoni et al.⁴⁷ with the present study (Table 16), it was observed that BCC was found to be more common in males in previous two studies compared to the present study where there was a significant female preponderance. Age of the patients presenting with BCC was above 50 years in all three studies. The most common dermoscopic features in our study was blue gray globules (64.2%), maple leaf structures(42.8%), white lines (42.8), keratin plugs (28.5%), ulceration (21.4%). Most common background colour was blue gray and vessel type was telengectasia and linear vessels distributed peripherally.

 Table 28: Comparison of demographic and dermoscopic findings of BCC in the present study to

 that by Suppa et al.⁴⁵ and Trigoni et al.⁴⁷

BCC	Suppa et al	Trigoni et al	Present
	Rome	Greece	study
Number of patients	153	138	14
Age of patients (years)	64	> 50	> 56
M : F	1.1:1	1.7:1	0.75:1
Predominant site of lesions	Trunk	Trunk	Face
Arborizing telangiectasia	72.6	63	21.4
White shiny area	35.3	26	NC
White-red structureless area	NC	61	NC
White lines	NC	NC	42.8
Erosion	12.6	26	NC
Ulceration	43.8	26	21.4
Mapple leaf like areas	13.7	6	42.8
Blue grey globules	23.5	21	64.2

Spoke wheel areas	3.9	6	7.14
Blue-white veil-like	12.4	NC	NC
structures			
Pigment network	2	NC	NC
Featureless area	NC	78	7.14
Keratin plugs	NC	NC	28.5
Concentric structures	NC	NC	14.2

MELANOCYTIC NEVI (MN):

There are two categories for MN: acquired and congenital. Congenital melanocytic nevi can be classified as tiny (less than 1.5 cm), medium (between 1.5 and 20 cm), or large (more than 20 cm) based on their presence from birth. The most prevalent kind, known as acquired melanocytic nevus (AMN), usually manifests in adolescence or early adulthood.

They present as dark macule, smooth surfaced papule or skin colored nodule depending upon the depth of melanocytes²⁷

In the present study a total of 16 cases were included, 5 were male and 11 were female, with age group varying from 11-40 years. The most common dermoscopic features seen were brown globules (56.25%), pigment lines(25%), white structureless areas (18.75), milia like cysts (18.75%), brown dots (12.5%)

In a study by Piazza et al.⁵³ totally 38 cases were evaluated, 19 were male and 19 were female. The ages varied from one to 16 years. Dots (72.6%) were the most common dermoscopic structure

found in the lesions, followed by globules (28.4%), pigment networks (40.8%), and structureless

areas (47.8%).

PYOGENIC GRANULOMA:

The lobular capillary hemangioma, or pyrogenic granuloma, is a frequent benign vascular tumor that affects children and infants⁵⁸ They appear as a single, smooth, red papule or polyp that grows rapidly at first, stabilizes, and then may get smaller.

They are extremely friable, frequently ulcerate, and may bleed profusely with minor trauma⁵⁸ In our study, the most common dermoscopic features were Pink homogenous areas(38.46%), White structureless areas(15.38%), white lines(92.30%) and white collarette(15.38%). Background colour was pink in all cases with no vessels or scaling seen.

In a study by zaballos et al.48, reddish homogenous region (92%), white collarette (85%), white rail lines that cross the lesion (31%), and ulceration (46%), were found to be the most commonly occurring dermoscopic features.

SYRINGOMA:

Syringoma is a benign skin tumour composed of sweat ducts that is usually multiple, vary in size from 1 to 5 mm. They manifest as bilaterally symmetrical flat topped skin coloured cysts.²⁸ Four patients with syringoma were evaluated in our study. It was observed that female and male were

equally affected. Age group was 1-60 years. Dermoscopic examination showed absence of scales and vessels. All of them had light brown background colour. Brown pigment network at periphery were seen in all patients. Other dermoscopy features seen were brown homogenous areas(25%), white dots (50%) and white globules(25%). These findings were consistent with a study by Hayashi et al.⁴² in Japanese females.

CONCLUSION

Skin tumours develop as a result of proliferation of single or multiple components of the skin. They include aggressive tumors and premalignant lesions, as well as benign lesions that are only cosmetically bothersome. Dermoscopy is a non-invasive method for the in vivo monitoring and diagnosis of pigmented and non-pigmented skin lesions that combines digital photography and light microscopy. But the gold standard for diagnosing skin tumors has traditionally been histolopathological investigation.

- In our study, prevalence of skin tumors was 0.30
- A total of 116 skin tumors were studied. Out of which benign tumors were most prevalent (most prevalent- melanocytic nevi; most common dermoscopic feature- brown globules), followed by were malignant (most prevalent- basal cell carcinoma; most common dermoscopic feature- blue gray globules) and then the pre-malignant tumors (most prevalent- Actinic chelitis; most common dermoscopic feature- vascular polymorphism).
- Among the different groups of skin tumors, most prevalent was keratinocytic tumors, followed by soft tissue tumors, then the melanocytic tumors, appendageal tumors

• There was a 91% agreement between clinic-dermoscopic diagnosis and histopathological confirmation. Hence it appears that the use of dermoscopy improves the clinical diagnostic protocol.

Further studies are needed to evaluate specificity and sensitivity of the dermoscopic features and to conclude that dermoscop could be a substitute for the invasive and time-consuming skin biopsy and histopathological examination.

