" STUDY OF CORRELATION BETWEEN PRENATAL ULTRASOUND AND MORPHOLOGICAL FINDINGS IN FETAL AUTOPSY AT TERTIARY CARE CENTRE."

By

DR. AARUSHI GOSWAMI

DISSERTATION SUBMITTED TO

BLDE (DEEMED TO BE UNIVERSITY)

VIJAYAPURA, KARNATAKA

In Partial Fulfillment of The Requirements For The Award of The Degree of

DOCTOR OF MEDICINE

IN PATHOLOGY

Under the guidance of

DR. SAVITRI M. NERUNE, MBBS, DCP, DNB

PROFESSOR

DEPARTMENT OF PATHOLOGY

And Co Guidance of

DR. RAJASRI YALLIWAL M.S (OBG)

PROFESSOR, DEPARTMENT OF OBSTETRIC AND GYNAECOLOGY

BLDE (DEEMED TO BE UNIVERSITY) SHRI. B.M. PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE, VIJAYAPURA-586103, KARNATAKA

DECLARATION BY THE CANDIDATE

I, Dr. AARUSHI GOSWAMI, hereby declare that this dissertation titled "STUDY OF CORRELATION BETWEEN PRENATAL ULTRASOUND AND MORPHOLOGICAL FINDINGS IN FETAL AUTOPSY AT TERTIARY CARE CENTRE." is a bonafide and genuine research work carried out by me under the guidance of Dr. Savitri M. Nerune, Professor, Department of Pathology and Co Guidance of Dr. Rajasari Yalliwal, Professor, Department of obstetrics and gynecology, BLDE (Deemed to be University), Shri B.M. Patil Medical College, Hospital & Research Centre, Vijayapura, Karnataka.

DR. AARUSHI GOSWAMI

Postgraduate student, Department of Pathology BLDE (Deemed to be University) Shri B.M. Patil Medical College, Hospital & Research Centre, Vijayapura, Karnataka

Date:

CERTIFICATE BY THE GUIDE

This is to certify that this dissertation titled "STUDY OF CORRELATION BETWEEN PRENATAL ULTRASOUND AND MORPHOLOGICAL FINDINGS IN FETAL AUTOPSY AT TERTIARY CARE CENTRE." is a bonafide and genuine research work carried out by Dr. AARUSHI GOSWAMI in partial fulfilment of the requirements for the degree of Doctor of Medicine (Pathology).

Dr. SAVITRI M. NERUNE

Professor Department of Pathology BLDE (Deemed to be University), Shri B.M. Patil Medical College, Hospital & Research Centre, Vijayapura, Karnataka

Date:

CERTIFICATE BY THE CO GUIDE

This is to certify that this dissertation titled "STUDY OF CORRELATION BETWEEN PRENATAL ULTRASOUND AND MORPHOLOGICAL FINDINGS IN FETAL AUTOPSY AT TERTIARY CARE CENTRE." is a bonafide and genuine research work carried out by Dr. AARUSHI GOSWAMI in partial fulfilment of the requirements for the degree of Doctor of Medicine (Pathology).

> Dr. RAJASARI YALLIWAL

Professor Department of Obstetrics and gynecology BLDE (Deemed to be University), Shri B.M. Patil Medical College, Hospital & Research Centre, Vijayapura, Karnataka

Date:

ENDORSEMENT BY THE HEAD OF DEPARTMENT

This is to certify that this dissertation titled "STUDY OF CORRELATION BETWEEN PRENATAL ULTRASOUND AND MORPHOLOGICAL FINDINGS IN FETAL AUTOPSY AT TERTIARY CARE CENTRE." is a bonafide and genuine research work carried out by Dr. AARUSHI GOSWAMI in partial fulfilment of the requirements for the degree of Doctor of Medicine (Pathology).

Dr. SUREKHA B. HIPPARGI

Professor and Head, Department of Pathology BLDE (Deemed to be University) Shri B.M. Patil Medical College, Hospital & Research Centre Vijayapura, Karnataka

Date:

ENDORSEMENT BY PRINCIPAL / HEAD OF THE INSTITUTION

This is to certify that this dissertation titled "STUDY OF CORRELATION BETWEEN PRENATAL ULTRASOUND AND MORPHOLOGICAL FINDINGS IN FETAL AUTOPSY AT TERTIARY CARE CENTRE." is a bonafide and genuine research work carried out by Dr. AARUSHI GOSWAMI, in partial fulfilment of the requirements for the degree of Doctor of Medicine (Pathology).

Dr. ARAVIND V. PATIL

Principal, BLDE (Deemed to be University) Shri B.M. Patil Medical College, Hospital & Research Centre

Vijayapura, Karnataka

Date:

COPYRIGHT

DECLARATION BY THE CANDIDATE

I hereby declare that the BLDE (Deemed to be University), Karnataka shall have the rights to preserve, use, and disseminate the dissertation / thesis in print or electronic format for academic and/or research purposes.

Dr. AARUSHI GOSWAMI

Postgraduate student, Department of Pathology BLDE (Deemed to be University) Shri B.M. Patil Medical College, Hospital & Research Centre Vijayapura, Karnataka

Date:

Place: VIJAYAPURA

© BLDE (Deemed to be University) VIJAYAPURA, KARNATAKA. All rights reserved.

ACKNOWLEDGEMENT

First and foremost, I thank God almighty, for blessing me with patience, consistence and immense strength which led me towards the completion of my work.

I was able to complete my dissertation with the guidance of my respected teachers, support from my family and friends.

I thank my mother (Mrs. Abha Goswami), my father (Dr. S.R Goswami), my sister (Dr. Sheebani Goswami), my friend (Dr. Siddharath Soni) and my brother-in-law (Mr. Shiva Kumar) for always being there for me whenever I needed them. Without their support and love have not been able to finish my work.

I take this opportunity to convey my gratitude to my guide Dr. Savitri M Nerune (DCP, DNB Pathology), Professor Department of Pathology, Shri B.M Patil Medical College, Hospital and Research Centre, Vijayapura, Karnataka for her guidance and constant encouragement throughout the journey of my research work. Her knowledge on the subject and dedication towards her work are the two things which I always wanted to follow.

I extend my sincere thanks to Dr. Surekha B Hippargi (Head of the Department, Department of Pathology, Shri B.M Patil Medical College, Hospital and Research Centre, Vijayapura, Karnataka), Professor and Assistant Professors of Department of Pathology, Dr S.U Arakeri Prof., Dr. Prakash M.Patil Prof, Dr. Vijayalaxmi S Patil Assoc. Prof, Dr. Mamatha K Assoc. Prof, Dr. Satish Arakeri Assoc. Prof and Dr. Sneha Jawalkar Assoc. Prof, Dr. Sai Kulkarni Asst Prof, Dr. Aparna Sajjan Senior Resident, Dr. Srushti M Senior Resident and Dr. Gouri Kulkarni Senior Resident, for their constant support and encouragement. Iam grateful to my co-guide Dr. Rajasri Yalliwal (MS Obs and gyne) Professor Department of obstetrics and gynaecology, Shri B.M Patil Medical College, Hospital and Research Centre, Vijayapura, Karnataka. It is my privilege to express my thanks for her selfless attitude, for giving me the freedom to experiment with my ideas and always being there for me.

Special thanks to my batchmates Dr. A.J Angela Susan and Dr.Sayandeep Das for their assistance cooperation and moral support throughout the duration of my work.

I would also like to thank histopathology technician Mr. Iranna.K for helping me with my work.

Dr. AARUSHI GOSWAMI

Postgraduate student, Department of Pathology BLDE (Deemed to be University) Shri B.M. Patil Medical College, Hospital & Research Centre Vijayapura, Karnataka

LIST OF ABBREVIATIONS

ADCA: Anterior descending coronary artery CHD: Congenital heart disease CTEV: Congenital talipes equino varus/ valgus IUD: Intrauterine death IVC: Inferior vena cava LA: Left atrium LV: Left ventricle MV: Mitral valve PDCA: Posterior descending coronary artery PV: Pulmonary veins RA: Right atrium **RV:** Right ventricle SVC: Superior vena cava TV: Tricuspid valve USG: Ultrasonography CNS: Central nervous system SUA: Single umbilical artery HLHS: Hypoplastic left heart syndrome GIT: Gastrointestinal tract IUGR: Intrauterine growth restriction AVSD: Atrioventricular septal defect VSD: Ventricular septal defect PAS: Periodic acid schiff

LIST OF TABLES

S. NO	CONTENTS	PAGE NO.
1.	Tulip classification of perinatal motality	25
2.	Foot length table	36
3.	Comparison between ultrasound and autopsy	44
	findings	
4.	Organ system wise classification of main	47
	diagnosis	
5.	Classification of central nervous system	48
	anomalies	
6.	Classification of skeletal system anomalies	50
7.	Classification of cardiovascular anomalies	52
8.	Classification of Respiratory system	54
	anomalies	
9.	Classification of renal anomalies	55
10.	Classification of gastrointestinal anomalies	56
11.	Facial anomalies	58
12.	Comparison of present study with other	71
	studies	
13.	List of syndromes and association	73

LIST OF FIGURES

S. NO	CONTENTS	PAGE NO.
1.	Categories of birth defects	21
2.	Graphical representation of comparison	44
	between USG and autopsy findings	
3.	Graphical representation of syndromic	46
	cases	
4.	Graphical representation of system	47
	involved	
5.	Graphical representation of central	49
	nervous system anomalies	
6.	Graphical representation of Skeletal	51
	system anomalies	
7.	Graphical representation of	53
	cardiovascular anomalies	
8.	Graphical representation of respiratory	54
	system anomalies	
9.	Graphical representation of renal	55
	anomalies	
10.	Graphical representation of	57
	gastrointestinal anomalies	
11.	Graphical representation of facial	59
	anomalies	
12.	Gross images of Larsen syndrome	61
13.	X-ray findings of Larsen syndrome	61
14.	Skeletal deformity in VACTERL	62
	Association	
15.	Cardiac findings in VACTERL	62
	Association	

16.	X-ray findings in VACTERL	62
	Association	
17.	Hypolobated right lung	63
18.	Omphalocele	63
19.	Dextrocardia	63
20.	Anomalous baby with webbed neck	64
21.	Spinal defect suggestive of	64
	meningomyelocele	
22.	Anomalous baby with anencephaly and	64
	herniation of bowel loops	
23.	External features of harlequinn baby	65
	syndrome	
24.	Skin histopathology of harlequinn baby	65
	syndrome	
25.	Anomalous baby with cleft lip and	65
	palate	

TABLE OF CONTENTS

S.NO	TITLE	PAGE NO.
1.	ABSTRACT	15
2.	INTRODUCTION	17
3.	AIMS AND OBJECTIVES	19
4.	REVIEW OF LITERATURE	20
5.	MATERIALS AND METHODS	33
6.	OBSERVATIONS AND RESULTS	44
7.	PHOTOMICROGRAPHS	61
8.	DISCUSSION	66
9.	LIMITATIONS OF THE STUDY	77
9.	SUMMARY	78
10.	CONCLUSION	79
11.	BIBLIOGRAPHY	80
12.	ANNEXURES (ETHICAL	86-94
	COMMITTEE CERTIFICATE,	
	PROFORMA, CONSENT FORM)	
13.	MASTER CHART	95

ABSTRACT:

TITLE: Study of correlation between prenatal ultrasound and morphological findings in fetal autopsy at a tertiary care center.

BACKGROUND: Congenital anomalies are one of the major causes of fetal loss and accounts for 8%-15% of perinatal deaths in India. Amongst these, 3% neonates suffer from major congenital malformations and 0.7% to 1% with multiple system congenital malformations. When a serious fetal anomaly is suspected in the scans, obstetrician may suggest termination of pregnancy in order to avoid the heavy emotional and socioeconomic burden on both the fetus and parents or in cases where it is implied that the anomaly is almost certainly lethal. Fetal autopsy defines the examination of external and internal body parts after the demise of a fetus due to an elective termination of pregnancy or congenital anomalies and is considered as gold standard to evaluate the efficiency of ultrasound findings, along with confirming these findings to arrive to an accurate diagnosis.

AIMS: To compare prenatal ultrasonographic findings with fetal autopsy and to study the role of fetal autopsy in making the diagnosis of various fetal anomalies in cases of spontaneous miscarriage and medically terminated fetuses for structural anomalies.

MATERIALS AND METHODS: Hospital-based cross-sectional study with sample size of 150 fetuses. The study was conducted from April 2023 to December 2024. For all cases, consent was taken from parents and standard autopsy protocol were followed and histopathological examination was done. Photodocumentation of internal and external anomalies for majority of cases was maintained.

RESULTS:

A total of 150 fetuses were included. On comparing ultrasound reports and autopsy findings there was complete concordance in 54.6% cases (82/150), additional findings on autopsy in 39.4% cases (59/150) cases and could not confirm the ultrasound findings in 6% cases (09/150). The most common system involved was central nervous system comprising of 34 out of 150 cases (22.6%), followed by skeletal system with 16 cases (10.6%) and then cardiovascular system with 13 cases (8.6%). We also came across 23 syndromes, for which complete concordance between ultrasound and autopsy was seen in 04 cases out of 23 (17%), 07 cases out of 23 (31%) were suspected with syndrome on ultrasound and confirmed through autopsy with minor additional findings that did not lead to change in final diagnosis and 12 cases(52%) were classified into syndromes solely on the basis of autopsy.

CONCLUSION:

Study confirms the need for fetal autopsy after fetal loss to identify and confirm the underlying cause, which further aids in genetic counselling of the couple. Fetal autopsy plays an important role in analysing the recurrence risk thus helping in better planning for future conception plans of the parents.

Key words: Fetal autopsy, malformation, anomaly scan

INTRODUCTION:

- Prenatal development of fetus is divided into three periods: 1)ovular period or germinal period-first two weeks following ovulation, 2) embryonic period- from third week of ovulation upto ten weeks of gestation (8 weeks post conception) and 3) Fetal period- from eighth week of conception until the time of delivery (generally 38 weeks of conception). The perinatal period is defined as the period starting from the conception of the fetus upto a year after giving birth ^(1,2).
- Fetal autopsy defines the examination of external and internal body parts after the demise of a fetus due to an elective termination of pregnancy or congenital anomalies. It often involves extraction of small tissue fragments for further histopathological examination. Perinatal autopsy helps in providing important details in regards to the underlying cause of fetal death to the parents and clinicians. In cases of malformations, autopsy may confirm, modify or debar the prenatal diagnosis. In cases of miscarriage, termination of pregnancy due to fetal issues or stillbirth, autopsy details provide valuable insights. These findings support parents and healthcare professionals in planning for future pregnancies and understanding potential risks, offering hope and guidance for the journey ahead ⁽³⁾.
- Congenital anomalies are one of the major causes of fetal loss and accounts for 8%-15% of perinatal deaths in India. Amongst these, 3% neonates suffer from major congenital malformations and 0.7% to 1% with multiple system congenital malformations ⁽⁴⁾. The recurrence risk generally depends on the underlying cause, for instance, single congenital malformation has a probability of 1% to 25% recurrence depending on the genetic component and other contributing environmental factors ⁽⁵⁾.

- Fetal autopsy is considered as gold standard to evaluate the efficiency of ultrasound findings, along with confirming these findings to arrive to an accurate diagnosis. The ideal time for scan for fetal malformations is about 18 weeks and although ultrasound is reasonably precise in making a diagnosis, fetal autopsy is recommended as a supportive investigation of the terminated fetus to acquire additional useful information as to underlying case of the demise. Autopsy is also helpful in attaining tissues and DNA samples for further testing that is required for karyotyping and other additional investigations ⁽⁵⁾.
- When a serious fetal anomaly is suspected in the scans , obstetrician may suggest termination of pregnancy in order to avoid the heavy emotional and socioeconomic burden on both the fetus and parents or in cases where it is implied that the anomaly is almost certainly lethal ⁽⁶⁾.
- Even though the technical advancements in imaging modalities have improved in leaps and bound it should be noted that many a times these modalities can either misread and altogether fail to read certain findings. These slips can be due to several factors including position of the fetus, maternal body fat being high, previous history of fetal anomalies and oligohydrominos. Thereby, autopsy can provide a comprehensive and visual explanation for the fetal loss, often either confirming the ultrasound findings or providing additional information on the missed deformities, thus in turn providing a sense of relief to the parents as well as obstetrician about their decision to terminate ^(5, 6).

