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ABSTRACT 

ARTIFICIAL INTELLIGENCE (MACHINE LEARNING) AS A 

SCREENING TOOL FOR MRI EVALUATION OF NORMAL AND 

ABNORMAL MEDIAL MENISCUS 

Objective: The most common cause of abnormal meniscus is due to sports-

related injuries and the other causes are osteoarthritic and non-osteoarthritic 

menisci. Sports injuries of meniscus are most common in individuals 

engaged in high-impact or pivot-heavy activities. The meniscus, a C-shaped 

piece of cartilage within the knee, cushions and absorbs the applied loads 

and helps stabilize the knee. A torn/osteoarthritic meniscus can lead to knee 

pain, swelling, and impairment of function. MRI stands as the most reliable 

imaging technique to be used in the detection of abnormal meniscus since it 

offers excellent soft tissue resolution between cartilage, tendons, and 

ligaments. Although much advancement has been realized in the MRI 

technology, the diagnosis of meniscal pathologies from MRI images remains 

one of the difficult areas. The problem is that the signals coming from 

meniscal tissue are difficult to distinguish from those of the ligaments and 

other fluid-filled structures surrounding them, therefore making 

differentiation of normal against injured/degenerated meniscus a very 

difficult task. 

Segmentation of the meniscus, where the meniscus is separated from other 

structures in the MRI images, forms an important step in improving 

diagnostic accuracy. Such detailed visualization of the meniscus allows 

clinicians to evaluate its shape, size, and volume; it can also quantify several 

specific parameters, such as thickness or degeneration. Manual segmentation 



 

is an extremely tedious and very time-consuming process that requires a lot 

of expertise and experience. Consequently, manual segmentation is prone to 

variability when different clinicians apply the technique, causing major 

inconsistencies in diagnostics. Recent advancements in deep learning and 

artificial intelligence made possible promising solutions in the automation of 

segmentation. Algorithm fully and semi-automated were developed and 

make a wide utilization of machine learning models like CNNs in the 

identification and segmentation of the meniscus in MRI images. Those 

models are trained on large, labeled datasets of MRI scans with meniscal 

tissue and surrounding structures, learning how to distinguish the meniscal 

tissue from the surrounding structure. The benefits of automated 

segmentation might involve elevated diagnostic precision, higher workflow 

efficiency, and lesser human error. while much promise is shown to be held 

by AI-based methods, the challenges are yet present in reality.  

Results: This paper will detail the work to develop a deep learning model 

based on Mask R-CNN for abnormal meniscus detection and diagnosis from 

MRI images. The model aims at achieving  in detecting normal menisci 

(healthy) and abnormal menisci (torn/degenerated menisci) with AUC of 

0.992 for detecting normal menisci and AUC of 0.962 for detecting abnormal 

menisci. Overall, this methodology manifests much promise as an effective 

tool for radiologists to help diagnose injuries of the meniscus. 

 

 



 

Conclusion: We introduce a new algorithm that utilizes mask-region 

convolutional neural networks (CNNs) to effectively identify normal and 

abnormal meniscus. This advancement lays the groundwork for creating a 

complete, automated solution for diagnosing this condition. 

Keywords: 

Meniscus                                                                                                                                      

Magnetic resonance imaging (MRI)                                                                                              

Automatic segmentation                                                                                                                          

Knee                                                                                                                                                     

Mask-Region Convolutional neural networks(RCNN) 
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1. INTRODUCTION 

The medial meniscus is an essential fibrocartilaginous structure between 

the knee joint and the femur of the tibia. It performs multiple biological functions 

indispensable to generating load transmission, shock absorption, and joint 

stability. Generally, meniscal problems, such as tearing or degeneration, occur to 

most people, regardless of whether they are athletes or older adults. Meniscal 

injuries can produce pain and instability of the joint, along with a risk for 

osteoarthritis if left untreated. Thus, proper management of these injuries can 

only begin with accurate and early diagnosis. 

      1.1  Anatomy of meniscus. 

One major ligament, many capsular thickenings, and tendinous 

attachments comprise the knee’s medial ligament complex. The superficial 

medial collateral ligament is commonly called the tibial collateral ligament, 

whereas the deep medial collateral ligament is also called the mid-third medial 

capsular ligament. The capsular attachments from the main common tendon of 

the semimembranosus have been called the posterior oblique ligament.1 
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                                                        Figure 1       

 Posterior anatomy of the knee 

 

Figure 2     

 Ultrastructure of the medial meniscus 
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1.1 MRI in Evaluation of Meniscus 

With its excellent soft tissue contrast and non-invasive nature, MRI gives 

the gold standard assessment for meniscal pathologies. MRI allows complete 

visualization of the whole meniscus and all the surrounding structures, making it 

invaluable in detecting tears, degeneration, and other pathologies. Its role in 

diagnosing meniscal pathologies has been well established in clinical practice 

and research settings, especially when diagnosis can be challenging by clinical 

examination alone. 

Although these help overcome its disadvantages, MRI image interpretation 

is highly technical and time-consuming. Hence, meniscal tears, more so at the 

early stages after an injury, can be challenging to detect and might often go 

unnoticed due to their subtle manifestations. Also, the number of images 

produced in a thorough MRI knee exam runs into hundreds, which would take 

much time and effort even from one of the most experienced radiologists to 

scrutinize. 

A deep learning model can process and interpret these hundreds of MRI 

pictures. The radiologist’s workflow is greatly facilitated by automation, which 

also speeds up evaluation and increases diagnostic precision. In particular, 

picking up abnormalities regarding the medial meniscus makes it an excellent 

piece of technology in a clinical setting, freeing up time for the radiologist to 

work on complex cases that require more attention. Second, the model’s ability 

to analyze images rapidly can decrease workload and even contribute to better 

patient outcomes by providing quicker, more reliable diagnostic insights. 
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Figure 3  

Proton density fat suppressed (Sagittal view) sequence of the knee shows 

anterior and posterior horn of normal medial meniscus. 

 

Figure 3  

Proton density fat suppressed (Sagittal view) sequence of the knee shows 

body of normal medial meniscus. 
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MRI is an ideal non-invasive imaging technique for detecting and assessing 

meniscal degeneration because it can differentiate between various tissues, 

including cartilage, ligaments, and fluid within the joint. Abnormal meniscus 

typically presents with several characteristic features on MRI, reflecting the 

biochemical and structural changes that occur with the condition. 

1. Signal Intensity Changes: In a healthy knee, the meniscus appears as a low-

signal (dark) triangular structure on T1-weighted and proton-density images, 

which indicates its dense collagenous composition and lack of free water 

content. However, when degeneration occurs, the meniscus absorbs more 

water, increasing its signal intensity, particularly on T2-weighted or fat-

saturated images. This results in areas of increased signal intensity, often 

appearing as bright or hyperintense spots within the typically dark meniscus. 