SUMMARY:

A hospital based, cross-sectional study to determine the dermoscopic and histopathological findings in common benign and malignant tumours was conducted during the period of September 2022 to May 2024. Patients presenting with clinically suspicious skin tumours irrespective of the age were included in the study. All patients were subjected to detailed history, clinical and dermoscopic evaluation followed by skin biopsy for histopathological confirmation. Clinical and dermoscopic images were recorded for each patient. The skin lesion was biopsied and sent for the histopathological examination. Following are the salient findings of the study:

The salient fetaures of this study are as follows:

- Prevalence of skin tumors was 0.30
- The age group with highest prevalence was between 11- 20 years; followed by the age group 21-30 years.
- There was a slight female preponderance compared to male
- Most commonly seen were benign tumors, followed by malignant and then the pre malignant tumors.
- Most prevalent benign tumor was Melanocytic nevi, pre malignant tumor was Actinic chelitis and malignant tumor was Basal cell carcinoma
- Most common dermoscopy features seen in the most prevalent tumors were:

- a. Melanocytic nevi- Brown background, brown globules
- b. Actinic chelitis- White red background, White scales, Polymorphic vessels, Ulceration, White structureless areas
- c. Basal Cell Carcinoma- Blue gray background, Polymorphic vessels, Blue gray globules, Maple leaf structures, White lines

Many new dermoscopic findings were reported for the first time in this study which require further studies with larger number of patients.

BIBLIOGRAPHY

- Abbas AK, Aster JC. Neoplasia. In: Kumar V, Abbas AK, Aster JC, editors. Robbins & Cotran Pathologic basis of disease, 9th edition. Reed Elsevier India private limited; 2014.p.265-267.
- Pappala P, Raksha S, Vasundara G, et al. Hisopathological study of skin tumours. Indian J Pathol Oncol 2019;6:543-7.
- Kulhalli, T., R, S. & Y.A, M. Clinicopathological spectrum of Keratinocytic tumors of skin in a tertiary care centre. Indian J. Pathol. Oncol. 5, 524–530 (2020).
- Goel, P. et al. A Clinicopathological Study of Skin Tumors from a Tertiary Care Centre in North India. Indian Dermatol. Online J. 12, 66 (2021).
- Brambullo, T. et al. Xeroderma Pigmentosum: A Genetic Condition Skin Cancer Correlated—A Systematic Review. Biomed Res. Int. 2022, 1–12 (2022).
- Nischal KC, Khopkar U. Principles and technique of dermoscopy and videodermoscopy. In: Khopkar U, editor. Dermoscopy and trichoscopy in diseases of brown skin atlas and short text. New Delhi: Jaypee Publishers; 2012.p.1-9.
- Purnamasari, I. & Sari, M. The Role of Dermoscopy in Diagnosis of Benign Skin Neoplasms. Folia Medica Indones. 58, 61 (2022).
- Samanta M, Mangal N, Bhavani K, Koteeswaran G, P. P. Histopathological study of skin tumours. Trop J Path Micro. 2018;4(2)195-200. doi:10.17511/jopm.2018.i2
- Senel, E. Dermatoscopy of non-melanocytic skin tumors. Indian J. Dermatol. Venereol. Leprol. 77, 16–21; quiz 22 (2011)

- Campus-do-carmo G, Ramos-e-silva M. Dermoscopy: basic concepts. Int J Dermatol 2008;47:712-19.
- Khopkar, U. & Nischal, K. Dermoscope. Indian J. Dermatol. Venereol. Leprol. 71, 300 (2005).
- 12. Zalaudek I, Kreusch J, Giacomel J, Ferrara G, Catricala C, Argenziano G. How to diagnose non pigmented skin tumours: a review of vascular structures seen with dermoscopy. Melanocytic skin tumours. J Am Acad Dermatol 2010;63:361-74.
- 13. Braun RP, Oliviero M, Kolm I, Lars E, Marghoob AA, Rabinovitz H. et al. Dermoscopy: what's new? Clinics in Dermatology 2009;27:26-34.
- William Stolz, Peter Bilek, Michael Landchaer, Amandcogneta. Basic of dermatoscopy& skin surface microscopy. William Stolz, Peter Bilek, Michael Landchaer, Amandcogneta. Color atlas of dermatoscopy. 1st ed. Germany: Blackwell publication; 1994.p.7-10.
- Hossam, D., Sadek, A. & Saied, N. Dermoscopy : A Literature Review. Egypt. Dermatology Online J. 11, 1–32 (2015).
- 16. Binder M, Kittler H, Pehamberger H, Wolff K. Possible hazard to patients from immersion oil used for epiluminescence microscopy. J Am Acad Dermatol 1999:p.7-10.
- 17. Sonthalia S, Yumeen S, Kaliyadan F. Dermoscopy Overview and Extradiagnostic Applications. [Updated 2023 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPeSonthalia S, Yumeen S, K. F. D. O. and E. A. [Updated 2023 A. 8]. I. S. [Internet]. T. I. (FL): S. P. 2024 J.-. A. from: https://www.ncbi.nlm.nih.gov/books/NBK537131/arl. P. 2024. No Title
- 18. Stauffer, F., Kittler, H., Forstinger, C. & Binder, M. The dermatoscope: a potential source of nosocomial infection? Melanoma Res. 11, 153–156 (2001).
- 19. Braun, R. P. et al. Dermoscopy: what's new? Clin. Dermatol. 27, 26–34 (2009).
- 20. Argenziano, G. et al. Vascular Structures in Skin Tumors. Arch. Dermatol. 140, (2004)