AIMS AND OBJECTIVES:

- To compare prenatal ultrasonographic findings with those found in fetal autopsy.
- To study the role of fetal autopsy in making the diagnosis of various fetal anomalies in cases of spontaneous miscarriage and medically terminated fetuses for structural anomalies.

<u>REVIEW OF LITERATURE</u>

- Autopsy is a greek word derived from autos meaning self and optos meaning seen. It was termed in early 17 th century in the sense of personal examination and later came to be used only in medical terms to denote postmortem examination ⁽⁷⁾.
- Greek physicians about three millenia ago started developing interest to identify the cause of death by performing autopsy. This lead to gross dissection of human body becoming an integral part of medical education starting from regions like paris, padua and parma ⁽⁷⁾.
- The major advances in this field came about in the 19th century due to two renowned pathologists, Karl Von Rokitansky and Rudolph Ludwig Karl Virchow ⁽⁷⁾. Rokitansky majorly focused on developing a meticulous way of dissection for the purpose of demonstrating gross autopsy findings to achieve a clinocopathological correlation. To master the procedure Rokitansky performed 30,000 and supervised 70,000 autopsies. Similarly, Virchow agreed on the importance of gross examination, but was also engaged in the significance of microscopic findings, as he strongly believed that the disease began at a cellular level. Both scientists were also responsible in devising two principal techniques of gross examination that is in situ method of organ examination and organ block method respectively ^(7, 8).
- Perinatal autopsies are different from adult autopsies in many ways, for instance, instruments used have to be smaller to account for the intricate and delicate organs to be grossed, the external examination that requires a detailed account of all morphological features ranging from skeletal dysplasia, cleft lip, abnormal head size and shape, stenosis and atresia of anus, low set ears and other features and finally intensive histological

sectioning of lungs, liver, kidney, thymus and brain to analyze the cellular development and related conditions⁽⁵⁾.

Types of birth defects⁽⁹⁾:

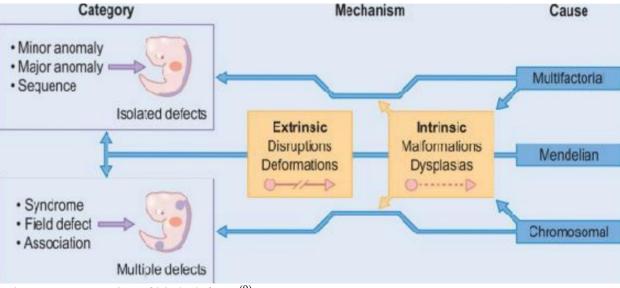


Figure 1: Categories of birth defects ⁽⁹⁾

- Isolated defects: Affect single body region and are usually considered due to multifactorial determination.
 - a) Anomaly: Alteration from the presumed type of structure, form and/ or function that may be interpreted to be abnormal.

Major anomaly: Those with cosmetic and/or surgical consequences (deformed wrist, limb defect, neurofibromas).

Minor anomaly: Have diagnostic importance but display very little impact on individual well being (anteverted nares, epicanthal folds, single palmar crease).

- b) Malformation: Morphological defect of an organ or a region of a considerable size of body due to inherently flawed (chromosomal abnormality, Mendelian mutation, genetic predisposition) developmental process.
- c) Dysplasia: Unusual cell arrangement into tissue and its morphological result, that is, abnormalities in histogenesis.
- d) Disruption: Morphological defect of large region of body or a specific organ due to extrinsic breakdown or hindrance in normal developmental process. (amniotic band wrapping around developing limbs).
- e) Deformation: Abnormality in a body part's shape, form, or location brought on by mechanical forces. (radial club hands in radial aplasia).
- Sequence: Pattern of multiple anomalies derived from single known or prior anomaly or mechanical factor. It represents a course of primary or secondary occurrences that follow after a single primary disruption or abnormality.
- 3) Multiple defects: More likely due to chromosomal or mendelian inheritance.
 - a) Syndrome: Several defects that are believed to be pathogenetically connected but do not constitute a sequence. The condition could eventually turn into a sequence.
 - b) Association: Nonrandom occurrence of multiple congenital anomalies in two or more individuals not known to be polytopic defect, sequence or syndrome. (VATER association, MURCS association, CHARGE association, tracheal- esophageal association, otocephaly association).

- c) Developmental field defects: It is caused by result of disturbed development of a morphogenic field or of a part. It is important to note that most field defects carry very low genetic risk if present in isolation.
- 4) Qualitative terms:
 - a) Hyperplasia or hypoplasia: Refers to the overdevelopment or underdevelopment of an organ, or tissue as a result of either an increase or decrease in the number of cells.
 - b) Hypotrophy or hypertrophy: Decrease or increase in the size of cells, tissue or organ respectively.
 - c) Agenesis: Represents the loss of a part due to absence of primordium (rudiment of organ).
 - d) Aplasia: Absence of a part of body due to lack of primordium to develop further.
 - e) Atrophy: Indicates decrease in cell size and/ or cell number of a normally developed mass of tissue or organ.
- Some important definitions ⁽¹⁰⁾:

1) Embryo- from the moment of conception until the conclusion of organogenesis (about eight weeks after conception), during which the blastocyst and inner cell mass develop.

2) Fetus- from the end of embryo stage (8 weeks post conception) till delivery.

3) Intrauterine fetal death- Death prior to the complete expulsion or extraction from its mother of a product of conception, irrespective of duration of pregnancy; the death is indicated by the fact that after such separation the fetus does not breathe or show any other evidence of life, such as beating of the heart, pulsation of umbilical cord or definite movement of voluntary muscles without specification of duration of pregnancy.

4) Still birth- Death of fetus that has reached a birth weight of 500 grams or birth weight is unavailable with gestational age of equal to or more than 22 weeks or crown to heel length of 25 cm or more.

Tulip classification: On the basis of underlying cause and mechanism of perinatal mortality⁽¹¹⁾.

Cause of death is defined as initial pathophysiological entity initiating the chain of events that has irreversibly lead to death.

Mechanism of death is defined as organ failure that is not compatible with life, initiated by the cause of death.

Cause of death	subclassification	
Congenital anomaly	Chromosomal defect	Numerical
		Structural
		Microdeletion/uniparental
		disomy
	syndrome	Monogenic
		Others
	Central nervous system	
	Heart and circulatory system	
	Respiratory system	
	Digestive system	
	Urogenital system	
	Musculoskeletal system	
	Endocrine/ metabolic system	
	Neoplasm	
	other	Single organ
		Multiple organ
Placenta	Placental bed pathology	
	Placental pathology	Development
		Parenchyma
		location
	Umbilical cord compression	

Table 1: Tulip classification of perinatal mortality, causes of death (11)

	NOS	
Prematurity/immaturity	PRROM	
	Pre-term labor	
	Cervical dysfunction	
	Iatrogenic	
	NOS	
Infection	Transplacental	
	Ascending	
	Neonatal	
	NOS	
Other	Fetal hydrops of unknown	
	origin	
	Maternal disease	
	trauma	Maternal
		Fetal
	Out of ordinary	
unknown	Despite thorough	
	investigation	
	Important information	
	missing	

Tulip classification of perinatal mortality, mechanism of death⁽¹¹⁾

Cardiocirculatory insufficiency
Multi-organ failure
Cerebral insufficiency
Respiratory insufficiency
Placental insufficiency
unknown

- In 2006 Kaasen A et al.,⁽¹²⁾ set out to evaluate the discrepancies between ultrasonographic and autopsy findings for second trimester abortions. They covered 274 cases by performing autopsies. In 58.4% (160 out of 274) cases there was a full agreement. Additional findings detected by autopsy that were initially not found in ultrasound was seen in 31.4% of cases. Of a total of 64 malformations, 30 were considered as detectable. In one of the cases postmortem radiology examination was used to confirm the ultrasound diagnosis. Discrepancy between ultrasound and postmortem findings were observed in 40% of cases, thus further stressing on the need for autopsy.
- Sankar.V.H et al.,⁽¹³⁾ from India studied 206 fetuses in 2006 to assess how useful fetal autopsy is for making a final clinical diagnosis and comparing the autopsy findings to estimate how beneficial fetal autopsy can be in terminated fetuses subsequent to the diagnosis of malformation. Of these 206, 138 were terminated post detection of an anomaly in ultrasound and 68 were spontaneous fetal losses. For prenatally diagnosed defects in

fetuses, ultrasonography results and autopsy results were compared. In 59 cases, the autopsy confirmed the ultrasound results, and in all but two cases, the fetal autopsy gave a definitive diagnosis. Furthermore, in 77 cases, autopsy revealed new information and lead to significant change in recurrence risk in 24 cases.

- In a study conducted by Amini.H et al., ⁽¹⁴⁾ in the year 2006 on 328 fetuses with the objective to compare antenatal diagnoses with autopsy findings in fetal anomalies and to analyze the quality of antenatal fetal diagnosis. They observed that in 91.2% cases ultrasound either exactly matched or were very similar to the autopsy findings. Although, in 23 cases that is about 7% autopsy could not confirm the ultrasound findings but the findings of both were similar in severity. In 1.8% of terminations the autopsy findings were found to be less severe than ultrasound findings. Fetal autopsy also lead to further diagnostic information in 47% cases disclosing existence of a syndrome in 10%.
- In 2007, Akgun.H. et al., ⁽¹⁵⁾ compared the frequency of major and minor fetal anomalies reported by second trimester prenatal ultrasound with those found by fetal autopsy after the pregnancy was terminated in the second trimester.Out of 107 cases with major fetal anomalies, 49% showed central nervous system anomalies, 23% had renal and urinary tract anomalies and 11% showed congenital heart diseases. Fetal autopsy was able to confirm all the major anomalies leading to termination of pregnancy that is a 100% success rate. In comparison success rate for prenatal ultrasound was calculated to be 77%. The percentage of extra minor anomalies detected through fetal autopsy was 20%. Also 3% of minor defects indicated by prenatal ultrasonography could not be confirmed by autopsy results.

- Dickinson JE et al., ⁽¹⁶⁾ in 2007 shared a 10 year study of perinatal autopsy reviewing the frequency of autopsy following termination of pregnancy for congenital anomalies and its participation in following counseling. For 1012 consecutive terminations for fetal anomalies the major indication were noted to be : abnormal karyotyping in 38.4% cases, neural tube defects in 16.1% fetus, cardiac in 10.3 % cases and cerebral anomalies in 7.5% cases. They performed autopsy in 809 that is 79.9 % of cases. Out of these in 63.5 % cases prenatal diagnosis was confirmed by autopsy with no additional information, lastly, for 15.1% cases significant new information was provided by perinatal autopsy.
- Vogt.C et al., ⁽¹⁷⁾ in 2012 carried out a retrospective study on 455 autopsies of fetuses and infants having developmental anomalies after attaining their prenatal ultrasound. The study showed a complete consensus between prenatal ultrasound and postmortem findings in 84% cases, out of these, postmortem examination were supplementary to prenatal ultrasound diagnoses in 16% and in four cases it further helped counseling of the parents. The agreement regarding the main diagnosis made by ultrasound and that of autopsy was made out to be 98% in comparison to 75% over the previous ten years. The most frequent defects involved in this study included central nervous system, cardiovascular system and urinary tract, respectively.
- In a study done by Godbole K et al., ⁽⁵⁾ in the year 2013, 141 second-trimester fetuses were studied and a total of 301 structural abnormalities were identified. In 40.4% (57) of the cases, a specific cause was recognised or a syndromic diagnosis was established. The maximum number of systemic anomalies (45/301) belonged to central nervous system. These abnormalities (CNS) were most typically accompanied with facial dysmorphism, including cleft lip and palate. There was a complete concordance between ultrasound and

autopsy findings in 29.07%(41) cases, additional information obtained by autopsy that influenced the final diagnosis was seen in 65 (46.09%) cases.

- In 2014 Nayak S.S. et al., ⁽¹⁸⁾ performed the autopsy on 230 fetuses. 106 cases showed single system and 92 cases showed multisystem involvement. Antenatal findings were validated for 23% of cases and additional findings were observed in 37% of cases. In 23% of cases, autopsy findings unearthed new findings and led to change in the final diagnosis. Although, 17% of cases show no cause of fetal loss, in 30.3% of the fetuses the risk of recurrence was apparent and it stayed the same post autopsy; but in 4.8% of cases the diagnosis was modified after carefully considering autopsy findings. Therefore in 36% of cases autopsy findings led to enhancement and changes in recurrence risk. In 77% of cases, autopsy helped couples with prenatal counselling by either confirming antenatal findings (35%), or providing new information/ruling out a diagnosis (42%).
- In 2016 Man.J et al., ⁽¹⁹⁾ performed a study on 1064 intrauterine deaths, including early, late intrauterine fetal deaths and stillbirths. Out of these in 40% cases definite cause of death could be identified and 60% were classified as unidentifiable cause.They also discussed that black and asian women had a higher probability of deaths due to ascending infections.
- Cherian.A et al., ⁽⁴⁾ in 2016 conducted a study aimed to identify the prevalence and types of congenital abnormalities at birth on 36074 births over a period of ten years. It was recorded that 511 were stillbirths and 309 were early neonatal deaths, thus yielding a perinatal death rate of 23 per 1000. Out of total live births, 449 cases were diagnosed with congenital anomalies leading upto a birth incidence of 12.53 per 1000 births. They noted that the commonest anomalies belonged to musculoskeletal deformities (affecting one or a

combination of bone and muscle development in context to skull, trunk or limbs), this was followed by craniovertebral anomalies. The commonest musculoskeletal anomaly comprising of 73.6% cases belonged to congenital talipes equinovarus and among carniovertebral anomalies, meningiomyeloceles and/ or encephaloceles accounting for 36.9% cases, followed by 34% cases of anencephaly.

- Bhide.P et al., ⁽²⁰⁾ in 2016 studied the prevalence of congenital anomalies in an Indian cohort on 2107 pregnant women with outcomes of miscarriage, termination of pregnancy, live or stillbirth. Among 1822 births, the prevalence of congenital anomalies was calculated to be 230.51 per 10000 births. Most common congenital anomalies in the study with prevalence of 65.86 per 10000 births was made to be congenital heart defects. Neural tube defects showed a significant prevalence of 27.44 per 10000 births. They also shared that in there study that congenital abnormalities were the second leading cause for neonatal fatalities. Prenatal diagnosis for congenital anomalies were made in 10.98 per 1000 births and rate for congenital termination of pregnancy was 4.39 per 1000 births.
- In the year 2016 Rossi C et al., ⁽⁶⁾ conducted the fetal autopsy on 3534 fetuses. They confirmed prenatal ultrasound in 68% (2401) cases, provided additional information in 22.5% (794) cases, and could not confirm prenatal ultrasound in 9.2%(329) fetuses. Additional findings led to change in the final diagnosis in 3.8% of cases. CNS malformations (36.6%) and cardiovascular defects (15.2%) were the most prevalent causes for pregnancy termination or stillbirth. CNS anomalies showed the maximum concordance between ultrasound and autopsy findings (79.4%) followed by termination of pregnancy due to abnormal karyotyping(79.2%), Genitourinary defects(79.9%), skeletal system anomalies (76.6%), Congenital Heart Disease(75.5%), Respiratory system(69.7%),

Gastrointestinal system(62.6%), multiple system (involvement of more than one system)(37%) and limbs(23.3%).