These signal changes are often the earliest signs of meniscal degeneration and 

reflect the breakdown of collagen fibres and increased water content due to 

cartilage damage. 

2. Meniscal Tears and Morphological Changes: As degeneration progresses, 

the structural integrity of the meniscus may be compromised, leading to tears, 

fissures, or cartilage fraying. On an MRI, these tears appear as linear lines of 

high signal intensity that reach the surface of the meniscus. The tears may be 

partial or full-thickness, and in some cases, they may involve complex or 

horizontal cleavages within the meniscus. These abnormalities often disrupt the 

typical triangular shape of the meniscus, making it appear irregular or thinned 

out on MRI slices. Full-thickness injuries, where the meniscus is torn through 

entirely and meniscal tissue protrudes into the joint space, can worsen joint 

instability. 
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3. Reduction in Meniscal Thickness: One of the key features of a degenerated 

meniscus is a reduction in thickness. Over time, as the meniscus deteriorates, 

the cartilage wears down, becoming thinner and less capable of absorbing 

shock. This thinning is readily visible on MRI as a decrease in the meniscal 

body’s width or height. A thinner meniscus is more vulnerable to further injury 

and is less effective at protecting the knee joint from impact. This reduction in 

thickness is a common finding in advanced meniscal degeneration, especially 

in older patients or those with osteoarthritis. 

4. Meniscal Extrusion and Displacement: In severe cases of meniscal 

degeneration, parts of the meniscus may become displaced or extruded from 

their normal position within the knee joint. Meniscal extrusion is when the 

meniscus body is pushed out of the joint space, often due to advanced 

degeneration or associated ligament damage. This displacement is typically 

seen in coronal MRI views, where the meniscus can appear outside the 

boundaries of the tibial plateau. Meniscal extrusion is particularly concerning 

because it can lead to further joint instability, increased mechanical stress on 

the articular cartilage, and accelerated joint degeneration, as seen in conditions 

like osteoarthritis. 

 

 

 

 

 



7 | Page 
 

       1.2 The Role of AI Medical Imaging 

AI and, more precisely, ML have become a handy tool in medical imaging 

in that they can solve almost all problems associated with MRI interpretation 

when traditional methods are used. AI can be programmed to learn patterns in 

extensive collections of datasets and is highly competent in image 

classification, segmentation, and anomaly detection. This is very valid, 

especially in the case of meniscal injury. Incomplete deviation easily gets 

overlooked during manual image analysis. 

Among them, deep learning, part of machine learning, is an important 

motivator for the emerging advances in medical imaging. Most of the tasks 

involved in detecting and classifying meniscal abnormalities are carried out 

using CNNs predominantly as the architecture for analyzing MRI images. It is 

possible to automatically learn from large datasets of MRI images with a 

distinction that denotes the complex structural patterns linked to meniscal tears 

and degeneration. After training them, these models can be used with great 

effectiveness to screen a large number of images of MRI within a very short 

period with the accuracy delivered by a human expert. 

There have been promises that AI models will automate various aspects 

of MRI analysis. Among the most critical ones are normal and abnormal 

menisci detection and classification. Recently, a deep learning model based on 

Mask Regional Convolutional Neural Network (Mask R-CNN) has been 

developed for evaluating meniscal health. The model achieved over 85% 

diagnostic accuracy when distinguishing between healthy and torn or 

degenerated menisci through training on images of high patient cohorts. It 
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demonstrated the potential utility of the model as a diagnostic tool, especially 

in discerning different types of meniscal injuries in different anatomical 

regions, such as the anterior and posterior horns. 

In addition, AI-based models enhance the accurate diagnosis of meniscal 

tear identification by automatically segmenting the meniscus from other soft 

tissues in MRI images. This segmentation process is critical to elucidate the 

anatomical site and extent of the tear. A fast-region convolutional neural 

network-based AI model was applied to predict tears in the meniscus within a 

dataset of 1123 knee MRI images. The algorithm yielded an AUC of 0.92 in 

the identification of meniscal tears and 0.83 in the determination of orientation. 

This underlines the potential offered by AI towards analyzing complex MRI 

data streams. 

Although this is possible as far as detection and diagnosis are concerned, 

these AI systems can also predict the course of development for the case of 

meniscal degeneration. More and more valid and trained AI models will be 

expected to identify the one more likely to lead to complications: meniscal 

injury; thus, treatment plans for the patient may be improved based on real-

time evaluation. 
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Figure 5 

The two MRI examples have a normal medial meniscus (left) and a torn 

medial meniscus (right), in order to see the sagittal images as an anterior-

posterior view. The intact meniscus is viewed as a dark black triangle. The torn 

meniscus (right) is irregular, with a light line representing the tear traversing 

it. 
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1.3 Advantages of AI in Clinical Settings 

Several benefits occur in clinical practice with the introduction of AI. 

First, AI systems are very effective in diagnosing and recording minute 

abnormalities that human reviewers may have missed, especially for complex 

cases. Second, it saves time from MRI analysis by preliminary reviewing and 

flagging suspicious areas for further examination by a radiologist. This reduces 

the radiologist’s workload, reducing the turnaround time for diagnosis. 

Therefore, intervention and consequent treatment take place earlier. 

MRI interpretation also ensures objective and reproducible evaluation in 

meniscal health by minimizing inter-observer variability. Human mistakes in 

diagnosis can significantly affect the quality of care since there is a likelihood 

of errors when carried out by different radiologists. AI provides consistent 

performance, standardizing the diagnosis process; therefore, treatment has a 

more uniform conclusion. 

Moreover, AI-based screening tools can be integrated with MRI 

machines, where real-time analysis is also possible while scanning. An even 

quicker and more effective scanning regimen will be introduced for every 

patient by future developments in MRI technology, incorporating artificial 

intelligence. Thus, AI will reduce the time and effort required for manual 

image evaluation, allowing radiologists to focus entirely on challenging 

situations. 
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       1.4 Challenges and Future Directions of AI 

Although there is a great potential of big advantages of AI in the 

evaluation of menisci by MRI, challenges remain before such AI systems can 

enter a clinical workflow, such as a requirement for large diverse datasets to 

train and validate AI models. MRI scans may depend very much on the used 

scanner, imaging protocols, and the patient population. Model generalization 

is guaranteed by the training of the AI model over diverse datasets of various 

types of images and patient demographics. 

Regulatory and ethical contexts are special challenges to AI in healthcare. 

High validation would be required in a series of clinical trials to demonstrate 

safety and efficacy. In addition, an AI system needs to have transparency and 

explainability so that clinicians can trust the decisions and generalizations 

being made by these models. These systems need to be interpreted and 

accountable once AI advances further, so that these systems can be 

successfully applied in practice. 
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2.  AIMS AND OBJECTIVES 

  To train the model on a large dataset of labeled MRI scans, ensuring accurate 

differentiation between healthy and pathological menisci. 