- 21. Tasli, L. & Oguz, O. The role of various immersion liquids at digital dermoscopy in structural analysis. Indian J. Dermatology, Venereol. Leprol. **77**, 110 (2011).
- 22. Gewirtzman, A. J., Saurat, J.-H. & Braun, R. P. An evaluation of dermoscopy fluids and application techniques. Br. J. Dermatol. 149, 59–63 (2003).
- Ronger, S. et al. Dermoscopic Examination of Nail Pigmentation. Arch. Dermatol. 138, (2002).
- 24. Sonthalia S, Yumeen S, Kaliyadan F. Dermoscopy Overview and Extradiagnostic Applications. [Updated 2023 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPeSonthalia S, Yumeen S, K. F. D. O. and E. A. [Updated 2023 A. 8]. I. S. [Internet]. T. I. (FL): S. P. 2024 J.-. A. from: https://www.ncbi.nlm.nih.
- Sonthalia, S. & Tiwary, P. Colored dots on trichoscopy-beware of artifacts. J. Am. Acad. Dermatol. 80, e143–e144 (2019).
- Podolec, K., Bronikowska, A., Pirowska, M. & Wojas-Pelc, A. Dermoscopic features in different dermatopathological stages of cutaneous melanomas. Adv. Dermatology Allergol.
 37, 677–684 (2020).
- 27. Adya, K.A. Dermoscopy: An Overview of the Principles, Procedure and Practice. In: Ankad, B.S., Mukherjee, S.S., Nikam, B.P. (eds) Dermoscopy - Histopathology Correlation . Springer; 2021; p 1-13.
- 28. Khandpur S, Ramam M, Dev T. Skin tumors. In: Sacchidanand S, AS Savitha, K Shilpa, BM Shashikumar, editors. IADVL Textbook of Dermatology, 5th ed. Mumbai: Bhalani Publishing House; 2022. p. 2555-629.
- 29. Behera B, Chandrashekar L, Thappa DM, et al. Dermoscopic features of benign cutaneous adnexal tumours in dark skin: A retrospective study from South India. Australas J Dermatol 2021;62:e249-55.
- 30. Sejekan SV, Biligi DS. Clinicopathological Study of Skin Adnexal Tumors with Special Emphasis on the Line of Differentiation. J Med Sci Health 2022;8:8-13.
- 31. A, Perkins W. Non melanoma skin cancer and other epidermal skin tumours. In: burns T, Breathnach S, Cox N. Griffith C, editors. Rooks textbook of dermatology, 8thedn. Oxford: Blackwell publishing; 2010.p.52.1-52.2.
- Braun, R. P., Rabinovitz, H. S., Oliviero, M., Kopf, A. W. & Saurat, J.-H. Dermoscopy of pigmented skin lesions. J. Am. Acad. Dermatol. 52, 109–121 (2005).
- 33. Grin, C. M., Friedman, K. P. & Grant-Kels, J. M. Dermoscopy: a review. Dermatol. Clin.
 20, 641–646 (2002).
- 34. Zalaudek, I. et al. Dermoscopy in General Dermatology. Dermatology 212, 7–18 (2006).
- 35. Menzies, S. W. et al. Dermoscopic evaluation of amelanotic and hypomelanotic melanoma. Arch. Dermatol. 144, 1120–7 (2008).
- Hossam D, Sadek A, Saied N. Dermoscopy: A literature review. Egyptian dermatology online journal 2015; 11:1-32.
- 37. Johr RH, Stolz W. Dermoscopy from A to Z. In: Johr RH, Stolz W, editors. Dermoscopy An illustrated self-assessment guide. McGraw-Hill, New York; 2010.p.1-26.
- Martín, J. M., Bella-Navarro, R. & Jordá, E. [Vascular patterns in dermoscopy]. Actas Dermosifiliogr. 103, 357–75 (2012).
- 39. Rosendahl, C., Cameron, A., McColl, I. & Wilkinson, D. Dermatoscopy in routine practice
 'chaos and clues'. Aust. Fam. Physician 41, 482–7 (2012).
- 40. Weber, P., Tschandl, P., Sinz, C. & Kittler, H. Dermatoscopy of Neoplastic Skin Lesions: Recent Advances, Updates, and Revisions. Curr. Treat. Options Oncol. 19, 56 (2018).
- 41. Wang, Y. et al. A comparative study of melanocytic nevi classification with dermoscopy and high-frequency ultrasound. Ski. Res. Technol. 28, 265–273 (2022).
- Argenziano, G., Zalaudek, I., Ferrara, G., Hofmann-Wellenhof, R. & Soyer, H. P. Proposal of a new classification system for melanocytic naevi. Br. J. Dermatol. 157, 217–227 (2007).