- Struksnaes. C et al.,⁽²¹⁾ in 2016 studied 1029 cases of termination of pregnancy with gestational age ranging between 11 to 33 weeks. There was a full agreement between ultrasound and autopsy findings in 88.1% of cases with no additional findings and about 97.9% final diagnosis made by ultrasound being correct. In 1.3 % of the cases, autopsy was unable to confirm the ultrasound findings. Also there was no false positive diagnoses that may would have lead to termination of pregnancy.
- In a study done by Venkataswamy C et al., ⁽²²⁾ in the year 2018 on 66 fetuses including 17 intrauterine fetal death, and 49 terminations for congenital malformations. The most prevalent anomalies were the central nervous system (neural tube defect), followed by genitourinary system. Except for three cases, autopsy findings was able to confirm prenatal ultrasound findings in all cases. A full consensus between ultrasound and autopsy was established in 39.7% (17) cases. In 62.2% (25) cases additional findings were noted, among these, 15 cases had a significant change of recurrence risk due to alterations in initial ultrasound diagnosis.

MATERIALS AND METHODS

1. Study Design

1.1 Study setting: The study was conducted in the Histopathology section, Department of Pathology, BLDE (Deemed to be University), Shri B.M Patil Medical College, Hospital, and research center, Vijayapura.

1.2 Study type: A hospital-based cross-sectional study design to evaluate fetuses sent to histopathology section for the purpose of fetal autopsy after spontaneous abortions or medically terminated in our hospital and other hospitals referred to our department.

1.3 Study period: The study was conducted from 1st April 2023 to 31st December 2024.

1.4 Ethical clearance: Ethical clearance for this study was received from Institutional Ethical Committee/ BLDE (Deemed to be University)

BLDE (DU)/IEC/939/2023-24.

1.5 Sample size: Sample size was calculated on the basis of anticipated proportion of complete agreement between ultrasound and autopsy findings of 29.07%, the study required a sample size of 80 fetuses with a 95% level of confidence and 10% absolute precision.

Formula used

• $n=\underline{z^2 p^* q}$

 \mathbf{d}^2

Where Z=Z statistic at α level of significance

d²=Absolute error

P= Proportion rate

q= 100-p

• To increase the efficiency of present study the final sample size collected was 150 fetuses.

1.6 Statistical analysis

- The data obtained was entered into a Microsoft Excel sheet, and statistical analysis was performed using a statistical package for the social sciences (Version 20).
- Results were presented as percentages, and diagrams.
- JMPSAS SOFTWARE was used for this statistical analysis.

2. <u>Sample Recruitment</u>

2.1 Inclusion criteria: All fetuses sent to the histopathology section with the objective of autopsy.

2.2 Exclusion criteria: Autolysed fetuses and fetuses without ultrasonographic reports.

2.3 Consent and confidentiality: Before inclusion in the study, all participants were informed regarding the objectives, procedures, potential benefits and risks of the study. Written informed consent was obtained from each participant in the study.

3. Sample Collection

3.1 Protocol for fetal examination:

The fetal pathology examination follows a similar pattern of evaluation as that of adults, but differ in certain important aspects, such as, head examination which includes special problems like interpretation of developmental changes, recognition of malformations and evaluation of injuries during birth. ^(8,23)

The fetus was received and fixed in 10% formalin. 100% that is concentrated formalin was injected through anterior fontanelle in the fetus brain. The duration of brain fixation was 7 to 10 days. ^(23,24)

3.2 Radiographic examination:

Whole body anterio- posterior and lateral radiographs were taken whenever indicated especially when bony abnormalities were suspected.

3.3 External examination:

The external examination included weighing and taking measurements of the fetus, including : head circumference (HC), chest circumference at nipple level (CC), crown- rump length (CRL), abdominal circumference at umbilical level (AC), crown- heel length (CHL), inner intercanthal distance foot length. Foot length was taken in every case and used to confirm the gestational age as mentioned on ultrasound.

The study consists of records with reference to clinical history which included details of maternal health, family history, past and present obstetric history, antenatal care and ultrasonographic investigations.

Table 2: Foot length chart: ⁽²⁵⁾

WEEKS	FOOT LENGTH (mm)
12	14
14	20
16	27
18	33
20	39
22	45
24	50

3.4 Photographs:

Photographs were taken for every case. The photographs taken depicted the abnormal features. In situ photographs were also taken, were ever indicated for preserving anatomic relationships and depict initial presentation of visceral lesions ⁽²³⁾.

3.5 Equipments:

Special instruments suitable for the purpose of fetal autopsy, including pediatric surgery tools were used.

4. <u>Initial incision:</u>

A Y- shaped incision was made, the arms of the Y incision was extended to the top of the shoulders for the purpose of freeing up the skin just above the anterior aspect of the neck and inferiorly in the midline, at the level of xiphoid process. The attachment of skin flap to the chest wall was incised and pulled upwards over the chest. Initially a midline vertical incision was made extending from the xiphoid process up to the symphysis pubis by incising around the left side of umbilicus. The abdominal organs were first inspected. The attachments of mesentery along with the location of the appendix were examined $^{(9, 23)}$.

5. In -situ examination:

5.1 Thorax:

An upside-down V shaped incision was made with the objective to remove chest plate. The above incision began at sternoclavicular joint, 4mm from the costochondral junction. The xiphoid process was grasped with forceps and the ribs were removed away from the thoracic organs, following this fibrous attachments were incised very close to the bones. and fibrous attachments were cut as close to bone as possible. Lungs were also examined ^(9, 23).

To expose the great vessels and heart the pericardium and thymus were removed together. After nicking the pericardium, a cut parallel to the diaphragm was made that further extended till the pulmonary veins (PV) on the left side and the base of inferior vena cava (IVC) on the right side, respectively. Then the pericardium was incised on the right in close proximity to IVC, up to the level of left innominate vein following the lateral side of right atrium (RA) and superior vena cava (SVC). Meanwhile, on the other side, the scissors were positioned at ninety degree to the diaphragm at the level of the PVs as they leave the left atrium (LA). For proper visualization, a continued cut was made adjacent to the left pulmonary artery. The thymus was then dissected away from pericardium $^{(9, 23, 24)}$.

5.2 Heart:

A thorough and comprehensive evaluation of the exterior appearance of the heart and all vascular connections were made to rule out any congenital anomalies. The location of the heart and the direction of its apex in the chest was noted following this inspection of the great arteries was performed. The position of the pulmonary trunk with respect to aortic trunk was also noted $^{(9, 26)}$.

5.3 In -situ opening of heart:

In -situ opening of heart was carried out by using coronary arteries as a guide and following the flow of blood, avoiding the septum. The following basic steps were followed:

- The initial nick was made lateral to the RA. Scissors were inserted to open the SVC and this cut was continued to left innominate vein. Following this the IVC was opened inferiorly up to the diaphragm⁽²⁶⁾.
- 2. Using forceps the RA wall was lifted and one end of the scissors was introduced to the RA and the inferior aspect of RA wall was cut. Tricuspid valve along with RA were then meticulously examined. Using posterior descending artery (PDCA) as a guide, the cut was then extended across the tricuspid valve (TV) to the RV apex. The RV was then inspected ⁽²⁶⁾.
- **3.** An incision was made using anterior coronary descending artery (ACDA) as guide for RV starting from the apex across pulmonary valve and continuing up to left pulmonary artery ⁽²⁶⁾.
- **4.** LA appendages were nicked at the tip and scissors were inserted, extending the cut into each of the pulmonary veins. Mitral valve examined ⁽²⁶⁾.

5. Using the PDCA as a guide, the LV was incised postero- laterally from the MV till the apex. From the apical portion this cut was extended from the anterior wall of the LV to the aortic valve, using the ADCA as a guide. To separate the pulmonary trunk from the ascending aorta we performed a blunt dissection. For opening aortic valve, ascending aorta and the aortic arch the final blunt dissection cut was made ⁽²⁶⁾.

6. <u>Removal of organs:</u>

6.1 Spinal cord: Anterior approach:

Following evisceration of all organs there is a full view of thoracic and lumbar portions of spinal cord. Lower most lumbar intervertebral discs were then transected using a scalpel and one end of the rounded pair of scissors was inserted into this opening to make a continuous cut. A cut was made between the dura and the bone, being careful that the dura was left intact. After dissecting all the spinal pedicles, vertebral bodies were lifted, exposing the spinal cord. Using a sharp scalpel blade, the cord was transected at the lumbar end and with the help of toothed forceps the surrounding dura was gently lifted. Without exerting any tension to the cord the dura and spinal cord was dissected from the lumbar to cervical portion ⁽²⁷⁾.

6.2 Brain:

The incision on the skin was extended from behind one ear, upwards, over the top of the cranium and then down behind the other ear. The skin flap was reflected anteriorly over the eyes and posteriorly in the caudal direction. The length and breadth of fontanels were measured. Following which on each lateral corner of the anterior fontanel a small nick was made with the purpose of opening the skull. A complete oval cut was made by inserting rounded scissors into the nick of each side, leaving a portion unmarred on the lateral side that acts as a hinge allowing the bony flap to be folded away from the brain. Then lateral to the sagittal sinus incisions were made through the bone to leave it intact. The brain was then inspected in -situ. Using a sharp scalpel the bony attachments was made free from the falx and the tentorium $^{(9, 27)}$.

For removing the brain, our left hand was positioned on top of the occiput, then to ensure that the brain is not detached from the skull bone the brain and skull was cradled in the palm. The head was gently tilted back to allow the brain to fall away and separate from the calvarium on its own. The index and the middle finger of the right hand were used to gently retract the cerebral hemisphere. Following this the optic nerves were cut close to the skull. The bottom surface of the anterior spinal cord and brainstem were now evidently visible. The cervical spinal cord was transected and separated as far as possible ^(9, 27).

6.3 Intact Brain and Spinal cord: Posterior approach:

For preservation of skull and brain anomalies this approach was used, including anomalies such as occipital encephalocele, Arnold-chiari malformation, Dandy-walker syndrome and meningiomyelocele anywhere along the spinal length. The incision in the skin was in the form of a question mark (?). The portion that is extended on top of the neck was further extended caudally as far as the defect needed to be preserved. The skin over the skull was reflected. The muscle over the occiput was carefully removed and the soft tissues over the rami of upper cervical vertebrae were dissected away. If needed the atlas was cut along the second and third cervical vertebrae. A careful incision was made along the dura for the purpose of exposing cervical cord and foramen magnum. Under normal conditions the cavity of fourth ventricle and the cerebellar tonsils were seen. A pair of blunt scissors were placed between the dura and the bone and a cut was made on either side to allow removing the spinal cord, with or without a spinal defect. A cut was also made for removal of bone around the defect. An additional cut in the midline of the occipital plate was made and the brain was removed as described earlier this allowing the brain and cord to be removed together ^(9, 27).

7. Evisceration:

Rokitansky technique was followed for evisceration, which allowed removal of organs of the neck, chest and abdomen as a single unit. Organs were then separated from each other and the weight of individual organ was taken ^(9, 24).

• Organ block Dissection:

The organ block was positioned on the ventral surface.

The ventral surface of the organ block was placed facing downwards. The aorta was opened posteriorly to the aortic arch. Then renal arteries were opened, leaving them attached to the kidneys and for separating either side of the kidney a segment of aorta was cut. The diaphragm was reflected away from the adrenals and each adrenal was removed alongside either side of kidney in their anatomical position. To preserve the ureters, the kidneys were dissected away from the block. For female fetuses urinary bladder and external genitalia were dissected free from the rectum, unless indicated otherwise in case of an anomaly. The kidneys and adrenals of respective literalities were weighed together ^(9, 23).

The bile duct was opened, and gall bladder was gently squeezed to allow some bile to pass through for confirmation of patency of cystic duct and examine porta hepatis. Then the portal vein and hepatic artery were opened. The splenic vein was also opened and the spleen was removed. Perisplenic fat was examined for presence of accessory spleen and weight of spleen was recorded. The intestines were cut at the duodenum after carefully getting separated from mesentery ^(9, 23, 24). The intestine was then opened, the contents were emptied and mucosa was thoroughly examined. The esophagus was reflected from the trachea after opening it, to eliminate the chances of transecting a fistula. After dissecting the trachea away from the esophagus, the diaphragm was nicked away to remove a single block containing the esophagus, stomach, duodenum and pancreas. Then from the block, opening of stomach and duodenum was carried out, by cutting the stomach along the greater curvature and sectioning of pancreas was done. Then the liver and diaphragm were separated from the thoracic organs and the liver and diaphragm were dissected free from each other. The liver was weighed and the gall bladder was opened ^(9, 24).

The liver and lungs were dissected from each other and separately weighed. Subsequently, the trachea was opened into each big bronchus and posteriorly to the carina to carefully assess the bronchial morphology. Thereafter, lungs were sectioned and following the flow of blood the heart was examined again. At this moment, congenital anomalies of the heart were demonstrated by the process of windowing that is by carefully removing portions of myocardium or vascular connections for the purpose of photography ^(9, 24).

The brain was examined after 7 to 10 days of fixation. External surface was examined for any abnormality like malformations, hemorrhage that may be overlooked in fresh state ⁽²⁷⁾.

Sectioning the fixed brain:

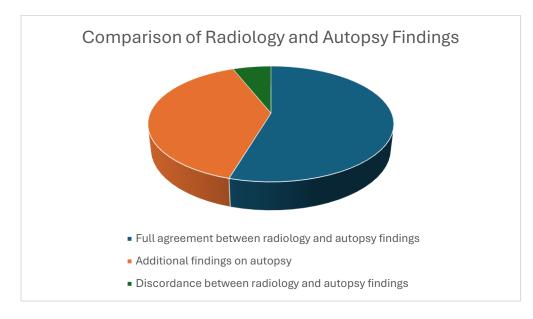
The fixed brain was washed in running water overnight. A thorough examination of the dura, falx and the tentorium was conducted and the dural sinuses were opened. The leptomeninges were examined. The general appearance and symmetry of the cerebral hemispheres were noted. The degree of development of cerebral convolutions were recorded along with the general appearance and size of the cerebellum. We also identified the components of the brain stem. The cerebrum was separated from the cerebellum and brainstem by cutting through cerebral peduncles as far rostrally as possible. The cerebrum was placed upside down (base up) on the cutting board. It was sliced in serial coronal sections beginning at the frontal pole and ending at the occipital pole using a brain knife, the first cut was made at the level of the mammary bodies. The thickness of the slices was determined by the consistency of the brain. Firm brains were sliced at 1 cm intervals, soft friable ones at larger intervals. The size and shape of the ventricles were noted ^(9, 27).

Using a scalpel a cut through cerebellar peduncle was made and the brain stem was separated. The cerebellum was sectioned serially beginning at the superior surface in the horizontal plane using a knife. Anatomic landmarks were also identified. The brainstem was sectioned serially from rostral to caudal ends at 2 mm intervals $^{(9, 27)}$. Finally, the size of fourth ventricle and aqueduct of sylvius were noted $^{(27)}$.

8. Microscopic Examination:

Gross findings were sufficient for diagnosis of a majority of cases, yet microscopic examination was conducted with hematoxylin and eosin slides ⁽⁹⁾.

The sections submitted for microscopic examination of various organs were as follows: lungs (one section from each lobe), heart (two sections), liver (one section from right and left lobe respectively), one section from the spleen, adrenals (right and left each), kidneys (right and left each), thymus and umbilical cord. In few special cases where indicated, sections from pancreas, urinary bladder, testis or ovary, uterus, vagina, costochondral junction and from any other organ or tissue that appeared abnormal were submitted. Two sections from the placenta where ever indicated were also taken ⁽⁸⁾.


OBERVATIONS AND RESULTS:

The data included observations made in 150 fetuses which are as follows:

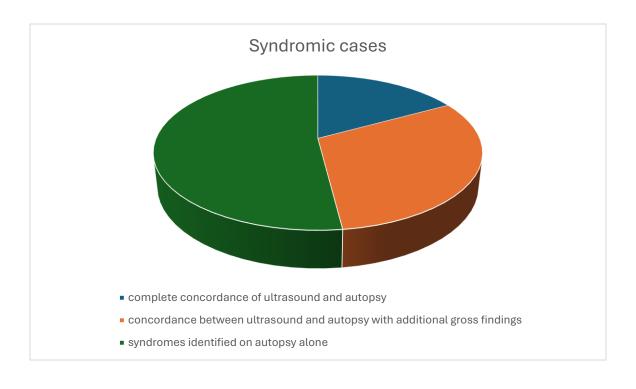
Table 3: Comparison	of ultrasound and	autonsy findings.
Table 5. Comparison	of und asound and	autopsy mungs.