   To develop and evaluate a deep learning-based artificial intelligence model for 

automated detection and classification of normal and abnormal medial menisci 

in MRI scans. 
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3. REVIEW OF LITERATURE 

Other relevant works in the literature on this subject can also be included in the 

papers, discussing deep learning and artificial intelligence for the application 

of meniscus tears diagnosis based on MRI images.  

This model has been named MR Net by Bien et al. in their work of 2018, with 

a sensitivity result of 76.5% on an internal validation for the detection of the 

presence of meniscal tears.2 

Couteaux et al. (2019) trained a mask region-based convolutional neural 

network (R-CNN) to explicitly localize normal and torn menisci, made it more 

robust with ensemble aggregation, and cascaded it into a shallow ConvNet to 

classify the orientation of the tear. They detected and classified meniscus tears 

using Mask R-CNN; his internal dataset had a correctness of 90.6%.3 

Roblot et al. (2019) compared the Fast R-CNN and Faster R-CNN models 

for meniscus tears at maximum accuracy of 90% internal validation. They 

suggested the development of an AI algorithm to be used in diagnosing and 

characterizing meniscus tears on MRI of the knee, with a dataset of 1123 MR 

images for training and 700 for testing. It applied fast-region CNN and faster-

region CNN to the three medical diagnosis tasks that are localization of 

meniscal horns, determination of the existence of a tear, and determination of 

the orientation of the tear. They divided the task, emulating the procedure of 

diagnostic work for radiologists and received good metrics of performance: 

AUC equal to 0.92 for detection of horn for the meniscus, and equal to 0.94 

for existence of a tear with an average of 0.83 for orientation, therefore with 

AUC weighted equal to 0.90 altogether. In a similar study by Bien et al., 
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training set consisted of 1370 MRI scans. There was more crying within the 

exams in meniscal tissue at 37% rather than 13%. Bien et al. used the 

convolutional neural network known as MRNet for general abnormalities and 

specific diagnosis. The AUC for the diagnostic got to 0.847 in diagnosing 

meniscal tear but marginally lower than that of Roblot's model. However, the 

research had some drawbacks in it. They included only two T2-weighted MR 

images per patient in consideration of the data; usually, a knee MRI 

examination contains about 100 images. Their training was limited only to a 

normal meniscus and abnormal grade 3 high meniscal signal intensity that was 

excluded grade 1 and 2 lesions. Overall, the studies point to a strong potential 

for deep learning algorithms in the near future to assist radiologists in meniscal 

tear diagnosis but still leave a prospect that significant development is required 

to produce thorough, end-to-end AI-powered diagnostic tools.4 

Pedoia et al. attempted to evaluate the ability of deep-learning models to detect 

and stage severity of meniscus and patellofemoral cartilage lesions in 

osteoarthritis and anterior cruciate ligament (ACL) subjects. They suggested a 

3D convolutional neural network to detect and grade meniscus and cartilage 

degeneration with 89.8% accuracy to diagnose the meniscus tears.5 

Fritz et al. Deep CNN achieves a validation accuracy of 91.2% in diagnosing 

meniscus tears compared to arthroscopic findings.6 

Conclusion of this chapter, application of MRNet in the year 2021 for    

detection of meniscus lesions from different machines and also in varying field 

strengths with an external validation sensitivity of 81%. Collectively, these 

papers show excellent promise for deep learning to automatically diagnose 

meniscus tears from MRI input: most of them get more than 85% accuracy in 
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internal validation but most struggle with external validation on diverse 

datasets. 

 

     Figure 6                 

 The illustration diagram of dataset augmentation technique 
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Table 1                                                                                                                                               

Meniscus dataset and demographic breakdown. 

In the past two decades alone, thousands of papers have defined how to develop 

automated methods for segmenting the knee meniscus from MR images, 

beginning with semi-automated methods involving some degree of interaction 

with the user. The first semi-automatic methodology that utilized edge 

detection along with thresholding was proposed in 1998 by Kitney et al.7 

Fripp et al. developed a scheme that included segmenting the bones 

automatically using a three-dimensional active shape model, extracting the 

expected bone-cartilage interface (BCI), and segmenting the cartilage from the 

BCI using a deformable model that makes use of localization, patient-specific 

tissue estimation, and a model of the thickness variation. A database of fat-

suppressed spoiled gradient recall MR images was used for leave-one-out tests 

to empirically validate this approach’s accuracy. A modified semi-automatic 

watershed algorithm, nonrigid registration (B-spline based free form 

deformation), and tissue classification were the three state-of-the-art methods 

that were then contrasted with the system.8 

For example, Paproki et al. (2014) analyzed sagittal water-excited double-echo 

steady-state MR images of the knee from a subset of 

the Osteoarthritis Initiative (OAI) cohort. The MM and LM were automatically 

segmented in the MR images based on a deformable model approach. 
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Quantitative parameters, including volume, subluxation and tibial-coverage, 

were automatically calculated for comparison (Wilcoxon tests) between knees 

with variable radiographic osteoarthritis (rOA), medial and lateral joint space 

narrowing (mJSN, lJSN) and pain. Automatic segmentations and estimated 

parameters were evaluated for accuracy using manual delineations of the 

menisci in 88 pathological knee MR examinations at baseline and 12-month 

time-points. They came up with a statistical shape model-based approach that 

obtained Dice scores of 78.3% and 83.9% for medial and lateral menisci, 

respectively, from the data of OAI.9  

The study closely related to the present one was that of Dam et al. in 2015, 

who introduced an automated approach for segmentation of knee multiple 

structures where it was illustrated with Dice scores ranging from 76% for 

medial menisci to 83% for lateral menisci.10 

The recent advancement introduces the techniques of deep learning; 

Norman et al. (2018) have proposed a 2D U-Net convolutional neural network 

for cartilage and menisci segmentation, which might report a Dice score of 

81.2% for the lateral meniscus and 73.1% for the medial menisci on weDESS 

sequences.11 

At the same time, Tack et al. (2018) combined CNNs with statistical shape 

models, which indicated enhanced Dice scores to 88.25% and 83.14%.12 

In later studies, Byra et al. (2020)13 as well as Gaj et al. (2019)14 implemented 

deep learning techniques, which featured an attention mechanism and 

conditional generative adversarial networks, to attain lateral and medial 

menisci Dice scores as follows: 89.50% and 87.38%, respectively. In general, 
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though automatic meniscus segmentation techniques have taken incredible 

leaps forward recently with deep learning, much is still in terms of generally 

applying these strategies across widely used MRI sequences and scanners. 