- 43. Gulia, A., Giovanna Brunasso, A. M. & Massone, C. Dermoscopy: distinguishing malignant tumors from benign. Expert Rev. Dermatol. **7**, 439–458 (2012).
- 44. Quinn A, Perkins W. Non melanoma skin cancer and other epidermal skin tumours. In: burns T, Breathnach S, Cox N. Griffith C, editors. Rooks textbook of dermatology, 8thedn. Oxford: Blackwell publishing; 2010.p.52.1-52.2.
- 45. Suppa M, Micantonio T, Di Stefani A, Soyer HP, Chimenti S, Fargnoli MC. et al. Dermoscopic variability of basal cell carcinoma according to clinical type and anatomic location. J Eur Acad Dermatol Venereol 2015; 29:1732-4.
- 46. Senel E. Dermoscopy of non-melanocytic skin tumors. Indian J Dermatol Venereol Leprol 2011; 77:16-22
- 47. Trigoni A, Lazaridou E, Appalla Z, Vakirlis E, Chrysomallis F, Varytimiadis D, et al. Dermoscopic features in the diagnosis of different types of basal cell carcinoma: a prospective analysis. Hippokratia 2012; 16: 29-34.
- 48. Zaballos, P., Llambrich, Á., Cuéllar, F., Puig, S. & Malvehy, J. Dermoscopic findings in pyogenic granuloma. Br. J. Dermatol. 154, 1108–1111 (2006).
- 49. MOGENSEN, M. & JEMEC, G. B. E. Diagnosis of Nonmelanoma Skin Cancer/Keratinocyte Carcinoma: A Review of Diagnostic Accuracy of Nonmelanoma Skin Cancer Diagnostic Tests and Technologies. Dermatologic Surg. 33, 1158–1174 (2007).
- 50. Jha, A. K. et al. Dermoscopic Features of Actinic Cheilitis and Other Common Inflammatory Cheilitis: A Multicentric Retrospective Observational Study by the International Dermoscopy Society. Dermatology 238, 870–875 (2022)
- 51. Goncharova, Y., Attia, E. A. S., Souid, K. & Vasilenko, I. V. Dermoscopic Features of Facial Pigmented Skin Lesions. ISRN Dermatol. 2013, 1–7 (2013).
- 52. Saida, T., Koga, H. & Uhara, H. Dermoscopy for acral melanocytic lesions: Revision of the 3-step algorithm and refined definition of the regular and irregular fibrillar pattern.

Dermatol. Pract. Concept. e2022123 (2022). doi:10.5826/dpc.1203a123

- 53. Piazza CD, Yamada S, Marcassi AP, Maciel MG, Seize MP, Cestari SCP. Dermoscopic patterns of melanocytic nevi in children and adolescents: a cross-sectional study*. An Bras Dermatol [Internet]. 2017May;92(3):340–4
- 54. Hayashi Y, Tanaka M, Nakajima S, Ozeki M, Inoue T, Ishizaki S, Fujibayashi M. Unilateral linear syringoma in a Japanese female: dermoscopic differentiation from lichen planus linearis. Dermatol Reports.2011; 3:94-95.
- 55. Sarma. Melanocytic Nevus and Nevoid Disorders. In: Ankad, B.S., Mukherjee, S.S., Nikam, B.P. (eds) Dermoscopy - Histopathology Correlation . Springer; 2021; p 14-46.
- 56. B. P. Nikam et al. Benign Tumors. In: Ankad, B.S., Mukherjee, S.S., Nikam, B.P. (eds) Dermoscopy - Histopathology Correlation . Springer; 2021; p 211-250
- 57. Adya KA et al. Premalignant and Malignant Tumors. In: Ankad, B.S., Mukherjee, S.S.,Nikam, B.P. (eds) Dermoscopy Histopathology Correlation . Springer; 2021; p 251-278
- 58. BS Ankad et al. Vascular diseases. In: Ankad, B.S., Mukherjee, S.S., Nikam, B.P. (eds) Dermoscopy - Histopathology Correlation . Springer; 2021; p 184-210

ETHICAL CLEARANCE CERTIFICATE

CONSENT FORM

B.L.D.E (Deemed to be university) SHRI B.M PATIL MEDICAL COLLEGE

HOSPITAL AND RESEARCH CENTRE, VIJAYAPURA-586 103

RESEARCH INFORMED CONSENT FOR: TITLE OF THE PROJECT: CLINICAL, DERMOSCOPIC AND HISTOPATHOLOGICAL STUDY OF SKIN TUMORS: A PROSPECTIVE CROSS-SECTIONAL STUDY

PG GUIDE: DR. KESHAVMURTHY ADYA PG STUDENT: DR. NAMRATHA SHIVARAJ

PURPOSE OF RESEARCH: To know the prevalence of skin tumors in Northern part of Karnataka and correlating clinical, dermoscopic and histopathological features of the same.

BENEFITS: Knowledge about the prevalence of skin tumors will provide the epidemiological data pertaining to this geographical area and will assist the health care providers in decision making for the appropriate care and management of skin tumors.

PROCEDURE:

I understand that relevant history will be taken, clinical examination, dermoscopic evaluation will be done and skin biopsy will be taken for histopathological examination.

CONFIDENTIALITY:

I understand that medical information produced by this study will become a part of my hospital records and will be subjected to the confidentiality and privacy regulation of the said hospital. Information of a sensitive personal nature will not be a part of the medical records, but will be stored in the investigator's research file.

If the data are used for publication in the medical literature or for teaching purposes no names will be used and other identifiers such as photographs and audio or videotapes will be used only with my special written permission. I understand I may see the photographs, videotapes and hear the audiotapes before giving this permission.

REQUEST FOR MORE INFORMATION:

I understand that I may ask more questions about the study at any time concerned. Dr. NAMRATHA SHIVARAJ is available to answer my questions or concerns. I understand that I will be informed of any significant new findings discovered during the course of this study, which may influence my continued participation.