Sr.No.	Cases	No. of cases	Percentage
1.	Full agreement between radiology	82	54.6%
	and autopsy findings		
2.	Confirmation and additional findings	59	39.4%
	with autopsy		
3.	Discordance between radiology and	09	6%
	autopsy findings		

Figure 2: Graphical representation of comparison between USG and autopsy findings

As seen in table 3 and figure 2 there was a complete concordance between ultrasound and autopsy findings in 54.6% (82 out of 150) cases. The autopsy provided additional findings in 39.4% (59 out of 150) cases.

In 68% (40 out of 59) cases additional findings were discovered but it did not lead to classification of fetus in any syndrome or association including low set ears, single umbilical artery, occipital bulge, webbed neck etc.


In our study a total of 23 syndromes (figure 3) were observed. A complete concordance of ultrasound and autopsy were seen in 04 of these suspected syndromic cases with no additional findings.

In 20% (12 out of 59) cases no syndromic anomaly was detected on ultrasound and diagnosis was made solely on the basis of additional findings discovered on autopsy classifying these fetuses into a syndrome or association. These findings included cystic medulla and hypoplastic muscle fibres in case one, short neck, bell shaped thorax, hemivertebrae, pleural effusion and depressed nasal bridge in case two, hypoplasia of thymus and low set ears in case three leading to diagnosis of complex congenital anomaly in all three cases. We found additional findings of micromelia, thin elongated ribs and short limbs in case four that led to diagnosis of Greenberg dysplasia. In case five we additionally uncovered bilateral club foot and dextrocardia classifying it as PAGOD syndrome. We discovered presence of spina bifida in case seven, classifying the fetus into anencephaly- spina bifida complex. Case eight was classified as Hydrolethalus syndrome due to additional finding of cleft lip. In case nine additional findings of Right toe polydactyly, bilateral CTEV, scoliosis, reduced right ventricular volume and right ventricular hypertrophy, X- ray showing butterfly anomaly, segmental anomaly all lumbar vertebrae with widening and splaying of anterior elements suggestive of lumbar scoliosis (figure 16), leading to diagnosis of VACTERL

association (figure 14 and 15). An additional finding of dilated ventricles thinned out cortex, absent vermis and bilateral low set ears leading to a diagnosis of Joubert syndrome in case ten. In case eleven we suspected presence of pulmonary alveolar proteinosis which is a rare lung disorder, this diagnosis was confirmed on microscopy by presence of alveolar spaces filled with granular, eosinophilic periodic acid-schiff positive, lipoprotein material. In case twelve we unearthed decreased intra orbital distance, hypoplastic face and prefrontal edema that led to diagnosis of Larsen syndrome (figure 12).

In 12% (07 out of 59) cases a syndrome was suspected in ultrasound and autopsy confirmed the diagnosis along with discovering new gross features but not changing the final diagnosis. The findings included coiled umbilical artery, single umbilical artery, short neck etc.

It should also be noted that ultrasound findings of 02 cases showed presence of a syndrome that is Dandy walker syndrome which could not confirmed.

Figure 3: Graphical representation of Syndromic cases

Sr. No.	System involved in anomalies	No. of cases	Percentage
1.	Central Nervous System	34	22.6%
2.	Skeletal system	16	10.6%
3.	Cardiovascular system	13	8.6%
4.	Respiratory system	05	3.3%
5.	Renal system	04	2.6%
6.	Gastrointestinal system	04	2.6%
7.	Lymphatic system	03	2%
8.	Anal canal	03	2%

Table 4. Main diagnosis	s classified according	to organ system	involvement (n=150)

Figure 4: Graphical representation of most common systems involved

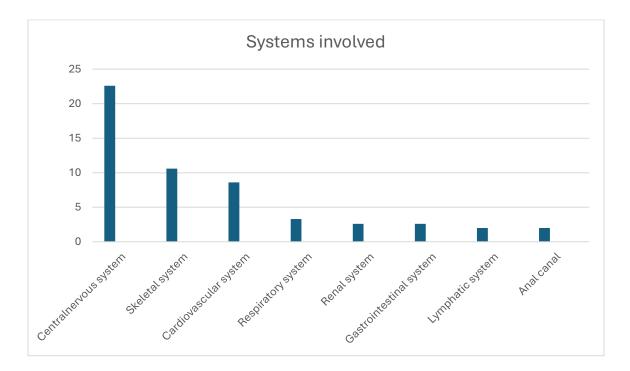


Table 4 and figure 4 signifies that malformations of central nervous system were commonest accounting for 22.6% (34/ 150) cases followed by skeletal system and cardiovascular system, respectively.

Sr. No.	Anomaly	No. of cases	Percentage
1.	Meningomyelocele	06	17.6%
2.	Ventriculomegaly	05	14.7%
3.	Hydrocephalus	05	14.7%
4.	Anencephaly	05	14.7%
5.	Arnold chiari malformation	04	11.7%
6.	Hemivertebrae	03	8.8%
7.	Dandy walker syndrome	02	5.8%
8.	Anencephaly- spina bifida complex	02	5.8%
9.	Others	05	14.7%
	Encephalocele	01	
	Corpus callosum agenesis	01	
	Cystic medulla	01	
	Spina bifida	01	
	Moulding of skull bone	01	

Table No.5	Classification of	Central	nervous system	n anomalies.	(n=34)

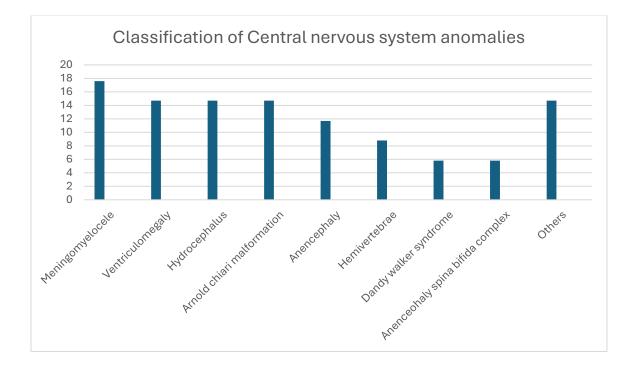
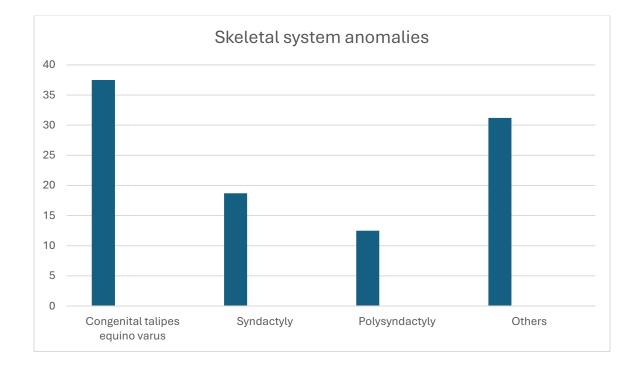



Figure 5:Graphical representation of central nervous system anomalies

Table 5 and figure 5 shows that the commonest anomaly in relation to central nervous system is neural tube defect which includes 6 cases of meningomyelocele (figure 21), 4 cases of anencephaly (figure 22), 1 case of encephalocele, 2 cases of anencephaly- spina bifida complex and 1 case of spina bifida. The second most common malformation was that of ventriculomegaly, hydrocephalus and Arnold Chiari malformation all three seen in 5 patients, respectively. It is also noted worthy that two cases of Dandy walker syndrome were encountered. It is also worth mentioning that 01 out of the 05 diagnosed cases of hydrocephalus was accompanied by polysyndactyly and cleft lip, both features observed on gross which lead to the diagnosis of Hydrolethalus syndrome solely on autopsy findings.

Sr. No.	Anomaly	No. of cases	Percentage
1.	Congenital Talipes	06	37.5%
	Equino Varus/ Valgus		
2.	Syndactyly	03	18.7%
3.	Polysyndactyly	02	12.5
4.	others	05	31.2%
	Left foot talipes	01	
	Decreased stature	01	
	Short limbs	01	
	Contractures in upper	01	
	and lower limb		
	Thin elongated bones		
		01	

Table No. 6: Classification of skeletal system anomaly (n=16)

Figure 6: Graphical representation of skeletal anomalies

As shown in table 6 and figure 6 there were a total of 16 cases with skeletal anomalies, with maximum cases of congenital talipes equino valgus/ varus. It should also be noted that a fetal X-ray was done in most cases to confirm and support our findings. One of the cases of congenital talipes equino valgus/varus came along side other findings of dilated ventricles, thinned out cortex, absence of vermis and low set ears pointing towards hydrocephalus thus coming to a diagnosis of Joubert syndrome which is caused by faulty genes that prevent the cerebellar vermis from fully developing.

Sr. No	Anomaly	No. of cases	Percentage
1.	Hypoplastic left heart syndrome	02	18.1%
2.	Dextrocardia	02	18.1%
3.	Tetralogy of fallot	02	18.1%
4.	Right aortic arch	02	18.1%
5.	Atriovetricular septal defect	02	18.1%
6.	Others	04	36.3%
	Persistent left superior vena cava Dysplastic mitral valves	01	
	Right ventricular hypertrophy	01	
	Pulmonary stenosis	01	
		01	

Table No. 7: Classification of Cardiovascular anomalies (n=11)

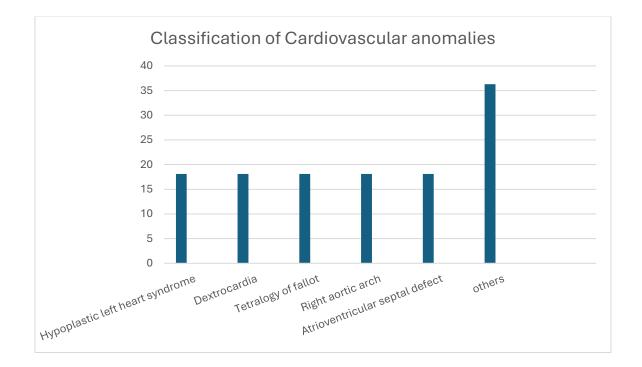


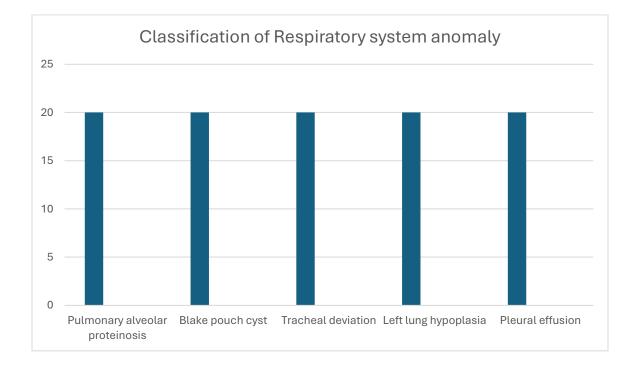
Figure 7: Graphical representation of cardiovascular anomalies

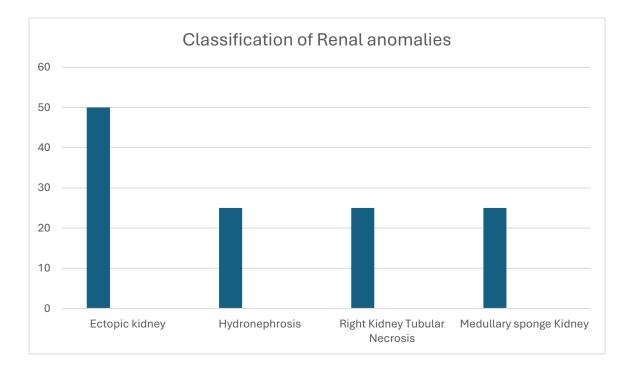
Table 7 and figure 7 shows, hypoplastic left heart syndrome as the commonest heart syndrome defect encountered along with other anomalies like dextrocardia (figure 19), tetralogy of fallot, right aortic arch and atrioventricular septal defect. All of the above mentioned anomalies were observed in 02 out of 13 cases, respectively.

Sr. No	Anomaly	No. of cases	Percentage
1.	Pulmonary alveolar proteinosis	01	20%
2.	Blake pouch cyst	01	20%
3.	Tracheal deviation	01	20%
4.	Left lung hypoplasia	01	20%
5.	Pleural effusion	01	20%

Table No. 8 Classification of Respiratory system Anomalies (n=5)

Figure 8: Graphical representation of respiratory system anomalies




Table 8 and figure 8 represents the common anomalies encountered in respiratory system. The only case of left lung hypoplasia was accompanied by other findings including Dextrocardia,

diaphragmatic hernia and bilateral club on gross which lead to its reclassification in PAGOD syndrome. PAGOD syndrome stands for pulmonary hypoplasia- agonadism- dextrocardiadiaphragmatic syndrome, which is a severe developmental syndrome.

Table No 9: Classification of Renal anomalies (n=4)

Sr. No.	Anomaly	No. of cases	Percentage
1.	Ectopic kidney	02	50%
2.	Hydronephrosis	01	25%
3.	Right kidney tubular necrosis	01	25%
4.	Medullary sponge kidney	01	25%

Figure 9: Graphical representation of renal anomalies

The table no. 9 and figure 9 shows that ectopic kidney was seen in 02 cases. In one case of ectopic kidney it was accompanied by hydronephrosis. There was a single case of medullary sponge kidney that was associated with Arnold Chiari malformation.

 Table 10: Classification of Gastrointestinal Anomalies (n=4)

Sr. No.	Anomaly	No. of cases	Percentage
1.	Gastrochisis	02	50%
2.	Inversus siatus	01	25%
3.	Herniation of stomach into	01	25%
	hemithorax		

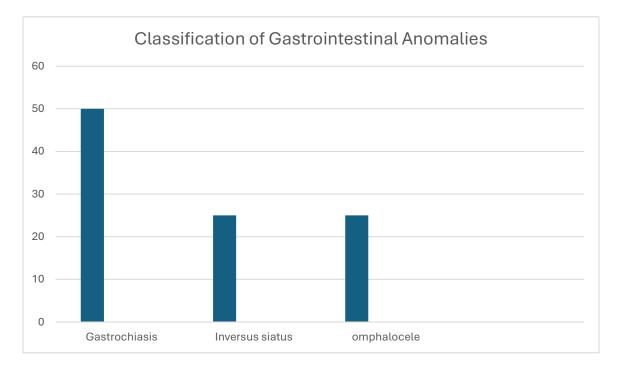
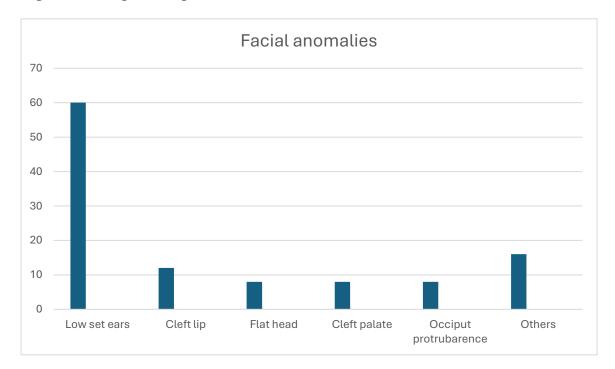



Table 10 and figure 10 shows the distribution of gastrointestinal anomalies cases seen in our study. It is noteworthy that one out of the two cases of gastrochiasis was accompanied by diaphragmatic hernia, dextrocardia and edematous external genitalia that lead to the diagnosis of complex congenital anomaly for that fetus. We also encountered a single case of omphalocele (figure 18).