Hence, validation on more diverse datasets can confirm such techniques as 

strongly applicable for clinical deployment. 
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      4. SEQUENCES AND VIEWS OF MRI FOR EVALUATION OF 

MENISCUS 

The menisci of the knee are central to joint biomechanics, and knowledge of 

normal radiological anatomy is integral to diagnosing meniscal tears, 

degeneration, or early osteoarthritic changes. Radiological imaging techniques, 

especially Magnetic Resonance Imaging (MRI), are therefore commonly 

applied for their ability to give high-resolution imaging of meniscal structure 

and integrity. 

Sequences for evaluation of menisci  

Due primarily to its superior contrast resolution for soft tissues, MRI is the 

preferred modality for assessing the anatomy of the meniscus. In MR imaging, 

the meniscus is seen as a low signal (black) structure on all pulse sequences 

primarily because it is composed of fibrocartilage with low water content. 

Proton Density Images: PD-weighted images, often used in knee imaging, 

similarly depict the meniscus as a low-signal structure. This sequence aids in 

showing minute changes within the meniscus and better outlining the joint 

cartilage and soft tissue structures. 

T1-Weighted Images: The menisci, being of fibrocartilaginous composition, 

have low signal intensity or appear dark. T1-weighted images are helpful in 

the evaluation of the primary anatomy of the meniscus and the surrounding 

structures. 
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T2-Weighted Images: The meniscus is dark in the T2-weighted images due 

to low water content. However, regions of bright spots within the meniscus 

may represent pathologies such as meniscal tears or degeneration. Within an 

intact meniscus, the signal intensity should remain uniformly low. 

Because of its best anatomical detail, the shape and form of the 

menisci are well appreciated in different MRI planes: 

Views for evaluation of menisci : Coronal, Sagittal, and Axial Planes 

Two crescent-shaped fibrocartilaginous structures called menisci are in the 

knee joint between the tibial plateau and the femoral condyles. The primary 

function of these structures is to have some shock-absorbing qualities for 

stabilizing the knee and uniform load in movement. Identification of meniscal 

anatomy and pathology in MRI diagnosis is essential, especially in three 

planes- the coronal, sagittal, and axial- which offer different views for 

illustrating aspects of menisci. 

1.Sagittal Plane 

The sagittal plane is excellent for visualization of the anterior and posterior 

meniscal horns, vital for radial and longitudinal tears and disruptions to the 

regular bow-tie pattern and almost detects 90% of meniscal abnormalities. 

Anterior and Posterior Horns: The normal meniscus has a characteristic 

“bow-tie” appearance on sequential sagittal slices through the knee. This 

pattern occurs because the body of the meniscus, or the bow-tie portion, is 

thicker in the middle and tapers towards each end, or the horns. The anterior 

horn lies in front of the tibial spine. Behind it, the posterior horn can be found. 
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This plane is very sensitive to detecting radial and longitudinal meniscal tears, 

which can disrupt the continuous bow-tie pattern. 

Meniscal Tears: In the sagittal view, complex meniscal injuries, such as 

bucket-handle tears, would appear. These involve the displacement of the 

fragment, flipping into the joint space, where it can sometimes mimic the sign 

of the “double PCL,” where the frayed fragment mimics the appearance of the 

posterior cruciate ligament. 

          The sagittal view is the most informative in tears involving the anterior 

and posterior horns. It is also the best when looking for a tear that extends into 

the body of the central meniscus. 

 

Figure 7 Abnormal Meniscus in Sagittal Plane 
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2. Coronal Plane 

The coronal view offers an impression of the knee joint from front to back, so 

to speak that the menisci are looked at as wedge-shaped structures interposed 

between the two femoral condyles and the tibia. This orientation also proves 

beneficial for one to appreciate a view of the entire medial and lateral menisci 

in one image. 

The medial meniscus is wider anterio-posteriorly and presents a classical C-

shape in the coronal plane. It is notably wider in the posterior regions but tapers 

anteriorly. It’s typical C-shape forms because it covers over half of the tibial 

plateau’s articular surface as a shock absorber and stabilizer. 

It is beneficial in assessing vertical meniscal tears as they extend from the 

superior to the inferior articular surface. It is also helpful in evaluating meniscal 

extrusion, where the meniscus projects beyond the confines of the tibial 

plateau, commonly observed in degenerative or osteoarthritic knees. 
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Figure 8  

          Abnormal Meniscus in Coronal Plane 
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3. Axial Plane 

The axial plane cut through the knee corresponds to a cross-sectional view; it 

is horizontal and thus gives one a top-down view of the menisci and 

surrounding structures. It is helpful to check out the circumferential shape and 

how the menisci relates to the femur and tibia. 

Shape and Position: When viewed axially, the menisci are semi-circular or C-

shaped structures between the tibial plateau and the femoral condyles. In this 

plane, it will be easy to see the entire circumferential relationship of the 

menisci, which may be necessary in discussing the integrity of their structure. 

The axial plane assists clinicians in assessing, in rotational terms, the 

positioning of the menisci, especially if they want to see subluxations or 

dislocations that could accompany tears of the meniscus. 

Tear Diagnosis: Axial images would be beneficial for visualizing the 

horizontal or cleavage tears within the meniscus, which cannot be appreciated 

well in other planes. This plane also helps evaluate complex tears constituted 

by multiple tear patterns, such as horizontal, radial, and vertical components. 

Meniscal Integrity: In a standard MRI, the meniscus should exhibit 

homogenous low signal intensity without any disruption or linear high signal 

intensity extending to the articular surface; this would suggest a tear. 

Meniscal Extrusion: In the normal situation, the meniscus remains between 

the femoral condyle and tibial plateau. Extrusion, or bulging of the meniscus 

outside the joint, indicates meniscal root or ligament injury and correlates with 

degenerative change and early osteoarthritis. 
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Figure 9  

 Abnormal Meniscus in Axial  Plane 
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5. ETIOLOGY OF ABNORMAL MENISCUS 

Composed of fibrocartilage, the meniscus is an essential component of the knee 

joint that offers stability, stress distribution and cushioning. There are two 

menisci in each knee—medial (inner) and lateral (outer). Abnormalities in the 

meniscus can arise from trauma, degeneration due to aging, or congenital 

disabilities. These disorders affect joint function, increasing the risk of 

osteoarthritis, producing discomfort, and limiting range of motion.  

This document explores the three main categories of abnormal meniscus 

conditions: traumatic tears, degenerative tears, and congenital abnormalities, 

mainly focusing on the medial meniscus. 

Trauma-Induced Meniscus Tears 

Types of Meniscus Tears from Trauma 

Meniscus tears caused by trauma are often the result of sports-related 

injuries or accidents that involve a twisting force applied to the knee. The nature 

of the tear varies depending on the mechanism of injury. Trauma-related 

meniscus tears are common in younger, active individuals, particularly athletes. 