REFUSAL OR WITHDRAWAL OF PARTICIPATION:

I understand that my participation is voluntary and I may refuse to participate or may withdraw consent and discontinue participation in this study at any time without prejudice. I also understand that Dr. NAMRATHA SHIVARAJ may terminate my participation in this study at any time after he has explained the reasons for doing so and has helped arrange for my continued care by my own physician, if this is appropriate.

INJURY STATEMENT:

I understand that in the unlikely event of injury to me resulting directly from my participation in this

study and if such injury were reported promptly, then medical treatment will be available to me, but no further compensation will be provided. I understand that by my agreement for my participation in this study, I am not waiving any of my legal rights.

I have explained to (patient's / relevant guardian's name) the purpose of the research, the procedures required, and the possible risks and benefits to the best of my ability in patient's own language.

Investigator / P. G. Guide

Date

I confirm that DR. KESHAVMURTHY ADYA (Name of the PG guide / chief researcher) has explained to me the research, the study procedures that I undergo and the possible risks and discomforts as well as benefits that I may experience. I have read and I understand this consent form. Therefore, I agree to give my consent for my participation as a subject in this research project.

Participant / guardian

Date

Witness to signature

Date

PROFORMA

Department of Dermatology, Venerology and Leprosy

SCHEME OF CASE TAKING CLINICAL, DERMOSCOPIC AND HISTOPATHOLOGICAL STUDY OF SKIN TUMORS: A PROSPECTIVE CROSS-SECTIONAL STUDY

S. No:		Date:			
Name:		Age / Sex:			
Address and Contact Details	:	Hospital no.:			
Presenting Complaints & du	ration:				
History of Present Illness:					
Personal History:					
Diet:	Bowel & Bladder:	Habits:			
Appetite:	Sleep:	Occupation:			
Past history:					
Family History:					

Clinical Examination:

Dermoscopic findings:

Provisional diagnosis:

Histopathology:

Final Diagnosis:

KEY TO MASTER CHART

ALCC- ANAPLASTIC LARGE CELL CARCINOMA SCC- SOUAMOUS CELL CARCINOMA **BCC- BASAL CELL CARCINOMA CBN- CELLULAR BLUE NEVUS** ECN- ENCAPSULATED NEUROMA **PG- PYOGENIC GRANULOMA BD-BOWENS DISEASE** NL- NEVUS LIPOMATOSUS **NS- NEVUS SEBACEOUS IF- IRRITATIONAL FIBROMA VEN- VERRUCOUS EPIDERMAL NEVUS** NBCC- NODULAR BCC AMN- ACQUIRED MELANOCYTIC NEVUS **CH- CUTANEOUS HORN PF- PERIUNGUAL FIBROMA** BFHCN- BASILOID FOLLICULAR HAMARTOMA OF **COMPOUND NEVUS PBCC- PIGMENTED BCC** DFK- DIGITAL FIBROKERATOMA **DN- DERMAL NEVUS CS- CHONDROIS SYRINGOMA** MCT- MIXED CUTANEOUS TUMOR

MC- MUCOCELE

SY- SYRINGOMA

DFSP- DERMATOFIBROSARCOMA PROTRUBERANS

AC- ACTINIC CHELITIS

TB- TRICHOBLASTOMA

PM- PILOMATRICOMA

FK- FIBROKERATOMA

BLT- BUSCHKE LOWENSTEIN TUMOR

TA- TUFTED ANGIOMA **TE-TRICHOEPITHELIOMA ILVEN- INFLAMMATORY LINEAR VEN BP- BOWENOID PAPULOSIS** CA- CHERRY ANGIOMA **KA- KERATOACANTHOMA** FHT- FIBROHISTIOCYTIC TUMOR **AF- ANGIOFIBROMA FP- FIBROUS PAPILLOMA SK- SEBORRHEIC KERATOSIS AK- ACTINIC KERATOSIS PN- PLEXIFORM NEUROFIBROMA DF- DERMATOFIBROMA** LAC- LYMPHANGIOMA CIRCUMSCRIPTUM **AKC- ANGIOKERATOMA CIRCUMSCRIPTUM** AM- ACRAL MELANOMA **CM- CUTANEOUS METASTASIS FL-FIBROLIPOMA CY-CYLINDROMA CL- CUTANEOUS LYMPHOMA EN- EPIDERMAL NEVUS IFK- INVERTED FOLLICULAR KERATOSIS** SA- SEBACEOUS ADENOMA PEA- PAPILLARY ECCRINE ADENOMA **DIFF- DIFFERENTIATED** SPL- SPINDLE CELL LESION HG- HEMANGIOMA VH- VASCULAR HAMARTOMA CHG- CAPILLARY HEMANGIOMA NF- NEUROFIBROMA **BSP-BENIGN SQUAMOUS PAPILLOMA** SC- SCHWANNOMA WSA- WHITE STRUCTURELESS AREAS WL- WHITE LINES