Anomaly	No. of cases	Percentage
Low set ears	15	60%
Cleft lip	03	12%
Flat head	02	8%
Cleft palate	02	8%
Occiput protuberance	02	8%
Others	04	16%
Flat nasal bridge	01	
Hypertelorism	01	
Underdeveloped ears	01	
Globular head	01	
	Low set earsCleft lipFlat headCleft palateOcciput protuberanceOthersFlat nasal bridgeHypertelorismUnderdeveloped ears	Low set ears15Cleft lip03Flat head02Cleft palate02Occiput protuberance02Others04Flat nasal bridge01Hypertelorism01Underdeveloped ears01

Table No. 11: Facial anomalies (n=25)

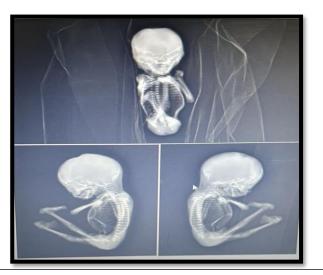
Figure 11: Graphical representation of facial anomalies

Table 11 and figure 11 shows that among all the facial anomalies seen, low set ears were the most common that is seen in 15 out of 25 cases (60%) followed by cleft lip in 03 out of 25 cases (12%) (figure 25). Low-set ears are defined as ears positioned below the horizontal plane from the outer canthus that is the corner of the orbits straight back to the occiput .

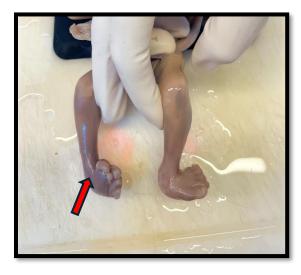
Out of 150 cases 03 cases were showing evidence of cystic hygroma which is a benign birth defect that occurs due to malformation in lymphatics. Cystic hygroma was the only lymphatic malformation seen. Although, one of the cases of cystic hygroma was accompanied by external micromelia that is shortening of both proximal and distal bones equally, short limbs and thin elongated ribs leading to diagnosis of Greenberg dysplasia on gross.

Imperforate anus was detected in 02 out of 150 cases and 02 cases with twin to twin transfusion syndrome showed hypolobated right lung (figure 17).

Ultrasound findings also showed presence of Harlequinn syndrome in 01 case which was confirmed on gross by presence of thick, cracked skin plates and fissures (figure 23) and on histopathology of skin showing hyperkeratosis and abnormal keratotic material around hair shaft (figure 24).


We also came across 03 cases of fetuses with short neck also known as pterygium colli (figure 20) that denotes a congenital condition with additional skin fold extending from neck to shoulders.

PHOTOMICROGRAPHS



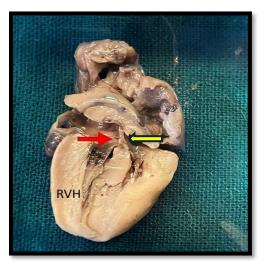


Figure 12 a) and b) Case of Larsen syndrome: Gross showing Frontal bossing, flattened mid face, hypotelorism, low set ears, long and spatulate fingers, elbows and hips flexed, hyperextended knees, club foot.

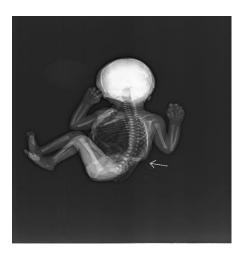


Figure 13: X- ray findings in Larsen syndrome: Underdevelopment of fetal calvarium and sacrum, right sided short arm suggestive of congenital dysplasia, hyperextended bilateral knees and rocker bottom feet.

Figure 14: Case of VACTERL Association: Right talipes equino varus, left talipes equino valgus and right toe polydactyly (red arrow). **Figure 15: VACTERL Association** showing right ventricular hypertrophy, overriding of aorta (yellow arrow), incomplete ventricular septum (red arrow), pulmonary trunk not identified.

Figure 16: X- ray findings for VACTERL Association: D11-D12 butterfly vertebrae with widening and splaying of anterior elements (white arrow).

Figure 17:Hypolobated right lung (red arrow)

Figure 18:Omphalocele- abdominal contents protruding out of umbilical cord (yellow arrow).

Figure 19:Dextrocardia (white arrow)

Figure 20: Webbed neck anomalous baby (red arrow)

Figure 21: Anomalous baby with spinal defect suggestive of meningomyelocele (red arrow).

Figure 22: Anomalous baby showing anencephaly (red arrow) and herniation of bowel loops from abdomen (yellow arrow).

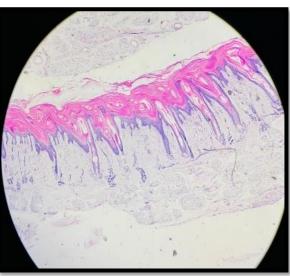


Figure 23: Harlequinn baby syndrome

Figure 24: Harlequinn syndrome baby skin histopathology showing hyperkeratosis and abnormal keratotic material around hair shaft.

Figure 25: Anomalous baby with cleft lip (red arrow) and palate.

DISCUSSION

- Fetal loss has a profound and complex psychosocial impact on parents and leads to grief and anxiety. Following this loss fetal autopsy examination plays a major role not only to confirm the prenatal findings and provide a sense of relief to the parents but also to help counsel them on the likelihood of recurrence for future pregnancies ⁽²⁸⁾.
- Our study included fetuses that were either medically terminated due to structural anomalies detected in prenatal scans or underwent spontaneous abortion. On carefully comparing the autopsy findings and ultrasound of the fetuses, there was complete concordance in 82 cases (54.6%). In 59 cases (39.4%) autopsy led to unmasking of additional findings that were not mentioned in ultrasound. In the remaining 09 cases (6%) there was lack of agreement between the ultrasound findings and autopsy findings, which could be attributed to autolysed brain, inability to analyse petite anomalies that were difficult to visualize with naked eye or due to error in interpretation of ultrasound report. These findings were comparable to studies done by Isaken C.V et al.,⁽²⁹⁾ and Rossi A.C et al.,⁽⁶⁾
- The 59 cases with additional findings in our study included 40 cases where these findings did not impact the final diagnosis made on ultrasound. In 07 cases ultrasound findings had a suspicion of presence of a syndrome and autopsy confirmed the same. In 12 out of these 59 cases, these additional findings helped in identifying syndromes that were suspected on ultrasound, thereby making their diagnosis possible solely based on autopsy findings.
- In the present study, a total of 23 cases (15.33%) were classified into a syndrome, these included 04 cases were the ultrasound findings and autopsy findings were in complete concordance, that is the suspected syndrome on ultrasound was confirmed by autopsy with no additional findings. In 07 cases autopsy inspection led to uncovering of few additional findings

without changing the final diagnosis of syndrome made by ultrasound. Out of these 23, 12 cases did not show presence of any syndrome in ultrasound, but the intensive and articulated autopsy of these cases lead to additional findings finally leading to their classification into a syndrome. It is noteworthy that ultrasound of 13 fetuses showed presence of a syndrome, but autopsy could not confirm this finding. This presence of disagreement between ultrasound and autopsy is majorly attributed to the fact that both the cases showed presence of syndrome involving central nervous system and in the both the cases the brain was autolysed that acted as an obstacle in confirmation of the ultrasound findings.

- In the present study the most common system involved was central nervous system consisting of 34 (22.6%) out of 150 total cases. This was followed by involvement of skeletal system (10.6%), cardiovascular system (8.6%), respiratory system (3.3%), renal and gastrointestinal system (2.6%) and lymphatic system (2%). We also encountered presence of imperforate anus in 03 out of 150 cases (2%). These results were comparable to studies done by Vogt. C et al.,⁽¹⁷⁾ Struksnaes. C et al.,⁽²¹⁾ Godbole. K et al.,⁽⁵⁾ Nayak S.S et al.,⁽¹⁸⁾ Venkatswamy. C et al.,⁽²²⁾ Rossi A.C et al.,⁽⁶⁾ and Akgun. H et al.,⁽¹⁵⁾
- During the present study, central nervous system anomalies were seen in 34 out of 150 cases (22.6%). The most common anomalies encountered were meningiomyelocele, ventriculomegaly, hydrocephalus and anencephaly. There was a complete agreement between ultrasound and autopsy in 16 out of 34 cases. Additional findings were discovered in 18 cases and in 03 of these cases it led to discovery of syndromes that were initially not suggested in ultrasound. The remaining 15 cases did not change the final diagnosis of ultrasound even after additional findings. The syndromes included anencephaly-spina bifida complex, Joubert syndrome and Hydrolethalus syndrome. It is also noteworthy that ultrasound reports suspected

central nervous system anomalies in 03 cases which could not be confirmed on autopsy. Our findings were directly comparable to findings of Carroll S.G et al.,⁽³⁰⁾ Venkatswamy. C et al.,⁽²²⁾ and Nayak S.S et al.,⁽¹⁸⁾

- Skeletal system anomalies were seen in 16 out of 150 cases in our study. A complete agreement between ultrasound and autopsy was seen in 03 cases (23.07%), with additional findings recovered in 13 cases. The most common anomaly observed was congenital talipes equino varus/ valgus. The additional findings led to classification of 07 cases into syndromes. The syndromes included anomalies like complex congenital anomaly, Greenberg dysplasia, VACTERL association and Larsen syndrome. These findings were comparable to a study done by Ceausu,L et al.,⁽³¹⁾ where they discovered that only 34% of skeletal deformities were discovered during antenatal scans with most common anomaly discovered to be bilateral or unilateral talipes.
- In the study conducted by Vogt. C et al.,⁽¹⁷⁾ they observed that a complete agreement between prenatal ultrasound and postmortem findings were established in 84% of the cases. The most common system involved in anomalies was central nervous system, followed by congenital heart defects. This study discovered that minor autopsy findings not seen or recorded at ultrasound examination in 13.4%, major autopsy findings not detected by ultrasound findings 0.4% and none of the autopsy findings suspected in ultrasound examination 0.9%, adding up to a total of 14.7% of additional findings. Struksnaes. C et al.,⁽²¹⁾ concluded that there was a full agreement between ultrasound and autopsy findings in 88.1% cases, and the main diagnosis was correct in 97.9% cases. In 1.3% cases they could not confirm the ultrasound findings through autopsy. The primary system involved in anomalous fetus was central nervous

system (34.4%), followed by cardiovascular system (18.2%). Additional findings during autopsy were discovered including both minor and major findings in 10.6% of the cases.

- Godbole. K et al., ⁽⁵⁾ reached to a conclusion that there was complete concordance between ultrasound and autopsy findings in 29.07% cases. Additional information was gathered without influencing the final diagnosis in 46.09% cases and additional information influencing the final diagnosis in 24.82% cases. In the study conducted by Nayak. S.S et al., ⁽¹⁸⁾ they observed that antenatal findings could be confirmed in 23% cases with additional findings in 37% cases. In about 23% cases the autopsy changed the final diagnosis and the most common anomaly belonged to central nervous system (13.5%) and then genitourinary system (6.5%). Venkataswamy. C et al., ⁽²²⁾ observed a complete agreement in 39.7% cases. Additional findings were noted by them in 62.2% cases and the most common system involved in fetal anomaly was central nervous system (13.6%) which was followed by genitourinary system (6.5%).
- Rossi A.C et al.,⁽⁶⁾ concluded that the highest proportion of anomalies belonged to central nervous system (36.3%) followed by cardiovascular system (15.6%). They also noted complete concordance between prenatal ultrasound and autopsy findings in 68% cases and discovery of additional findings in autopsy in 22.5% cases ⁽⁶⁾. Akgun. H et al., ⁽¹⁵⁾ observed that 49% cases had central nervous system anomalies, 23% had renal system anomalies and 11 % had congenital heart disease. A complete concordance between ultrasound and autopsy was noted in 77% cases with additional findings seen in 20%. They encountered 3% cases where anomaly was suspected in ultrasound but could not be confirmed in autopsy.
- Results of the present study were comparable to studies done by Vogt. C et al.,⁽¹⁷⁾ Struksnaes.
 C et al.,⁽²¹⁾ Godbole. K et al., ⁽⁵⁾ Nayak.S.S et al., ⁽¹⁸⁾ Venkatswamy. C et al., ⁽²²⁾ Rossi A.C et al.,⁽⁶⁾ and Akgun. H et al., ⁽¹⁵⁾

- Bhide. P et al., ⁽²⁰⁾ reported that congenital heart defects were the most common anomalies with a prevalence of 65.86 per 10,000 births, followed by skeletal system with prevalence of 49.40 per10,000 births.
- Unearthing or confirming these skeletal anomalies require additional investigations like performing X-ray. We performed fetal X-rays in 08 cases and in 04 of these cases the X-ray findings aided to the detection of skeletal anomalies like 1) congenital metatarsal varus, congenital dysplasia of humerus and segmentation anomaly of vertebrae along with hypoplasia of vertebral bodies helping in diagnosis of Larsen syndrome (figure 13) 2) short neck, bell shaped thorax, hemivertebrae and thin elongated ribs confirming the diagnosis of complex congenital anomaly 3) butterfly anomaly, segmental anomaly of all lumbar vertebrae with widening and splaying of anterior elements suggestive of lumbar scoliosis (hemivertebrae) thus confirming the presence of VACTERL Association (figure 15) and 4) confirming presence of congenital talipes equino varus/ valgus by showing foot angulation.
- Isaken C.V et al., ⁽²⁹⁾ noted that there was complete agreement between ultrasound and autopsy findings in 70% cases with the most common syndrome being hypoplastic left heart syndrome.

Table 12: Comparison of present studies with other studies:

Study	Total	Most	Second most	Concordance	Additional
	sample	common	common	with	findings
	size	system	system	ultrasound	
				findings	
Present study	150	Central	Skeletal	54.6%	39.4%
		nervous	system		
		system	(10.6%)		
		(22.6%)			
Vogt. C et al., ⁽¹⁷⁾	455	Central	Congenital	84%	14.7%
		nervous	heart disease		
		system	(19.7%)		
		(22.9%)			
Struksnaes. C ⁽²¹⁾	1029	Central	Cardiovascular	88.1%	10.6%
		nervous	anomalies		
		system	(18.2%)		
		(34.4%)			
Godbole. K et	301	Central	Cardiovascular	29.07%	70.9%
al., ⁽⁵⁾		nervous	system		
		system	(10.2%)		
		(14.9%)			
Nayak. S.S et	230	Central	Genitourinary	23%	37 %
al., ⁽¹⁸⁾		nervous	system (6.5%)		

		system			
		(13.5%)			
Venkataswamy.	87	Central	Genitourinary	39.7%	62.2%
C et al., ⁽²²⁾		nervous	system (6.5%)		
		system			
		(13.6%)			
Rossi A.C et	3534	Central	Cardiovascular	68%	22.5%
al., ⁽⁶⁾		nervous	system		
		system	(15.6%)		
		(36.3%)			
Akgun. H et al.,	107	Central	Renal system	77%	20%
(15)		nervous	(23%)		
		system			
		(49%)			

Sr.	Syndrome	Findings
No.		
1.	Arnold-Chiari	Cyst in posterior fossa, enlarged head, meningiocele
	malformation	at lumbosacral region.
	(04 cases)	
2.	Greenberg dysplasia	External micromelia, short limbs, thin elongated ribs,
	(01 case)	hydrops fetalis and cystic hygroma.
3.	Complex congenital	1)Depressed nasal bridge, generaised scrotal edema,
	anomaly	pleural effusion. X-ray: short neck, bell shaped
	(05 cases)	thorax, hemivertebrae and thin elongated ribs.
		2) Cystic hygroma, cystic medulla, hypoplastic
		muscle fibres, dilated lymphatics, single umbilical
		artery and club foot.
		3)Heart apex pointing towards right, part of stomach
		and left liver lobe seen in hemithorax and edematous
		external genitalia.
		4) Invertus siatus, thymic hypoplasia and low set ears
		5) Hypertelorism, micrognathia, pulmonary artery
		right to trachea and thymic aplasia.