These tears often occur due to high-impact activities such as jumping, pivoting, 

or direct impact. 
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       Traumatic tears can be classified as: 

Longitudinal Tear: 

The longitudinal tear runs along the long axis of the meniscus, essentially 

describing the C-shape that the meniscus creates while going from front to 

back. 

Horizontal Tear: 

It is a horizontal tear that cuts the meniscus into two parts- the superior 

and the inferior- and produces a cleavage plane of the meniscus. Fluid may 

accumulate to cause the formation of cysts. It usually occurs at the posterior 

horn of the meniscus and is most commonly linked to degenerative meniscal 

disorders in elderly patients. 

Radial Tear:  

Radial tears originate medially from the inner border and extend laterally 

toward the border. They disrupt circumferential fibers that play essential roles 

in load transfer around the knee. They are primarily found in the lateral 

meniscus and central regions when the load-bearing function is highest. 

Displaced or Complex Tears 

These tears are more advanced, displaced variations of the basic tear 

forms and typically cause mechanical symptoms in the knee. 
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Bucket-Handle Tear (displaced longitudinal tear): 

A portion of the meniscus avulses and flips into the joint, resembling a 

bucket handle, in this type of longitudinal rupture.  

Bucket-handle tears often require surgical intervention, usually partial 

meniscectomy or meniscal repair, to allow the removal or suturing of the 

displaced fragment and restoration of knee-joint function. 

Flap Tear (displaced horizontal tear): 

When a portion of the meniscus separates from the main meniscal body, 

it causes a flap tear, which causes the flap to move unnaturally when the knee 

moves.  

Parrot Beak Tear (displaced radial tear):  

It is described as a parrot’s beak-shaped tear and usually occurs when a 

radial tear is not healed correctly. Therefore, the tear becomes an unstable and 

complicated shape. 
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Figure 10 A            

  Nomenclature of Meniscus Tears 

 

Figure 10 B               

Undisplaced and displaced tears of meniscus 
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Degenerative Meniscus Tears (Associated with Aging) 

As people age, the meniscus becomes more susceptible to degenerative 

changes. These changes are often due to repetitive stress and wear over time, 

particularly in individuals with a history of heavy physical activity or those 

with underlying joint conditions like osteoarthritis. 

Degenerative Tear Characteristics 

Horizontal Degeneration: One of the most common features of a 

degenerative meniscus tear is a horizontal cleavage or tear, often leading to the 

separation of the meniscus into upper and lower fragments. This is typically 

seen in older adults and may occur without a significant traumatic event. 

Complex Tears: Degenerative meniscus tears often present as complex 

patterns involving multiple types of tears (e.g., horizontal, radial) within the 

same meniscus. These tears weaken the structural integrity of the meniscus, 

increasing the risk of further joint damage. 

Fraying and Fragmentation: Degenerative menisci may show fraying and 

partial fragmentation, leading to uneven load distribution across the knee joint. 

This can contribute to pain, joint swelling, and eventual osteoarthritis. 

Meniscal Extrusion 

A key feature of degenerative meniscal tears is meniscal extrusion, where the 

meniscus moves out of its normal position within the joint space. This 

displacement leads to further instability and accelerates degenerative changes 

in the knee, including cartilage damage and osteoarthritis progression. 

Impact of Osteoarthritis 
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In older individuals, degenerative meniscus tears are often found alongside 

osteoarthritis. These tears are thought to contribute to the progression of 

arthritis, as the meniscus loses its ability to protect the cartilage in the joint. 

Degenerative tears may be treated conservatively with physical therapy or 

anti-inflammatory medications. Still, advanced cases may require surgical 

intervention such as partial meniscectomy or meniscal repair, especially 

when accompanied by significant joint degeneration. 
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Congenital Abnormalities of the Meniscus 

Congenital abnormalities of the meniscus are less common but can lead to 

functional impairment and predispose the knee to injury. The medial 

meniscus is more prone to congenital anomalies than the lateral meniscus. 

Discoid Meniscus 

Discoid Meniscus is the most common congenital abnormality, though it 

typically affects the lateral meniscus. It can cause mechanical symptoms like 

clicking, locking, or catching when moving the knee when it is located in the 

medial meniscus. 

A discoid meniscus is characterized by an abnormal, disc-like shape rather than 

the typical crescent shape. This abnormal morphology can predispose the 

meniscus to tearing, even without significant trauma, due to altered 

biomechanics and increased stress on the joint. 

 

Wrisberg – Ligament Variant 

This congenital abnormality affects the posterior horn of the meniscus, 

which may lack standard attachment to the tibia. The Wrisberg variant leads to 

increased instability in the meniscus, making it more prone to displacement 

and injury. Patients with this condition may present with knee instability, pain, 

and recurrent popping symptoms. 
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Meniscal Cysts 

Meniscal cysts, though not inherently a congenital issue, can develop in 

association with meniscal tears or congenital variants like discoid meniscus. 

These fluid-filled sacs can cause localized swelling, discomfort, and restricted 

knee movement. Treatment often involves addressing the underlying meniscus 

pathology through surgery, especially if the cysts are large or symptomatic. 
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             6. FEATURES OF MACHINE LEARNING 

Artificial intelligence is more commonly known as machine learning, with 

unprecedented promise in the medical arena and significant application in 

radiology. Deep learning algorithms, in particular, were studied increasingly 

in MRI diagnosis of meniscal injuries. The standard modality for imaging in 

soft tissue injuries, such as meniscal tears, which are one of the most typical 

problems in sports injuries; however, on account of issues associated with the 

manual interpretation: being time-consuming, variable expertise, and sheer 

volume of data, there has been a development of AI-powered screening tools 

that enhance accuracy and efficiency in diagnosing meniscus abnormalities. 

This integration of AI models, particularly CNNs, has been shown to work 

effectively between normal and abnormal menisci. 

1. Deep Learning Models for Detection of Meniscal Injury 

These skills, especially CNNs, have very high potential in processing 

MRI data with good results in meniscal tear detection. The Mask R-CNN and 

Faster R-CNN architectures were of special attention in the work, as applied to 

tasks such as meniscal segmentation and classification. Mask R-CNN is 

designed explicitly for pixel-level image segmentation. So, it automatically 

corresponds to the complex structure of the meniscus and its difficulties in 

being isolated from the adjacent tissues. The network determines the health of 

the menisci through the examination of tissue at a pixel level, which could help 

to differentiate between intact and torn or degenerated menisci. The Faster R-

CNN, however, allows it to localize the place of the meniscus, along with its 

classification in an MRI image, about whether there is a tear. Region proposal 
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networks, or RPNs, create region-specific bounding boxes that hasten 

identification. 