BLG- BLUE GLOBULES DBR- DARK BROWN PL- PIGMENTED LINES RE- RETICULATE RHA- RED HOMOGENOUS ARAES GV- GLOMERULAR VESSELS DV-DOTTED VESSELS BRPA- BROWN PIGMENT AREAS DBL-DARK BLUE LBR- LIGHT BROWN **YSA- YELLOW STRUCTURELESS AREAS BRG- BROWN GLOBULES** MS- MAMMILLATED SURFACE **RCL- RED CLODS** HPA- HOMOGENOUS PINK AREAS **BRL-BROWN LINES PY-PATCHY PA- PARALLEL** DBRSA- DARK BROWN STRUCTURELESS AREAS **PE-PERIPHERY** DRHA- DARK RED HEMORRHAGIC AREA PFL-PERIFOLLICULAR **BLG- BLUE GREY BLGRG- BLUE GREY GLOBULES** MLS- MAPLE LEAF STRUCTURE **CS- CONCENTRIC STRUCTURES ST- SUPERFICIAL TELENGECTASIA** WGS- WHITE GLOBULAR STRUCTURES **CLO- COMEDO LIKE OPENINGS BRD-BROWN DOTS** HBRA- HOMOGENOUS BROWN AREAS MLC- MILIA LIKE CYSTS WC- WHITE CIRCLES

HWA- HOMOGENOUS WHITE AREA **CL- CLUSTERS FPLS- FINGER PRINT LIKE STRUCTURES TEL- TELENGECTASIA** PHA- PINK HOMOGENOUS AREA **BGC-BLUE GREY CLODS** WCO- WHITE COLARETTE **WD- WHITE DOTS CP- CEREBRIFORM PATTERN** WRL- WHITE RETICULAR LINES **LO-LOBULES RPL- RED-PURPLE LAGOONS** WV- WHITE VEIL PEE- PERIPHERAL ERYTHEMA HPV- HAIR PIN VESSELS **BA-BASE** WH- WHITE HALO **CSV- CORK SCREW VESSELS CEP- CEREBRIFORM PATTERN GRBG- GREY BROWN GLOBULES KP- KERATIN PLUGS CEREBRIFORM PATTERN SER- SERPIGINOUS DIS-DISTORTED ULC- ULCERATION RSA- RED STRUCTURELESS AREAS PRP- PARALLEL RIDGING PATTERN KER- KERATIN HV- HAIRPIN VESSELS WR- WHITE ROSETTES HK- HYPERKERATOTIC BLGON- BLUE GRAY OVOID NESTS**