4.	Joubert syndrome (01	Bilateral dilated ventricles, thinned out cortex, absent
	case)	vermis suggestive of hydrocephalus, bilateral low set
		ears and bilateral congenital equino varus.
5.	Hypoplastic left heart	Left side of heart is not fully developed, hypoplastic
	syndrome	left ventricular wall.
	(02 cases)	
6.	Dandy walker	Enlarged posterior fossa, hypoplastic or absent
	syndrome	cerebellar vermis, cystic dilatation of the fourth
	(02 cases)	ventricle, elevated tentorium cerebelli, possibility of
		hydrocephalus.
7.	Larsen syndrome	Frontal bossing, flattened mid face, hypotelorism,
	(01 case)	bilateral low set ears, bilateral long and spatulated
		fingers, bilateral flewed hips and elbows, bilateral
		hyperextebded knees, bilateral club foot
		underdevelopment of fetal calvarium, fetal sacrum
		suggestive of hypoplasia, rocker bottom feet and right
		sided short arm suggestive of congenital skeletal
		dysplasia. X- ray: congenital metatarsal varus,
		congenital dysplasia of humerus and segmentation
		anomaly of vertebrae along with hypoplasia of
		vertebral bodies.

8.	PAGOD syndrome	Bilateral club foot, herniation of stomach in			
	(01 case)	hemithorax, shifting of trachea, dextrocardia with			
		mild left lung hypoplasia.			
9.	Anencephaly- Spina	Neural tissue comprised of fibrillary matrix consistent			
	bifida complex	with anencephaly and spina bifida.			
	syndrome				
	(02 cases)				
10.	Hydrolethalus	Enlarged head, polysyndactyly and cleft lip.			
	syndrome				
	(01 case)				
11.	VACTERL association	Right toe polydactyly, bilateral CTEV,			
	(01 case)	scoliosis, reduced right ventricular volume and right			
		ventricular hypertrophy.			
		X- ray: butterfly anomaly, segmental anomaly all			
		lumbar vertebrae with widening and splaying of			
		anterior elements suggestive of lumbar scoliosis.			
12.	Pulmonary alveolar	Distended alveolar spaces with granular eosinophilic			
	proteinosis	PAS positive material.			
	(01 case)				
13.	Harlequinn syndrome	Thick, hard skin plates that crack and split, covering			
	(01 case)	the most of their bodies. The plates are diamond			
		shaped and separated by deep fissures.			

Assessing the correlation between sonographic results and autopsy findings offers crucial educational insights and feedback for those involved in prenatal diagnosis. It helps identify the areas of limitation and may contribute to enhancing the sensitivity of sonography. Autopsy examination plays a key role in verifying prenatal diagnosis, providing valuable quality control for the sonography team.⁽³²⁾

LIMITATIONS OF PRESENT STUDY:

- <u>Lack of genetic study (karyotyping)</u>: The study did not include karyotyping to rule out numerical mutations wherever suspected, restricting our ability to correlate specific genetic mutations with clinical findings.
- <u>Lack of cytogenetic study</u>: The study did not include cytogenetic analysis which could have provided additional insight into abnormalities at molecular level.
- <u>Lack of correlation with placental histopathology</u>: The study did not correlate gross findings with placental morphology, which could have offered more comprehensive understandings of our results and help better analyse spontaneous abortions (intrauterine deaths).

SUMMARY:

- This was a hospital based cross sectional study of 150 fetuses, that included fetuses after spontaneous abortion and medically terminated fetuses.
- Consent was taken from parents in each case. Detailed external examination, gross examination and histopathological examination was done.
- Photodocumentation of significant external and internal developmental anomalies were done.
- Fetal X-rays were performed for 08 cases with indication of skeletal anomalies.
- Complete concordance was noted between sonography and autopsy findings in 54.6% cases with additional findings in 39.4% cases.
- A discordance between ultrasound and autopsy findings was noted in 6% cases.
- Central nervous system was the most involved system followed by skeletal system in our study.
- A total of 23 cases were diagnosed with syndromes and association, which included 12 cases of syndromes that were diagnosed solely based on autopsy.
- The diagnosis can be done on external and gross examination in majority of cases. The histopathological examination played essential role in diagnosis of anomalies like pulmonary alveolar proteinosis and medullary sponge disease.

CONCLUSION:

- The study confirmed the need for fetal pathology examination after fetal loss. The pathologist's contribution to the multidisciplinary management of prenatally diagnosed fetal abnormalities is fundamental for further genetic counselling.
- The study also confirmed the utility of fetal autopsy in identifying the cause of fetal loss, which helps in genetic counselling. In cases with prenatally diagnosed anomalies, the new information obtained from fetal autopsy changes the predicted probability of recurrence risk.
- Even though the prenatal ultrasound reasonably predicts the malformation, fetal autopsy is the gold standard for confirmation of these malformations.

BIBLIOGRAPHY:

- 1. Konar, H. (2023). *DC dutta's textbook of obstetrics: Including perinatology & contraception* (10th ed.). Jaypee Brothers Medical.
- Crawford, D. (2020). Biological basis of child health 2: introduction to fertilisation, prenatal development and birth. *Nursing Children and Young People*, *32*(3), 32–41. https://doi.org/10.7748/ncyp.2020.e1245
- 3. Martinovic, J. (Ed.). (2021). Practical manual of fetal pathology. Springer Nature.
- Cherian, A. G., Jamkhandi, D., George, K., Bose, A., Prasad, J., & Minz, S. (2016). Prevalence of congenital anomalies in a secondary care hospital in South India: A crosssectional study. *Journal of Tropical Pediatrics*, 62(5), 361–367. https://doi.org/10.1093/tropej/fmw019
- Godbole K, Bhide V, Nerune S, Kulkarni A, Moghe M, Kanade A. Role of fetal autopsy as a complementary tool to prenatal ultrasound. J Matern Fetal Neonatal Med. 2014 Nov;27(16):1688-92. doi:10.31.9/14767058.2013.872094. Epub 2014 Jan 13. PMID: 24313561.
- Rossi AC, Prefumo F. Correlation between fetal autopsy and prenatal diagnosis by ultrasound: A systemic review. Eur J Obstet Gynecol Reprod Biol. 2017 Mar;210:201-206. doi: 10.1016/j.ejogrb.2016.12.024. Epub 2016 Dec 29. PMID:28061423.
- Dehner, L. P. (2010). The medical autopsy: past, present, and dubious future. *Missouri Medicine*, 107(2), 94–100.

- 8. Pai-Dhungat, J. V., & Parikh, F. (2015). Carl rokitansky, A premier pathologist. *The Journal of the Association of Physicians of India*, 63(3), 47.
- 9. Potter, E. L. (1996). Potter's pathology of the fetus and the infant (4th ed.). Mosby.
- 10. Silva FTD, Gonik B, Mcmillan M, Keech. C, Dellicour. S, Bhange ,S, Tila. M, Harper. DM, Woods. C, Kawai. A, Kochhar. S, Munoz. FM and Collaboration stillbirth working group. (2016). Stillbirth: Case definition and guidelines for data collection, analysis, and presentation of maternal immunization safety data. *Vaccine*, *34*(49), 6057–6068. <u>https://doi.org/10.1016/j.vaccine.2016.03.044</u>.
- Korteweg, F. J., Gordijn, S. J., Timmer, A., Erwich, J. J. H. M., Bergman, K. A., Bouman, K., Ravise, J. M., Heringa, M. P., & Holm, J. P. (2006). The Tulip classification of perinatal mortality: introduction and multidisciplinary inter-rater agreement. *BJOG: An International Journal of Obstetrics and Gynaecology*, *113*(4), 393–401. https://doi.org/10.1111/j.1471-0528.2006.00881
- 12. Kaasen A, Tuveng J, Heiberg A, Scott H, Haugen G. Correlation between prenatal ultrasound and autopsy findings: A study of second-trimester abortions. Ultrasound Obstet Gynecol. 2006 Dec;28(7):925-33. doi: 10.1002/uog.3871. PMID: 17121414.
- 13. Sankar, V. H., & Phadke, S. R. (2006). Clinical utility of fetal autopsy and comparison with prenatal ultrasound findings. *Journal of Perinatology: Official Journal of the California Perinatal Association*, 26(4), 224–229. https://doi.org/10.1038/sj.jp.7211482
- 14. Amini, H., Antonsson, P., Papadogiannakis, N., Ericson, K., Pilo, C., Eriksson, L., Westgren, M., & Axelsson, O. (2006). Comparison of ultrasound and autopsy findings in

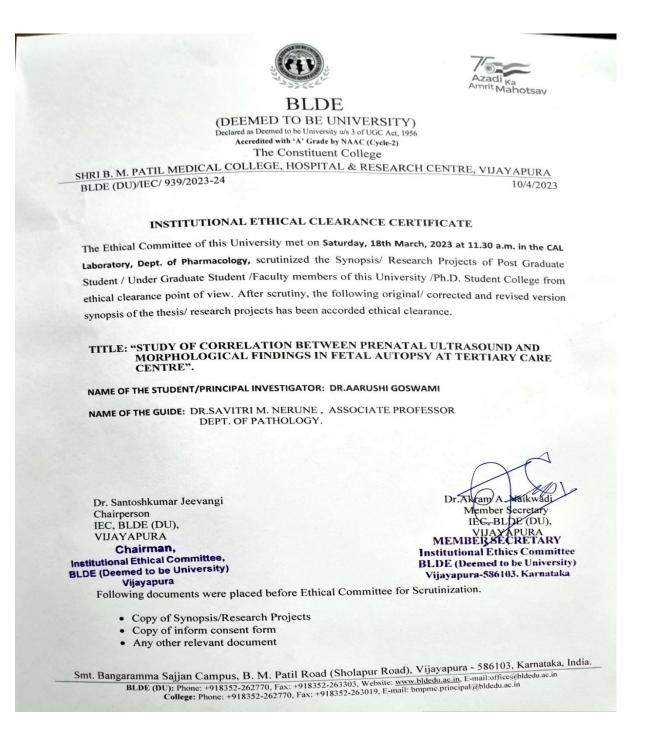
pregnancies terminated due to fetal anomalies. *Acta Obstetricia et Gynecologica Scandinavica*, 85(10), 1208–1216. https://doi.org/10.1080/00016340600880886.

- Akgun, H., Basbug, M., Ozgun, M. T., Canoz, O., Tokat, F., Murat, N., & Ozturk, F. (2007). Correlation between prenatal ultrasound and fetal autopsy findings in fetal anomalies terminated in the second trimester. *Prenatal Diagnosis*, 27(5), 457–462. https://doi.org/10.1002/pd.1710
- Dickinson, J. E., Prime, D. K., & Charles, A. K. (2007). The role of autopsy following pregnancy termination for fetal abnormality. *The Australian & New Zealand Journal of Obstetrics & Gynaecology*, 47(6), 445–449. <u>https://doi.org/10.1111/j.1479-828X.2007.00777</u>.
- 17. Vogt, C., Blaas, H.-G. K., Salvesen, K. Å., & Eik-Nes, S. H. (2012). Comparison between prenatal ultrasound and postmortem findings in fetuses and infants with developmental anomalies. Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 39(6), 666–672. <u>https://doi.org/10.1002/uog.10106</u>.
- Nayak, S. S., Shukla, A., Lewis, L., Kadavigere, R., Mathew, M., Adiga, P. K., Vasudeva, A., Kumar, P., Shetty, J., Shah, H., & Girisha, K. M. (2015). Clinical utility of fetal autopsy and its impact on genetic counseling: Clinical utility of fetal autopsy and its impact. *Prenatal Diagnosis*, 35(7), 685–691. https://doi.org/10.1002/pd.4592.
- Man, J., Hutchinson, J. C., Heazell, A. E., Ashworth, M., Levine, S., & Sebire, N. J. (2016).
 Stillbirth and intrauterine fetal death: factors affecting determination of cause of death at autopsy: Cause of intrauterine death. *Ultrasound in Obstetrics & Gynecology: The Official*

Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 48(5), 566–573. https://doi.org/10.1002/uog.16016

- Bhide, P., Gund, P., & Kar, A. (2016). Prevalence of congenital anomalies in an Indian maternal cohort: Healthcare, prevention, and surveillance implications. *PloS One*, *11*(11), e0166408. <u>https://doi.org/10.1371/journal.pone.0166408</u>.
- Struksnaes, C., Blaas, H.-G. K., Eik-Nes, S. H., & Vogt, C. (2016). Correlation between prenatal ultrasound and postmortem findings in 1029 fetuses following termination of pregnancy: Correlation between prenatal ultrasound and autopsy. *Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology*, 48(2), 232–238. <u>https://doi.org/10.1002/uog.15773</u>.
- 22. Venkataswamy, C., Gurusamy, U., & Lakshmi, S. V. (2018). Second-trimester fetal autopsy: A morphological study with prenatal USG correlations and clinical implications. *Journal of Laboratory Physicians*, 10(03), 338–345. https://doi.org/10.4103/jlp.jlp_134_17.
- ohen, M. C., & Scheimberg, I. (Eds.). (2014). *The pediatric and perinatal autopsy manual*. Cambridge University Press.
- Sheaff, M. T., & Hopster, D. J. (2013). Post Mortem Technique Handbook (2001st ed.). Springer.
- 25. Tergestina, M., Chandran, S., Kumar, M., Rebekah, G., & Ross, B. J. (2021). Foot length for gestational age assessment and identification of high-risk infants: A hospital-based

cross-sectional study. Journal of Tropical Pediatrics, 67(4). https://doi.org/10.1093/tropej/fmab010.


- Shikany, A. R., Landis, B. J., Parrott, A., Miller, E. M., Coyan, A., Walters, L., Hinton, R. B., Goldenberg, P., & Ware, S. M. (2020). A comprehensive clinical genetics approach to critical congenital heart disease in infancy. *The Journal of Pediatrics*, 227, 231-238.e14. https://doi.org/10.1016/j.jpeds.2020.07.065
- 27. Isaacson, G. (1984). Postmortem examination of infant brains. Techniques for removal, fixation, and sectioning. *Archives of Pathology & Laboratory Medicine*, *108*(1), 80–81.
- Kang, X., Shelmerdine, S. C., Hurtado, I., Bevilacqua, E., Hutchinson, C., Mandalia, U., Segers, V., Cos Sanchez, T., Cannie, M. M., Carlin, A., Sebire, N. J., Arthurs, O. J., & Jani, J. C. (2019). Postmortem examination of human fetuses: comparison of two-dimensional ultrasound with invasive autopsy: Postmortem US of human fetuses. *Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology*, 53(2), 229–238. https://doi.org/10.1002/uog.18828.
- 29. Isaksen, C. V., Eik-Nes, S. H., Blaas, H. G., & Torp, S. H. (2000). Fetuses and infants with congenital urinary system anomalies: correlation between prenatal ultrasound and postmortem findings: Urinary system anomalies. *Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology*, 15(3), 177–185. <u>https://doi.org/10.1046/j.1469-0705.2000.00065</u>.
- 30. Carroll SG, Porter H, Abdel-Fattah S, Kyle PM, Soothill PW. Correlation of prenatal ultrasound diagnosis and pathologic findings in fetal brain abnormalities: Fetal brain

abnormalities. Ultrasound Obstet Gynecol [Internet]. 2000;16(2):149–53. Available from: http://dx.doi.org/10.1046/j.1469-0705.2000.00199.

- 31. Ceausu I, Iliescu D, Poalelungi C, Posea C, Bacalbasa N, Dobritoiu D, Ples L. The antenatal detection of fetal limb anomalies. Congenital Anomalies: From the Embryo to the Neonate. Norderstedt, Germany: BoD–Books on Demand. 2018 May 2:309.
- 32. Shanmuga, P. S., Rajendiran, S., Joseph, L. D., & Shalini, C. N. S. (2016). Correlation of fetal autopsy with prenatal ultrasound findings: Study in a tertiary care teaching hospital. *Indian Journal of Pathology and Oncology*, 3(4), 644. <u>https://doi.org/10.5958/2394-6792.2016.00119.8</u>.

ANNEXURE-1

INSTITUTIONAL ETHICAL CLEARANCE CERTIFICATE

ANNEXURE -2

CONSENT FOR FETAL AUTOPSY EXAMINATION

Date:

I give my consent to perform a fetal examination (Gross and microscopic examination) on the fetus of ______ for which pregnancy was terminated by ______ on _____. The disposal will be done by the hospital.