  These architectures typically use Region 50 as the backbone to extract 

features from MRI scans. Region 50 can fairly capture deep and complex 

image features by iterating through multiple layers of convolution in data 

processing. This helps it define the subtle differences in meniscal tissue 

characteristic of most abnormalities. In these models, Region of Interest (RoI) 

Align ensures that features used for classification are as they appear within the 

extracted detected regions. 

        

 2. Automated and semi-automated segmentation 

If manually done, segmenting meniscal tissues in MRI scans is a laborious 

and time-consuming process with a high chance of errors. The AI models are 

now employed to automate this process consistently and accurately. Automatic 

segmentation techniques train the model from large datasets annotated on MRI 

scans. Its advantage lies in the model’s capability to “learn” unique 

characteristics that differentiate the meniscal tissue from the surrounding 

cartilage, bones, and ligaments. 

          Automatic segmentation of the meniscus is critical for building a 

3D model of the knee, which may be used to quantify geometric parameters 

like the meniscus thickness or tear location and size, useful not only for simple 

diagnostic purposes but also for the pre-surgical planning process. Recent 

results of Dice Similarity Coefficients of up to 89.5% for medial meniscus 
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segmentation indicate the best agreement between automated methods and 

radiologists’ manual segmentation. 

       Semi-automatic segmentation is that model wherein manual oversight 

is combined with automated tools. Radiologists may need to initiate the process 

either at key points marked on the meniscus or by delineation and then activate 

the AI system to do the entire segmentation process. One of this model's 

advantages is increased accuracy of challenging cases due to reasons such as 

osteoarthritic degeneration, where boundaries of tissue are not too distinct on 

MRI scans. 

 

         3. Key Features and MRI Imaging Parameters 

Among the most widely used MRI sequences for diagnosis of meniscus, fat-

suppressed proton density-weighted imaging captures high contrast between 

meniscal tissue and surrounding structures, enabling subtle alterations in signal 

intensity to be picked up as possible evidence of a tear or degeneration. This is 

further enhanced by 3.0 Tesla (T) MRI scanners that can offer higher resolution 

for detecting abnormalities in the meniscus. 

Key features of AI models in the identification of meniscal tears include: 

Signal Intensity: The algorithms teach AI to identify significant signal 

intensities of the meniscus as they commonly indicate a tear. Signals that 

possibly may not be noted and are seen with the naked eye in the early injury 

stages. 
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Geometric Shape: The AI models also account for how the shape of the 

meniscus changes. Tears may produce several irregularities in the shape of the 

meniscus contour, including fraying and flattening, all captured by the model. 

Rip Orientation: The type of tear can be classified, horizontal or vertical, 

depending upon the orientation and location of the signal change, using machine 

learning models. It can be helpful to decide on the right course of therapy. 

                    4. Diagnostic Accuracy and Validation 

 Future research may depend entirely on AI analysis tools for MRI scan 

analysis to improve the accuracy of diagnosis. Several studies reported that 

deep learning models showed excellent diagnostic performance between 84% 

and 92% in identifying a meniscal tear. Furthermore, different models 

accurately distinguished healthy, torn, or degenerated samples from the various 

types of menisci; some could even come close to an AUC value of up to 0.94 

to identify tears. 

          These models are then compared with gold-standard diagnostic 

techniques like arthroscopic surgery, which remains the only gold standard to 

confirm meniscal injuries. Compared with the arthroscopic examination, AI 

models have had their accuracies to 87.50%, thus showing that AI can be a 

trustworthy screening tool for surgical intervention. 
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   5. Challenges and Future Developments 

Although AI models perform well in MRI analysis, several challenges 

remain. One of the most significant sources of variability is anatomic. Because 

menisci vary between individuals in shape and size, their extraction becomes 

challenging depending on age, weight, and perhaps even conditions such as 

osteoarthritis. Overlapping signals from surrounding tissues like ligaments and 

cartilage can also cause problems during segmentation. 

Such problems are generally tackled using data augmentation techniques 

applied during the training phase, including geometric transformations and 

noise addition, to generalize the model to different patient populations. Even 

further advancements in 3D segmentation techniques and multi-sequence MRI 

are likely to improve the performance of AI models. 

          Machine learning applications in MRI evaluation of the medial 

meniscus can improve diagnosis accuracy and efficiency. Intense learning-

based AI models have been proven to hold tremendous potential for automatic 

detection and classification of meniscal tears. AI will find even more 

applications in clinical practice and help radiologists diagnose and treat 

meniscal injuries as technology advances. 
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7. METHODOLOGY 

Materials and Methods 

Machine 

GE SIGNA Explorer 1.5 Tesla MRI Scanner 

Methods 

This study involves a retrospective and prospective analysis of MRI cross-

sections of the medial meniscus of the knee in individuals from Vijayapura. 

Patient Positioning: 

        Patients are positioned supine, feet first in the MRI scanner. 

Image Acquisition: 

Sagittal sections of fat-suppressed proton density-weighted (FS-PDW) 

MRI images of the medial meniscus are obtained. 

All images are digitally acquired from the Picture Archiving and 

Communication System (PACS) in DICOM (Digital Imaging and 

Communications in Medicine) format. 

The collected dataset consists of 3,600 MRI images from 800 patients, 

after excluding images with motion artifacts and post-operative knee 

surgery scans. 
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Dataset Split for Model Training 

Training Data: 70% (2,520 images) 

Validation Data: 10% (360 images) 

Testing Data: 20% (720 images) 

Inclusion Criteria 

Sagittal fat-suppressed proton density-weighted (PDW) MRI images, 

irrespective of age group, that have been verified during the pre-processing 

stage. 

Exclusion Criteria 

Images with motion or magnetic artifacts. 

Images where cartilage is not fully visible. 

MRI images of knees following post-operative surgery. 
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       Training: 

The training data set was composed of 2520 images with a matrix resolution of   

256x256.The data set consists of both normal and abnormal medial meniscus 

images (All images of grade I, II and III signal intensity changes according to 

MRI grading system for abnormal meniscal signal intensity are included). 

Fig 11 shows MRI grading system of abnormal meniscal signal intensity and 

Fig. 12 shows the training images from the data set and As the grade I signal 

intensity changes are very small and even diagnosing it is difficult due to signal 

interference from surrounding structures or the joint effusions seen in both 

degenerative or post traumatic changes. However the accuracy of the model can 

be improved by using larger data sets. 
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12a: Normal anterior and posterior horn of medial meniscus 

12b: shows grade I signal intensity change in posterior horn 

12c: shows wedge shape grade II signal intensity change 

12d: shows linear grade II signal intensity shape 

12e: shows grade III signal intensity change 
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         8. WORKING ALGORITHM AND IMPLEMENTATION OF MODEL 

Data collection: Getting a lot of meniscus photos with meniscus structures is 

the first step. A wide range of ages, demographics, and ailments ought to be 

represented in the dataset.  