		AGE		CLINICAL DIAGNOSIS	HPE DIAGNOSIS	DERMOSCOPY FEATURES							
ON 1S	NAME		SEX			BACKGROUND COLOUR	VESSEL MORPHOLOGY	VESSEL DISTRIBUTION	SCALES COLOUR	SCALES DISTRIBUTION	PIGMENT STRUCTURES	OTHER FEATURES	
1	BASAPPA	73	М	ALCC	CL	R	LV,BV	D	0	0	0	WSA	
2	KOLLALAPPA GADIGEPPA	63	М	SCC	MODERATELY DIFF SCC	R	LV,AV	D	0	0	0	WSA,WL	
3	SHIVANAND MALESHAPPA	65	М	CBN	EN	BL	0	0	0	0	BLG	0	
4	RATNABAI KOTYAL	68	F	NF/SC/ECN	ECN	LBR	0	0	0	0	PL (L&RE)	WSA, RSM (CENTRE)	
5	FATHIMA RAZAQ TALIKOTI	12	F	PG	PG	Р	0	0	0	0	0	RHA, WL	
6	YALLAPPA KUDARI	65	М	BD	BD	Р	GV, DV IN LOBULES	D	W	D	BRPA	0	
7	RAMESH BADIGER	37	м	NL	NL	LBR	0	0	0	0	PL(RE)	YSA	
8	KAVERI NAYAK	12	F	NS	SA	LBR	LV	D	0	0	PL(L), BRG(GROUPS)	MS	
9	MODANABI	60	F	BD	WELL DIFF SCC	R	GV, AV	D	0	0	0	YSA, WSA, WL, RCL	
10		12	F			P	DV	D	0	0		HPA	
11		13	IVI		VEN	BK	0	0	VV	PY C	BRG, BRL	0	
12		12	E	AMAN	DN	DLG		D	VV		DRG, BLGUN	0	
10		13	r c		DN	IRP	DV(LOBOLES)	0	VV \\/	D	0		
14	PRASHANTH	32	M	BEHCN	DN	P	0	0	W	PV	BLGRG	0	
16	SHANTA BAI	68	F	SUPERFICIAL PRCC	SUPERFICIAL PRCC	P	TF	PF	W	PF	MIS BIGRG CS SWS	0	
17	SUNIL DEVU PAWAR	28	M	DFK	DFK	LBR	0	0	w	C	0	DRHA	
18	POOJA HIPPARAGI	24	F	DN	DN	DBR	0	0	0	0	BRG	DBRSA	
19	SANGAWWA BASAPPA	55	F	CS/MCT	PEA	LBR	LV.BV	D	W	PY	PL(L&PE)	YSA	
20	NIKHIL KOKARE	30	м	PG	PG	Р	0	0	0	0	0	PHA, WL	
21	RAFE HASHMI	19	м	AMN	DN	DBR	0	0	0	0	PL(RE)	0	
22	VARSHA R B ASTI	22	F	MC	MC	Р	LV, BV	PE	0	0	0	WSA	
23	MALAN MANIYAR	38	F	SY	SY	LBR	0	0	0	0	PL(RE)	WGS	
24	SANTOSH PATIL	22	М	AMN	BENIGN SPL	LBR	0	0	0	0	PL(RE)	0	
25	ARUN SHINDE	27	М	VEN	VEN	DBR	0	0	0	0	BRG	CLO	
26	SHANTABAI	65	F	PBCC	BCC	BLG	AV	PE	0	0	MLS, BLGRG, FPS	WL	
27	IMAMBOO AGARAKED	46	М	DFSP	DFSP	Р	LV	PE	0	0	PL(RE)	WSA	
28	NAZREEN MASOOD MULLA	50	F	BCC	BCC	BLG	LV	PE	0	0	BRD, BRG, BLGON	WSA, KP	
29	SHARADA METRI	32	F	AC	AC	WR	LV, DV	D	W	PY	0	ULC, WSA	
30	VIJAYKUMAR K KAMBAR	24	M	SY	SY	LBR	0	0	0	0	PL(RE)	HBRA, CLO	
31		28	F	IB/IE	DN	DBR	LV	D	0	0	PL	WGS, MLC, WSA	
32		10	IVI	AL	AC	WK	DV	PE	vv	0	U	WSA, ULC	
24		71	IVI N4			DBR	DVIV	D	0	0	DRG		
25		28	E		AC	F W/P		D	v	DV	BBD	WD WL UIC	
36		40	M	FK/DF	FK	IBR	0	0	W	D PF	0	HWA	
37	RAJAKUMAR N BALAGAR	42	M	PM	PM	P	AV	D	0	0	0	YSA	
38	KAVERI CHATTER	18	F	CH/FK	FK	P	0	0	0	0	0	HWA	
39	ABUKAKAR NADAF	15	M	NS	NS	DBR	0	0	0	0	BRG	MLC, CLO	
40	SHUBHAM	19	м	DF	DF	LBR	0	0	0	0	PL(RE)	WSA	
41	LAXMI PADASALI	37	F	PIGMENTED BD	BD	Р	DV	CL	0	0	BRD	WSA, RHA	
42	KALAVVA MADAR	35	F	BLT	BLT	Р	AV, HV	LO	W, BR	PY	0	WL, WSA	
43	SHRISHAIL	52	М	SCC	SCC	Р	DV,LV	D	0	0	0	WL, WSA	
44	ROOPA BADADAL	23	F	SK	SK	DBR	0	0	W	D	BRG	CLO, FPLS	
45	GOVINDRAO	73	М	FK	FK	LBR	0	0	W	С	0	HWA	
46	VINALABAI	70	F	PBCC	BCC	BLG	TEL, LV	D	W	D	BLGRG, MLS	WL, KP	
47	IMALABAI BORAGAVARKAR	52	F	SCC	SCC	P	DV, HV	D	0	0	0	WL, WC, WSA	
48	UMA VINAY PATIL	30	F	PG	PG	P	0	0	0	0	0	WL, PHA	
49		10	IVI NA	AK	AK	P	0	0	VV,Y	PY	BRG	WSA, KP	
50		12	M	ΔC		М/Р	U HV	D	W/	DV	0	WG UIC	
52	RENUKA SHINDE	36	F	PG	PG	p	0	0	0	0	0	WCO WI	
52	NEELAMMA KORWAR	38	F	AC	AC	WR	LV	D	Ŷ	D	0	WSA, ULC	
54	MALLAPPA S METI	60	М	AC	AC	WR	DV	D	w	PY	ů l	WL, WSA	
55	SAGAR PAWAR	18	M	TE	TE	LBR	0	0	0	0	PL(RE)	WD	
56	MULIMAYYA S H	44	М	PG	PG	Р	0	0	0	0	0	WL, PHA	
57	MAHANANDA SHRIMANTH	45	F	DFSP	DFSP	Р	LV	D	0	0	PL(L)	WSA	
58	POONAM MUTTAGIKAR	25	F	PG	VH	Р	0	0	0	0	0	WL	
59	NIHARIKA GOUDAR	23	F	AMN	AMN	DBR	0	0	0	0	PL(RE), BRG	WSA	
60	SNEHA LENDI	24	F	AMN	AMN	DBR	0	0	0	0	BRG	0	