I also consent for clinical photographs including the fetus, its internal organs and microscopic examination.

Signature of parents/first-degree relative.

ಭ್ರೂಣದ ಶವಪರೀಕ್ಷೆ ಪರೀಕ್ಷೆಗೆ ಒಪ್ಪಿಗೆ

ದಿನಾಂಕ:

_____ ನ ಭ್ರೂಣದ ಮೇಲೆ ಭ್ರೂಣದ ಪರೀಕ್ಷೆಯನ್ನು (ಒಟ್ಟು ಮತ್ತು ಸೂಕ್ಷ್ಮದರ್ಶಕ ಪರೀಕ್ಷೆ) ಮಾಡಲು ನಾನು ನನ್ನ ಒಪ್ಪಿಗೆಯನ್ನು ನೀಡುತ್ತೇನೆ, ಇದಕ್ಕಾಗಿ ______ ರಂದು _____ ನಿಂದ ಗರ್ಭಧಾರಣೆಯನ್ನು ಕೊನೆಗೊಳಿಸಲಾಯಿತು. ಭ್ರೂಣದ ಶವಪರೀಕ್ಷೆಯ ನಂತರ ಭ್ರೂಣವನ್ನು ಆಸ್ಪತ್ರೆಯಿಂದ ವಿಲೇವಾರಿ ಮಾಡಲಾಗುವುದು.

ಭ್ರೂಣ, ಅದರ ಆಂತರಿಕ ಅಂಗಗಳು ಮತ್ತು ಸೂಕ್ಷ್ಮದರ್ಶಕೀಯ ಪರೀಕ್ಷೆ ಸೇರಿದಂತೆ ಕ್ಲಿನಿಕಲ್ ಛಾಯಾಚಿತ್ರಗಳನ್ನು ಪರೀಕ್ಷೆ ಸಹ ನಾನು ಒಪ್ಪಿಗೆಯನ್ನೂ ನೀಡುತ್ತೇನೆ.

ಪೋಷಕರ ಸಹಿ/ಮೊದಲ ಹಂತದ ಸಂಬಂಧಿ.

ANNEXURE-3

PROFORMA

Fetal Autopsy Exan	nination			
Name of the patient:				Fetal
autopsy No.				
Address/		Tel.		No.:
Consent taken				
Date		of		delivery:
Cytogenetics: done/	not done			
Fetus	received:		Date,	Time
Referring Doctor				
Scan reports: USG				
Indication for autopa	sy			
Maternal details				
Age				
LMP date				
Obstetric History				

Duration of present pregnancy(gestational age)

H/O consanguineous marriage

Maternal risk factors	Fever
	Jaundice
	Diabetes mellitus- Blood sugar
	Hypertension
Prenatal care	Folic acid supplementation
Pregnancy outcome	Spontaneous abortion
	Termination of pregnancy
	Intrauterine death
Fetus Measurements:	
Weight	
Crown Heel Length(CHL)	
Crown Rump Length(CRL)	
Foot Length	
Head Circumference	

Inner inter-canthal distance

Chest circumference

Abdominal circumference

Sex

External Examination:

Skin

Head shape

Facial features

Forehead

Eyes- Rt/ Lt

Ears- Rt/Lt

Nose

Mouth

Neck

Umbilicus: 2 vessels/ 3 vessels

External Genitalia:	Male: scrotum/ penis
	Female: labia/clitoris
Anus	Patent/ imperforate
Upper Limbs	
Forearms	
Lower Limbs	
Back	
In-situ Examination	
Cranial Cavity:	Fontanel
	Skull Bones
	Meninges
	Brain
Thoracic cavity	Thymus
	Heart- size/situs

Lungs-Bilateral- well developed / collapsed

-Lobes-Rt/ Lt

Diaphragm

Abdomen

Intact/ hernia

Abdominal wall

Situs

Liver

Intestines- appendix

	KUB
Internal Examination	
Thymus	Weight
Trachea	
Esophagus	
Heart and Lungs	Weight
Dissection of heart	
Liver/ gall bladder	Weight
Spleen	Weight

Pancreas	Weight		
Stomach	Weight		
GIT- small intestines			
large intestines			
Adrenals	Weight		
Kidneys	Weight		
Ureters	Weight		
Urinary Bladder			
Internal genitalia			
Photographs	External		
	Internal		

Microscopic Examination:

Autopsy Findings:

MASTER CHART

S.N	Histopat	USG findings	Autopsy	Final	Additional
0	h No.		findings	diagnosis	findings
1.	A/01/24	Arnold chiari syndrome (lemon banana sign, cisterna magna obliterated and lumbar meningiocele)	Cyst in posterior fossa, enlarged head, meningocele at lumbosacral region.	Consistent with Arnold chiari syndrome	No additional findings
2.	a/06/24	Normal (Mild pleural effusion)	Normal (dilated alveolar spaces with congested and dilated blood vessels)	Spontaneous abortion	No additional findings
3.	a/07/24	oligohydrominos	Occipital buldge	Spontaneous abortion	Occipital buldge

4.	a/10/24	Dandy walker	Normal	Could not	No additional
		syndrome (large		confirm	findings
		posterior fossa with		anomaly	
		vermin hypoplasia,			
		dilated fourth			
		ventricles)			
5.	a/11/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
6.	a/12/24	Normal	Normal	Spontaneous	Areas of
				abortion	congestion in
					heart, liver,
					spleen and
					lungs
7.	a/13/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
8.	a/14/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
9.	a/08/24	Normal	Normal	Spontaneous	Areas of
		(monochorionic		abortion	congestion in
		monoamniotic twin)			all organs

10.	a/15/24	Bilateral	Bilateral	CNS	No additional
		ventriculomegaly,	ventriculomegal	anomaly	findings
		single umbilical artery,	y, single		
		thinning of cerebral	umbilical artery,		
		cortex	thinning of		
			cerebral cortex		
					_
11.	a/16/24	Normal	Normal	Spontaneous	Desquamated,
				abortion	squamated and
					eosinophilic
					fluid material
					suggestive of
					meconium
					aspiration
10	17/04		A.1		A.1
12.	a/17/24	Frog eyes suggestive of	Absence of	Anencephaly	Absence of
		anencephaly	cranial spine,	(CNS	cranial spine,
			occipital area		occipital area
			fused with	anomaly)	fused with
			cervical area,		cervical area,
			absence of		absence of
			cranial vault,		cranial vault,
			spina bifida,		spuna bifida,
			webbed neck,		

			low set ears, frog		webbed neck,
			eyes		low set ears
13.	a/18/24	CTEV, generalized	Cystic hygroma,	Complex	cystic medulla,
		subcutaneous edema	cystic medulla,	Congenital	hypoplastic
		and thick nuchal	hypoplastic	Anomaly	muscle fibres,
		translucency	muscle fibres,		
			dilated		
			lymphatics,		
			SUA, CTEV		
1.4	/10/24	NT 1	N 1	<u> </u>	N. 11
14.	a/19/24	Normal	Normal	Spontaneous	No additional
		(subchorionic bleed and		abortion	findings
		low lying placenta)			
15.	a/20/24	Agenesis of corpus	Agenesis of	CNS	No additional
		callosum	corpus callosum	anomaly	findings
16.	a/21/214	Hydrops fetalis and	Depressed nasal	Complex	X- Ray
		skeletal dysplasia	bridge,	Congenital	findings- short
			generalized	Anomaly	neck, bell
			scrotal edema		shaped thorax,
			suggestive of		hemivertebrae
					and thin

			hydrong fotalis		alongstad ribs
			hydrops fetalis,		elongated ribs,
			pleural effusion.		pleural effusion
			X- Ray findings-		
			short neck, bell		
			shaped thorax,		
			hemivertebrae		
			and thin		
			elongated ribs		
17.	a/23/24	Slopping frontal lobe	Slopping frontal	CVS	No additional
		and persistent SVC	lobe and	anomaly	findings
			persistent SVC		
			-		
18.	a/09/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
		(subchorionic bleed and			initianing.
		low lying placenta)			
19.	a/24/24	Hemivertebrae and	Hemivertebrae,	Renal	contractures in
		bilateral pyelectasis	contractures in	anomaly	bilateral upper
			hilataral ymnar		and lower limb
			bilateral upper		and lower limb
			and lower limb		
20.	a/25/24	Skeletal dysplasia and	Micromelia,	Greenberg	Micromelia,
		cystic hygroma	short limbs, thin	Dysplasia	short limbs,

			elongated ribs,	(Skalatal	thin elongated
			elongated ribs,	(Skeletal	tilli elongated
			hydrops fetalis	anomaly)	ribs, hydrops
			and cystic		fetalis
			hygroma		
21.	a/26/24	Mild ventriculomegaly	Dilated	CNS	No additional
		and skeletal dysplasia	ventricles and	anomaly	findings
			shortened upper		
			and lower limbs		
22.	a/27/24	Differential diagnosis	Thin brain	Dandy	Thin brain
		of Dandy walker	parenchyma,	walker	parenchyma,
		syndrome and Joubert	bilateral dilated	syndrome	bilateral dilated
		syndrome	ventricles, cystic	CNE	ventricles,
			dilatation	(CNS	cystic
			suggestive of	anomaly)	dilatation
			Dandy walker		
			syndrome		
			enlarged head		
			and protruding		
			eyes		
23.	a/28/24	Bilateral echogenic	Placenta	Skeletal	Placenta
		kidneys	showing	anomlay	showing
			hydropic		hydropic

	1	Τ		1	· · · · · · · · · · · · · · · · · · ·
			degeneration,		degeneration,
			low set ears,		low set ears,
			webbed neck		webbed neck
			and polydactyly		and
			(all four limbs)		polydactyly
24.	a/29/24	Normal	Normal (coiled	Spontaneous	coiled
			umbilical artery	abortion	umbilical
			and SUA)		artery and SUA
25.	a/30/24	HLHS	Conical shaped	HLHS	bilateral hip
			heart,	CVS	joint ulceration
			hypoplastic left	(CVS	
			wall and	anomaly)	
			wall and		
			bilateral hip joint		
			ulceration		
26	121/24				
26.	a/31/24	Normal	Normal	Spontaneous	No additional
		(anhydrominos)		abortion	findings
27.	a/32/24	Dextrocardia, stomach,	Dextrocardia,	Complex	Edematous
		part of small bowel and	stomach, part of	congenital	external
		left liver lobe seen in	small bowel and	anomaly	genitalia
		hemithorax	left liver lobe		
			seen in		
		l			

-					ı
			hemithorax and		
			edematous		
			external		
			genitalia		
20	A /22/04	NT 1	NT 1	G (NT 11'
28.	A/33/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
29.	a/34/24	Normal	Normal (orbital	Spontaneous	orbital edema
			edema)	abortion	
30.	a/39/24	Dandy walker	Cystic posterior	Complex	enlarged head
		syndrome, skeletal	fossa suggestive	congenital	
		dysplasia and CTEV	of dandy walker	anomaly	
			syndrome, club		
			foot suggestive		
			of skeletal		
			dysplasia and		
			enlarged head		
31.	a/40/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
32.	a/42/24	Lemon and banana sign,	Head appears	CNS	No additional
		meningomyelocele	elongated,	anomaly	findings
		moningoniyolocolo	meningocele at	unoniury	intenings
			, č		

			lumbosacral		
			region		
33.	a/43/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
34.	a/45/24	Normal	Normal (low set	Spontaneous	Low set ears
			ears)	abortion	
35.	a/46/24	Normal	Normal	Spontaneous	No additional
		(retroplacental		abortion	findings
		hematoma)			
36.	a/47/24	Normal	Normal	Spontaneous	SUA
			(greenish	abortion	
			discolouration of		
			mouth and SUA)		
37.	a/48/24	Larsen syndrome-	Frontal bossing,	Larsen	X- ray:
		decreased intraorbital	flattened mid	syndrome	congenital
		distance, hypoplastic	face,		metatarsal
		face, inward left foot	hypotelorism,		varus,
		angulation, CTEV,	bilateral low set		congenital
		prefrontal edema, genu	ears, bilateral		dysplasia of
		recarvatum	long and		humerus and

spatulated	segmentation
fingers, bilateral	anomaly of
flewed hips and	vertebrae along
elbows, bilateral	with
hyperextended	hypoplasia of
knees, bilateral	vertebral
club foot	bodies.
underdevelopme	
nt of fetal	
calvarium, fetal	
sacrum	
suggestive of	
hypoplasia,	
rocker bottom	
feet and right	
sided short arm	
suggestive of	
congenital	
skeletal	
ray: congenital	
metatarsal varus,	
congenital	

			dysplasia of		
			humerus and		
			segmentation		
			anomaly of		
			vertebrae along		
			with hypoplasia		
			of vertebral		
			bodies.		
38.	a/49/24	Twin A- absent	Twin A- absent	Twin to twin	Twin A- SUA
		diastolic flow	diastolic flow	transfusion	
		Taria Davadiana ala	and SUA	syndrome	
		Twin B- cardiomegaly			
		with ventricular wall	Twin B-		
		hypertrophy	cardiomegaly		
			with ventricular		
			wall		
			hypertrophy		
39.	a/50/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
40.	a/51/24	Left lung diaphgramatic	Bilateral club	PAGOD	Bilateral club
		hernia and left lung	foot, herniation	syndrome	foot, shifting of
		hypoplasia	of stomach into		trachea,

			h a m ith a		dentro es - 1' -
			hemithorax,		dextrocardia
			shifting of		and scrotal
			trachea,		edema
			dextrocardia,		
			mild lung		
			hypoplasia,		
			scrotal edema		
41.	a/53/24	Normal	Normal (left	Spontaneous	left eyelid
		(anhydrominos)	eyelid everted)	abortion	everted
42.	a/54/24	Right ectopic kidney	Right kidney	Renal	SUA
		with	agenesis and	anomaly	
		hydrouretronephrosis	SUA		
43.	a/56/24	Normal (retroplacental	Normal	Spontaneous	congestion of
		clot)	(congestion of	abortion	bilateral lungs
			bilateral lungs)		
44.	a/55/24	IUGR	Decreased	Skeletal	No additional
			stature	system	findings
45.	a/57/24	Unilateral	Normal	Could not	No additional
		ventriculomegaly		confirm USG	findings
		, entire uto in egury			mango
				findings	
		l			

46.	a/60/24	Normal	Normal (flat	Spontaneous	flat nasal
			nasal bridge and	abortion	bridge and low
			low set ears)		set ears
47.	a/62/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
48.	a/63/24	Increased nuchal	kyphoscoliosis,	CNS	No additional
		translucency,	spinal	anomaly	findings
		kyphoscoliosis, spinal	dysmorphism		
		dysmorphism and	and		
		diastematomyelia	subcutaneous		
			defect in lumbar		
			region		
49.	a/65/24	Normal	Normal (low set	Spontaneous	low set ears
			ears)	abortion	
50.	a/66/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
51.	a/67/24	Frog facies	Anencephaly,	CNS	shoulder
		(anencephaly)	shoulder	anomaly	dystocia and
			dystocia and		imperforate
			imperforate anus		anus

52.	a/98/24	Normal	Normal	Spontaneous	cephalhemato
			(cephalhematom	abortion	ma
			a)		
53.	a/69/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
54.	a/70/24	Gastrochisis (colonic	Herniated bowel	GIT anomaly	low set ears
		atresia)	loops through		
			anterior		
			abdominal wall		
			suggestive of		
			gastrochisis and		
			low set ears		
55.	a/73/24	Normal	Normal (SUA)	Could not	SUA
		(oligohydrominos and		confirm	
		IUGR)		IUGR	
56.	a/76/24	Normal	Normal	Spontaneous	bilateral lung
			(bilateral lung	abortion	congestion
			congestion)		