Preprocessing: Once the data is collected, it must be preprocessed to ensure 

consistency and remove any artifacts. Preprocessing steps may include noise 

reduction, intensity normalization, and image registration. 

Feature extraction: The next stage is to extract characteristics from the 

preprocessed photos to differentiate between bone and non-bone structures. 

Feature extraction methods may include edge detection, texture, and shape 

analysis. 

Model training: After the features are extracted, a machine-learning model 

needs to be trained to segment the meniscus structures from the image. The 

model may be based on various techniques, including Mask-Region 

convolutional neural networks (CNNs). 

Evaluation: The model must be evaluated after training to ascertain its 

correctness and performance. Accuracy, precision, recall, and F1 score are 

examples of evaluation metrics. It might also be assessed on a different 

validation set to ensure the model performs well when applied to fresh data.  

Deployment: Finally, new meniscus MRI data can be segmented using the 

model to identify meniscus structures. This might entail opening the model to 

researchers and medical professionals as a standalone tool or incorporating it 

into a more extensive medical imaging system.  
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The creation of a knee meniscus segmentation system can be challenging and 

calls for knowledge of both machine learning and medical imaging. Before 

utilizing the system in a clinical context, it is also crucial to make sure it has 

undergone extensive testing and validation. 

The system design for a knee meniscus segmentation system typically involves 

several steps: data collection, data preprocessing, model architecture selection, 

training, hyperparameter tuning, evaluation, deployment, post-processing, and 

visualization. 

The first step in the system design process is data collection. The dataset for 

training the segmentation model should include many meniscus MRI images 

with corresponding ground truth segmentation masks. The dataset should be 

diverse and include various meniscus conditions to ensure the model is robust 

and can generalize well to new cases. 

On a separate test set, the model’s performance is evaluated using metrics such 

as dice coefficient, intersection over union, accuracy, and F1 rating. These 

metrics offer a numerical evaluation of the model’s performance and aid in 

determining its accuracy and robustness.  
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Deploying the model as an application or service that can take in a fresh 

meniscus MRI picture and produce the matching segmentation mask comes 

next after it has been assessed and refined. Integrating the model into a 

software system and ensuring it can manage fresh data in a scalable and 

effective way are steps in the deployment process. The segmentation mask is 

refined, and any leftover noise is eliminated in the last post-processing stage 

using linked component analysis and morphological methods. This makes it 

easier for clinicians to understand and guarantees that the segmentation mask 

they produce is accurate. 

The final segmentation mask is displayed overlaid on the input image to 

aid medical professionals in quick interpretation. Visualization is a crucial step 

in making sure that the segmentation mask that is produced is accurate and 

straightforward for physicians to understand. To help diagnose, treat, and track 

knee-related diseases, the segmentation mask can be used to determine the 

limits of the knee meniscus. 

Knee meniscus segmentation is a critical task in medical image 

processing, and the system design for a knee meniscus segmentation system 

involves several steps, including data collection, data preprocessing, model 

architecture selection, training, hyperparameter tuning, evaluation, 

deployment, post-processing, and visualization. The resulting segmentation 

mask can aid in diagnosing, treating, and monitoring meniscus-related 

conditions and can significantly improve patient outcomes. 
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              Figure 13 

 Working Algorithm 
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Implementation of model  

Mask region architecture 

Mask Region is a convolutional neural network architecture originally 

proposed for biomedical image segmentation but has since been applied to 

other image segmentation tasks. It was introduced in a paper titled “Mask 

Region: Convolutional Networks for Biomedical Image Segmentation by 

Ronne Berger et al. in 2015. 

The Mask R-CNN architecture consists of an encoder and decoder 

network, with a contracting path (encoder) and an expanding path (decoder) 

that are symmetrically connected by a bottleneck layer. Convolutional and 

pooling layers are used in the contracting path to capture the input image’s 

high-level features, while transposed convolutional and up-sampling layers are 

used in the expanding path to restore the output segmentation map’s spatial 

resolution. 
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Figure 14 

Working of Mask R-CNN Algorithm 

Here’s a high-level overview of the Mask R-CNN architecture: 

Contracting path (encoder): Convolutional and pooling layers are applied to 

the input image in order to increase the number of channels and decrease the 

spatial resolution. To add non-linearity, a citified linear unit (ReLU) activation 

function comes after each convolutional layer.  

Bottleneck layer: At the bottom of the Mask R-CNN architecture, there is a 

bottleneck layer that captures the high-level features of the input image. 
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Expanding path (decoder): The output of the bottleneck layer is passed 

through a series of transposed convolutional and up-sampling layers to increase 

the spatial resolution and decrease the number of channels. A ReLU activation 

function follows each transposed convolutional layer. 

Skip connections: Besides the symmetric architecture, Mask R-CNN includes 

skip connections connecting the corresponding layers in the contracting and 

expanding paths. 

These connections allow the model to capture the input image’s high-level and 

low-level features, leading to better segmentation performance. 

Output layer: The final segmentation map is created by passing the expanding 

path’s output through a final convolutional layer with a softmax activation 

function. Because it can capture both high-level and low-level features of the 

input image and achieve state-of-the-art performance on several benchmark 

datasets, the Mask-RCNN architecture has gained popularity for medical 

image segmentation. 

In meniscus segmentation, a naïve model would be a simple approach that 

relies on hand-crafted features and basic machine learning algorithms. The 

naive model would not utilize deep learning techniques, such as convolutional 

neural networks, which have proven very effective in many medical image 

segmentation tasks. 
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Region-CNN Architecture: 

Encoder network: High-level features are extracted from the input image by 

applying convolutional and pooling layers. To add non-linearity, a rectified 

linear unit (ReLU) activation function comes after each convolutional layer.  

Pooling indices: The pooling layers in the encoder network store the indices 

of the max-pooled elements. These indices are later used in the decoder 

network to perform up-sampling. 

Decoder network: The output of the encoder network is passed through a 

series of up-sampling and convolutional layers to produce a segmentation 

map. The up-sampling layers use the pooling indices from the encoder 

network to up-sample the feature maps. 

Skip connections: Besides the symmetric architecture, Regional so includes 

skip connections that connect the corresponding layers in the encoder and 

decoder networks. These connections allow the model to capture the input 

image’s high-level and low-level features, leading to better segmentation 

performance. 

Output layer: The final segmentation map is created by passing the decoder 

network’s output through a final convolutional layer with a softmax activation 

function. 