61 VARASHA PATIL	24 F	PG	PG	Р	0	0	0	0	0	WL, WCO
62 SHAVU AMRESH	10 F	ILVEN	ILVEN	DBR	DV	D	0	0	BRG IN CP, BRL	MLC, CLO
63 MUTTAPPA BASAPPA	48 M	BP/SCC	SCC	Р	GV	LO	0	0	0	WRL, RCL
64 NIRANJAN HANAMANTH	9 M	PG	PG	Р	0	0	0	0	0	WL
65 SOFIYA ASFAQ MULLA	24 F	AMN	AMN	DBR	0	0	0	0	BRD	MLC
66 SUMMAYYA	33 F	AMN	AMN	DBR	0	0	0	0	PL(RE)	0
67 PAVAN CHAWAN	11 M	ТА	AKC	Р	0	0	0	0	0	RPL, WV, PEE
68 NEHA BEPARI	22 F	AMN	DN	DBR	0	0	0	0	BRG	WD
69 SIDDAPPA MALLAPPA	60 M	BCC	PBCC	BLG	TE, L	D. PE	0	0	BLGRG, MLS	WL
70 SHRISHAIL BIRADAR	24 M	СН	СН	W	HPV, LV	BA	W	D	0	WSA
71 RAJABEE PENDARI	60 F	BCC/ BD	BD	Р	GV	CL	w	D	BRG, BRD	0
72 RATHNAWWA	65 F	BCC	SUPERFICIAL BCC	Р	TE	PE	w	PE	BLGR CS, MLS	PHA
73 ASHWITA B	14 F	СН	СН	LBR	0	0	w	С	PL(L)	0
74 VANI MAHESH	20 F	PG	PG	Р	0	0	0	0	0	WL. WSA
		A- CA	A- CA	Р	DV	D	0	0	0	WD
75 GOPAL HARIJAN	43 M	B- PG	B- PG	P	0	0	0	0	0	WI
76 LALITABAL	54 F	KA	КА	P	AV	PF	w	C C	0	VSA
	17 M	VEN	VEN	I BR	0	0	0	0	BRG	0
	25 F	FHT	NE	IBR	0	0	0	0	PI (RE)	W/SA
	61 M	I SeA PROGRESSING TO BD	BSP	P		D	0	0	0	WI WSA
	20 M		ED	IRP	0	0	0	0	RPD	WD WI
	20 IVI	RD/RRCC	RD	D		D	W/	D	BRG	W/SA
	28 M	те	DILATED POPE OF WINER	IRP	0	0	0	0	DI (DE)	WD
	14 M	SK	SK	DBB	0	0	W/	D	PL(PL)	
	14 101	DN	DN	DBR	0	0	0	0		0
	52 M	BCC	BCC	DBR	TE	DE	0	0	BICRC	0
65 SHRISHAIL	02 101			DBR		PE	- U	D	DLGKG	
86 SHIVABAI TELI	72 F	A-AN	A- AN	PDDD	LV, GV	0	~~~	DV	0	WG, WK, KP
	26.14	B- NA/SCC	B- KA	DBR	0	0	VV	P1 0	0	
	30 IVI	DF/ PN/ DFSP	CHG	P	LV	0	0	0	U DI (DE)	WSA, WL
88 SHIVANAGOUD	69 IVI	DF	DF	LBR	0	0	0	0	PL(PE)	WD, WGS
89 SUPREET PATIL	10 101	PG	PG	P	0	0	0	0	0	WSA
90 SHRAVANI POL	38 F	PG	PG	P	0	0	0	0	0	WL BOA
91 SAHEBGOUDA PATIL	49 M	SCC	MODERATELY DIFF SCC	P	LV	D	0	0	0	WC, WSA, RSA
92 PANKAJ KAVALARGI	17 IVI	DN CCC (ANA	DN	DBK	0	0	0	0	BRG	
93 LAXIVI GUTTEDAR	35 F	SCC/AM	AM	P	0	0	0	0	0	PRP, WSA, KER(SURROUNDING)
94 KAMALA BAI	70 F	BCC	BCC	BLG	TE, LV	PE	W	C	BLGRG, BLGON	WL, KP
95 SONUBAI JAGATAP	80 F	NODULO ULCERATIVE BCC	BCC	BLG	AV	D	0	0	BLGRG	WL, ULC
96 DALAWWA	35 F	BP	BP	R	CV, DV	D	0	0	0	WL
97 SHIVANAGOUDA	69 M	DF	DF	LBR	0	0	0	0	0	WSA, WL
98 SAGAR RATHOD	25 M	SY	SY	LBR	0	0	0	0	PL	WD
99 SHRISHAIL S	62 M	BCC	BCC	BLG	LV, TE	D	0	0	BLGRG, FPS, BLGON	0
100 PRANAVI IJERI	9 F	DN	DN	DBR	0	0	0	0	BRG	CLO
101 SHIVANGAWWA K	38 F	DN	DN	LBR	0	0	0	0	BRD	0
102 VILAS JOSHI	69 M	СН	СН	Р	0	0	w	D	0	0
103 SANDEEP	9 M	VEN/SB	NS	LBR	0	0	0	0	BRD, BRG	0
104 NITIN IMCHAGERI	17 M	AMN	DN	DBR	0	0	0	0	BRG	MLC
105 RUKUMBI SHINDAGIKAR	39 F	SY/TE	SY	LBR	0	0	0	0	PL(DIS)	WD
106 LAXMIBAI S P	22 F	PG	PG	Р	0	0	0	0	0	PHA, WL
107 SUKANYA JADHAV	13 F	ILVEN	VEN	LBR	0	0	0	0	BRD(SER), BRG	0
108 KASTURI	50 F	CH	CH	W	0	0	W	D	0	WCO
109 SAHANA B B	16 F	ILVEN	EN	LBR	0	0	W	D	BRG	CEP, MLC
110 SARDAR DOLLI	55 M	BCC/KA	BCC	Р	0	0	W	D	BRD, CP	WSA, KP
111 BASAMMA MALI PATIL	20 F	AKC/ LAC	AKC	Р	0	0	0	0	0	RPL, WV
112 BHAGYASHREE	46 F	FL/CY	SC	Р	LV,AV	D	W	PFL	0	WSA, YSA
113 AFREEN AKBAR	16 F	NS/VEN	NS	LBR	0	0	0	0	GRBG	0
114 SHARANAMMA	56 F	NBCC	BCC	BLG	LV	D	0	0	MLS, CP	ULC
		DCC/IEK	DCC	D	AV/ 1V/	D	۱۸/	D	BLCBC BL	LILC.
115 MALLAPPA PUJARI	34 M	BCC/IFK	BCC	P	AV, LV		vv	U	BLOKG, PL	ULC

DocuSign Envelope ID: B6D9E4EF-33DA-4817-9F3E-7721865C29E9