57.	a/76/24	Normal	Normal	Spontaneous	bilateral lung
			(bilateral lung	abortion	congestion
			congestion)		
58.	a/32/23	Normal (low lying	Normal	Spontaneous	No additional
		placenta)		abortion	findings
59.	a/33/23	Normal (low lying	Normal	Spontaneous	No additional
		placenta)		abortion	findings
60.	a/34/23	Normal	Normal (flat	Spontaneous	flat head
			head)	abortion	
61.	a/35/23	Spina bifida	Normal	Could not	No additional
				confirm	findings
				grossly	
62.	a/41/23	Anencephaly complex	Neural tube	Anencephaly	No additional
02.	W 11/23				
		anomaly	comprised of	- spina bifida	findings
			fibrillary matrix	complex	
			consistent with		
			anencephaly and		
			spina bifida		

63.	a/42/23	Normal	depressed skull	Renal	depressed skull
			and right kidney	anomaly	and right
			tubular necrosis		kidney tubular
					necrosis
64.	a/44/23	Normal	Normal	Spontaneous	No additional
				abortion	findings
65.	a/45/23	Normal(abruptio	Normal	Spontaneous	Congested
		placenta)	(congested	abortion	organs
			organs)		
66.	a/46/23	Dysplastic mitral valves	Normal	Could not	No additional
		and hypoplastic left		confirm USG	findings
		heart		findings	
67.	a/47/23	Right mild pelviectasis	left	Could not	No additional
		and left diaphgramatic	diaphgramatic	confirm renal	findings
		hernia	hernia (both	anomaly	
			kidneys normal)		
68.	a/48/23	Normal(oligohydromin	Normal	Spontaneous	No additional
		os)		abortion	findings
69.	a/49/23	Normal(abruptio	Normal	Spontaneous	No additional
		placenta)		abortion	findings

70.	a/50/23	Tetralogy of fallot and	Ventricular	CVS	Cardiac muscle
		single umbilical artery	septal defect,	anomaly	hypertrophy
			muscle		
			hypertrophy and		
			variable size		
			cardiomyocytes		
			(Tetralogy of		
			fallot) and SUA		
71.	a/53/23	Hydrocephalus,	Enlarged head,	Hydrolethalu	No additional
/1.	a/ 55/ 25	Trydrocephaids,	Emarged nead,	Trydroletilaiu	No additional
		polysyndactyly and	polysyndactyly	s syndrome	findings
		cleft lip	and cleft lip		
72.	a/54/23	Occipital encephalocele	Small head	CNS	No additional
				anomaly	findings
73.	a/55/23	Normal(oligohydromin	Normal	Spontaneous	No additional
		os)	(congested	abortion	findings
			organs)		
74.	a/92/23	Invertus siatus,	Invertus siatus,	Complex	Hypoplasia of
		levocardia and right	levocardia,	congenital	thymus, low set
		aortic arch	hypoplasia of	anomaly	ears
			thymus, low set		

			ears and right		
			aortic arch		
75.	a/57/23	Normal(oligohydromin	Normal	Spontaneous	No additional
		os)	(congested	abortion	findings
			organs)		
76.	a/58/23	Normal	Normal	Spontaneous	occipital
			(occipital	abortion	protruberance
			protruberance)		
77.	a/59/23	AVSD	Dilated SVC,	CVS	low set ears
			double outlet	anomaly	
			right ventricle,		
			low set ears		
78.	a/60/23	Bilateral hydrocephalus	Dilatation of	CNS	globular head
			posterior horn,	anomaly	
			moderate		
			ventriculomegal		
			y and globular		
			head		
79.	a/62/23	Normal	Normal (Spontaneous	No additional
				abortion	findings

80.	a/63/23	Hypertelorism,	Hypertelorism,	Complex	Thymus
		micrognathia,	micrognathia,	congenital	hypoplasia
		pulmonary artery right	pulmonary	anomaly	
		to trachea, left	artery right to		
		pulmonary artery	trachea, left		
		anterior to trachea	pulmonary		
			artery anterior to		
			trachea and		
			thymus		
			hypoplasia		
01	160/00	X7 1	NY 1	9	N. 111.1 1
81.	a/68/23	Normal	Normal	Spontaneous	No additional
				abortion	findings
82.	a/65/23	Normal	Normal	Spontaneous	No additional
				abortion	findings
02	0/66/02	Ameld shieri sun ducure	Meningocele,	CNIC and	laft grange
83.	a/66/23	Arnold chiari syndrome		CNS and	left sponge
			left sponge	Renal system	kidney and
			kidney and		cystic kidney
			cystic kidney		
84.	a/69/23	Normal	Normal	Spontaneous	No additional
				abortion	findings

85.	a/70/23	Anencephaly	Anencephaly,	CNS	Low set ears
			low set ears	anomaly	
86.	a/71/23	Arnold chiari syndrome	Left foot tallipes	Could not	No additional
		and left foot tallipes		confirm CNS	findings
				anomaly	
87.	a/72/23	Normal	Normal	Spontaneous	No additional
		(anhydrominos)		abortion	findings
88.	a/73/23	Normal	Normal	Spontaneous	No additional
				abortion	findings
89.	a/75/23	Normal	Normal	Spontaneous	No additional
		(oligohydrominos)		abortion	findings
90.	a/76/23	Normal	Normal	Spontaneous	No additional
		(anhydrominos)		abortion	findings
91.	a/77/23	Normal	Normal	Spontaneous	No additional
		(oligohydrominos)		abortion	findings
92.	a/78/23	Increased nuchal	Right ventricular	CVS	Right
		translucency,	hypertrophy,	anomaly	ventricular
		hypoplastic nasal bone	pulmonary		hypertrophy,
			stenosis, boot		pulmonary
					stenosis, boot

			shaped heart and		shaped heart
			low set ears		and low set ears
93.	a/79/23	Bilateral dilated	Spinal defect	CNS	Spinal defect
		ventricles	comprised of	anomaly	comprised of
			skin, meningeal		skin,
			layers and neural		meningeal
			tissue along with		layers and
			low set ears		neural tissue
					along with low
					set ears
94.	a/80/23	Anencephaly	Anencephaly,	CNS	protruding
			protruding	anomaly	tongue and
			tongue and		absence of
			absence of nasal		nasal bone
			bone		
95.	a/81/23	Cystic hygroma	Cystic hygroma	Lymphatics	No additional
			- , , 8	anomaly	findings
					intenigs
96.	a/82/23	Ventricular septal	Ascending aorta	CVS	No additional
		defect, dilated aorta and	and aortic arch	anomaly(coul	findings
		unossified nasal bone	dilated, inlet	d not confirm	
			VSD		

				other CVS	
				findings)	
0.7	100,100		D' 1		D : 1.
97.	a/83/23	Tetralogy of falot	Right toe	VACTERL	Right toe
			polydactyly,	Assoiation	polydactyly,
			bilateral CTEV,		bilateral CTEV,
			scoliosis,reduce		scoliosis,reduc
			d right		ed right
			ventricular		ventricular
			volume and right		volume and
			ventricular		right
			hypertrophy.		ventricular
			X- ray: butterfly		hypertrophy.
			anomaly,		X- ray:
			segmental		butterfly
			anomaly all		anomaly,
			lumbar vertebrae		segmental
			with widening		anomaly all
			and splaying of		lumbar
			anterior		vertebrae with
			elements		widening and
			suggestive of		splaying of
			lumbar scoliosis.		anterior

					elements
					suggestive of
					lumbar
					scoliosis.
98.	a/84/23	Normal	Normal	Spontaneous	periorbital
		(anhydrominos)	(periorbital	abortion	edema
			edema)		
99.	a/85/23	Normal	Normal (low set	Spontaneous	low set ears
			ears)	abortion	
100.	a/86/23	Normal	Normal	Spontaneous	No additional
		(oligohydrominos)		abortion	findings
101.	a/87/23	Normal (retroplacental	Normal	Spontaneous	No additional
		clot)		abortion	findings
102.	a/90/23	Ectopic kidney,	Ectopic kidney	CNS and	thoracic
		hemivertebrae	within intestinal	Renal system	scoliosis
			loops,	anomaly	
			hemivertebrae		
			and thoracic		
			scoliosis		

103.	a/88/23	Normal	Normal	Spontaneous	No additional
				abortion	findings
					C
104.	a/91/23	Cleft lip and palate	Cleft lip and	Spontaneous	No additional
			palate	abortion(Faci	findings
				al anomaly)	
105.	a/113/24	Normal (severe	Normal	Spontaneous	congested and
		oligohydrominos and	(congested and	abortion	dilated alveolar
		abruptio placenta)	dilated alveolar		spaces
			spaces)		
106.	a/121/24	Bilateral CTEV,	Bilateral dilated	Joubert	bilateral low
		hydrocephalus	ventricles,	syndrome	set ears
			thinned out		
			cortex, absent		
			vermis		
			suggestive of		
			hydrocephalus,		
			bilateral low set		
			ears and bilateral		
			congenital		
			equino varus.		

107.	a/128/24	Subcutaneous edema	Normal	Could not	No additional
		and frontal bossing		confirm USG	findings
				findings	
108.	a/130/24	Absent ductus venosus,	Ruptured head	GIT anomaly	No additional
		cystic hygroma,	and abdomen		findings
		bilateral minimal	with visible		
		pleural effusion	intestinal loops		
		suggestive of	and cystic		
		nonimmune hydrops	hygroma		
		fetalis and low lying			
		placenta			
109.	a/133/24	Well defined cystic	Partially opened	Blake pouch	No additional
		lesionin posterior fossa	up alveoli and	cyst	findings
		suggestive of blake	congestion,		
		pouch cyst	yellow fluid		
			drained		
110.	a/134/24	Lemon shaped frontal	Frog eyes,	Arnold chiari	Low set ears
		bones, prominent	lemon head and	malformation	
		ventricles and banana	low set ears		
		sign (Arnold chiari			
		malformation)			

111.	a/140/24	Absent skull bone,	Absent skull	Anencephaly	No additional
		facial dysmorphism	bone, no		findings
		suggestive of	forehead and no		
		anencephaly and low	mouth, no eyes		
		lying placenta			
112.	a/145/24	Uteroplacental	Distended	Pulmonary	Distended
		insufficiency, IUGR	alveolar spaces	alveolar	alveolar spaces
			with PAS	proteinosis	with PAS
			positive		positive
			eosinophilic		eosinophilic
			granular		granular
			material		material
113.	a/149/24	Normal	Normal	Spontaneous	No additional
		(anhydrominos)		abortion	findings
114.	a/151/24	Severe venticulomegaly	Severe	CNS	No additional
		and SUA	venticulomegaly	anomaly	findings
			and SUA		
115.	a/144/24	Normal	Normal	Spontaneous	No additional
				abortion	findings

116.	a/143/24	oligohydrominos, mild	low set ears and	CNS	low set ears
		moulding of skull bones	tiny skull	anomaly	
117.	a/142/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
118.	a/141/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
119.	a/136/24	Normal	Normal (low set	Spontaneous	Low set ears
			ears)	abortion	
120.	a/135/24	Normal	Normal (low set	Spontaneous	Low set eras
			ears)	abortion	
121.	a/132/24	Normal	Normal	Spontaneous	Underdevelope
		(polyhydrominos)	(underdeveloped	abortion	d ears
			eras)		
122.	a/131/24	Absent diastolic flow	Normal	Could not	No additional
		suggestive of growth		confirm USG	findings
		restriction		findings	
123.	a/129/24	Twin A- retained	Imperforate anus	Skeletal	Imperforate
		products of conception	and left foot four	anomaly	anus and left
			fingers		

					foot four
					fingers
124.	a/129/24	Twin B- Retained	Underdeveloped	Twin to twin	Underdevelope
		products of conception	baby, right lung	transfusion	d baby, right
			two lobes	syndrome	lung two lobes
			arteries and		arteries and
			veins not		veins not
			identified		identified
125.	a/124/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
126.	a/123/24	Normal	Clobularbood	Crontonoouo	Clobular bood
120.	a/125/24	Normai	Globular head	Spontaneous	Globular head
				abortion	
127.	a/122/24	Severe	Enlarged head	CNS	Enlarged head
		oligohydrominos and	and webbed	anomaly	and webbed
		bradycardia	neck		neck
128.	a/120/24	CTEV	Globular head,	Skeletal	Globular head,
			facial features	anomaly	facial features
			distorted from		distorted from
			nose to chin,		nose to chin,
			bilaterally		
			medially		

	Γ			Γ	гт
			deviated foot		
			and foot appears		
			planta flexed		
			suggestive of		
			CTEV		
129.	a/119/24	Normal (uteroplacental	Normal	Spontaneous	No additional
		insufficiency)		abortion	findings
130.	a/117/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
131.	a/116/24	Normal	Low set ears,	Facial	Low set eras,
			cleft lip and	anomaly	cleft lip and
			platae		palate
132.	a/115/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
133.	a/118/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
134.	a/146/24	Normal	Normal	Spontaneous	No additional
				abortion	findings

135.	a/147/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
136.	a/148/24	Normal	Normal (low set	Spontaneous	Low set ears
			ears)	abortion	
137.	a/71/24	Severe	Webbed neck	CNS	Webbed neck
		oligohydrominos	and enlarged	anomaly	and enlarged
			head		head
138.	a/64/24	Anencephaly	Anencephaly,	CNS	Low set ears
			low set ears,	anomaly	and SUA
			SUA		
139.	a/72/24	Normal	Normal	Spontaneous	No additional
				abortion	findings
140.	a/68/24	HLHS	Conical heart,	HLHS	SUA
			hypoplastic left		
			wall, SUA		
141.	a/130/24	Normal	Normal	Spontaneous	No additional
				abortion	findings

142.	a/150/24	Normal	Normal	Spontaneous	Congested
			(congested	abortion	organs
			organs)		
143.	a/151/24	Anencephaly complex	Neural tissue	Anencephaly	No additional
		anomaly	comprised of	- spina bifida	findings
			fibrillary matrix	complex	
			consistent with		
			anencephaly		
			along with spina		
			bifida		
144.	a/155/24	Harlequinn syndrome	Thick, hard skin	Harlequinn	No additional
			plates that crack	syndrome	findings
			and split,		
			covering the		
			most of their		
			bodies. The		
			plates are		
			diamond shaped		
			and separated by		
			deep fissures.		

145.	a/36/23	Normal	Normal	Spontaneous	No additional
				abortion	findings
146.	a/37/23	Normal (abruptio	Normal	Spontaneous	Congested
		placenta)	(congested	abortion	organs
			organs)		
147.	a/38/23	Normal	Normal	Spontaneous	No additional
				abortion	findings
148.	a/39/23	Retained products of	Normal (Low set	Spontaneous	Low set ears
		conception	ears)	abortion	
149.	a/40/23	Normal (retroplacental	Normal	Spontaneous	No additional
		hematoma)		abortion	findings
150.	a/43/23	Lemon and banana sign,	Head appears	CNS	No additional
		meningomyelocele	elongated,	anomaly	findings
			meningocele and		
			lumbosacral		
			region		

aarushi goswami

thesis part 1 22 march.docx

BLDE University

Document Details

Submission ID tracki:::3618:87919528 Submission Date Mar 26, 2025, 12:55 PM GMT+5:30 Download Date Mar 26, 2025, 12:57 PM GMT+5:30

File Name

thesis part 1 22 march.docx

File Size

73 Pages

11,654 Words

64,804 Characters

ViThenticate Rage Lat 78 - Cover Page

Submission ID trackid: 3618:82919528

Submission ID tracok::3618:87919528

10% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- Bibliography
- Quoted Text.
- Cited Text
- Small Matches (less than 10 words)

Exclusions

2 Excluded Websites

Match Groups

72 Not Cited or Quoted 10% Matches with neither in-test citation nor quotation marks.

D Missing Quotations 0% Matches that are still very similar to source material.

 0 Missing Citation 0% Matches that have quotation marks, but no in-text citation

 0 Cited and Quoted 0% Matches with in-text citation present, but no quotation marks

Integrity Flags

O Integrity Flags for Review

No suspicious text manipulations found.

Top Sources

- 9%

 Internet sources
- 9% III Publications
- 0% E Submitted works (Student Papers)

Our system's algorithms look deeply at a document for any inconsistencies that would set is apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

ViThenticate Page 2 of 78 - Integrity Overview

Submission ID try: pid::3618:87919528