The region has become a popular architecture for image segmentation 

due to its efficiency, scalability, and ability to capture high-level and low-level 

features of the input image. It has been used in various applications, including 

biomedical image segmentation, road segmentation, and object detection. 
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REGION: is a widely used deep learning architecture for medical image 

segmentation, which has shown good performance on various tasks, including 

meniscus segmentation in knee MRI images. The model may record local and 

global context information thanks to Reset’s encoder-decoder design with skip 

connections. The encoder part of the network uses a series of convolutional 

layers to down sample the input image. In contrast, the decoder part uses up-

sampling layers to produce the final segmentation mask. The skip connections 

between the coder and decoder help to preserve spatial information and prevent 

the loss of fine-grained details during the down-sampling process. 
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9. RESULTS 

The AI platform developed for meniscus assessment by MRI correctly 

identifies both normal and abnormal menisci. Mask R-CNN and convolutional 

neural networks (CNNs) are utilized in the platform for quick, computerized 

segmentation and classification with improved diagnostic efficacy and 

accuracy. Detection of objects utilizes region proposal networks (RPNs), 

which optimize feature extraction with ResNet-based deep learning models. 

Loss function was optimized using categorical cross-entropy loss and IoU-

based loss functions to improve segmentation accuracy. Batch normalization 

and dropout layers were also implemented to avoid overfitting and provide 

stability to the training. 

Key Performance Indicators: 

● AUC for normal and abnormal meniscus classification: 99% 

● Classification accuracy: 91% 

● Accuracy of detecting abnormal meniscus: 96% 

● Detection Recall of detecting abnormal meniscus: 89% 

● False Positive Detection Rate: 8% 

● False Negative Detection Rate: 7% 

● Inference time per scan: 1.2 seconds 

All the above measures are in favor of the model to provide very accurate 

and consistent results and minimize the occurrence of diagnostic error, 

optimizing clinical workflow. 
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Detection Accuracy and Segmentation 

Normalized and preprocessed sagittal proton density fat suppressed MRI 

scans were used to train the AI model for meniscus abnormality detection. ROI 

Align operation was used in obtaining feature information from region 

proposals by accurate classification. 

● FPNs-based stable localization of meniscus structure for feature extraction of 

multiple scales. 

● Reduced false positives and false negatives using iterative optimization using 

backpropagation and stochastic gradient descent (SGD). 

● Edge refinement by conditional random fields (CRFs) for enhanced quality of 

segmentation under adverse conditions. 

● Excellent segmentation performance, offloading the workload and hand 

annotation pressure from the radiologists. 

● Easily expendable to other MRI datasets, demonstrating versatility in other 

clinical settings. 

Segmentation Overview 

The manual annotation was systematically performed with the help of the 

VGG Image Annotator or VIA for the acquisition of pixel-wise segmentation 

masks outlining the meniscus area specifically in the MRI images. The 

annotation process included the following information: 

Region-based manual annotation consisted of the careful process of 

manually annotating MRI images with high precision. The process was 

particularly concentrated on precisely labeling the meniscus borders in an 

effort to produce high-quality ground truth masks that precisely reflect the 

anatomical structures. 
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The polygonal segmentation approach, as carried out by the VIA tool, 

enabled a very flexible way of polygonal marking. This was especially 

advantageous in taking into consideration the irregular and complex nature that 

is characteristic in the structure of the meniscus. 

 
  

 

 

 

 

Figure 15  

Using VGG Annotator for Segmentation of Normal & Abnormal Meniscus 

 

 

 



55 | Page 
 

JSON annotation export: The annotated data were successfully exported in 

the common JSON format. Coordinates of the segmented regions were 

exported as well, an important feature that was used in validation and training 

processes. 

Preprocessing of the segmentation masks was a rigid process where the 

annotated masks were transformed into multi-class or binary segmentation 

labels. It was achieved in a way that they were prepared to fit the Mask R-CNN 

pipeline so that they could be incorporated and processed effectively. The use 

of the VIA guaranteed high-quality annotation, thus eradicating any potential 

noise and significantly improving the accuracy of meniscus segmentation in 

the case of the AI model. 

 

Meniscus Classification 

The AI model categorizes menisci into two broad groups: 

Normal Meniscus: Normal meniscus with normal structure and signal 

intensity. 

Abnormal Meniscus: Abnormally organized meniscus or abnormally high 

signal intensity, generally with degenerative change or in initial pathology. 
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       Detection of Normal & Abnormal Meniscus Using Mask-RCNN 

Meniscus condition evaluation was conducted using MRI scans, defining 

and classifying normal and abnormal cases via deep learning-segmentation and 

classification. The model was highly effective in signal intensity change and 

morphology detection, enabling proper meniscal abnormality identification. 

      Normal Meniscus Analysis 

The intact meniscus MRI was assigned a high confidence score of 0.992, 

attesting to its intact and physiological status. The distinctive radiological and 

computational features are: 

● Homogeneous signal intensity without hyperintense zone, suggestive of 

absence of edema or structural injury. 

● Bare, crescentic contour, to allow maximum load transmission and joint 

stability. 

● Smooth and intact articular margins, that differentiate it from the rest of 

knee structures. 

● Normal intact fibrocartilaginous integrity, with preserved biomechanical 

function and absence of any degenerative findings. 

● Evenly thicknessed and volume, commensurate to normal knee kinematics 

and stability. 

● Stable fixation to the tibial plateau, shear stress resistance, and stability 

evidence. 

● No extrusion and no displacement, with maintained normal load-bearing 

function. 
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       Figure 16 

       16 a is a input image. 

        16 b shows segmented image of normal anterior and posterior horn 

 

 

      Figure 17 

       17 a is a input image 

    17b  shows segmented image of normal body of meniscus 
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AI-segmentation clearly delineated the medial meniscus, again proving the 

ability of the model in intact cartilage structure identification. Absence of 

signal abnormality on fat suppressed proton density weighted  MRI scans 

further proved the meniscus intact. 

Abnormal Meniscus Analysis 

The MRI scan with abnormal meniscus was highlighted with confidence 

score 0.962, and diffuse structural changes were noted. Pathology features 

listed are: 

● Hyperintense signal alteration in T2-weighted images, indicative of 

intrameniscal degeneration or fluid entrapment. 

● Irregular and discontinuous contour, indicative of chronic degenerative 

change or traumatic trauma. 

● Discontinuous articular margins, indicative of partial-thickness or full-

thickness meniscal tear. 

● Reduced meniscal volume, typically seen with progressive cartilage loss and 

biomechanical instability. 

● Meniscal extrusion beyond the joint line, typically in degenerative meniscal 

disease. 

● T2-weighted high-signal intensity areas, in keeping with meniscal tear and 

fluid penetration. 

● Asymmetrical meniscal tissue distribution, in keeping with deranged load-

carrying function and early osteoarthritic change. 
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         Figure 18 

        18 a is a input image. 

         18 b shows segmented image of abnormal anterior and posterior horn. 

 

      Figure 19 

       19 a is a input image. 

        19 b shows segmented image of normal anterior horn &  

        abnormal posterior horn. 
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These findings also confirm accepted diagnostic features of meniscus 

injury, and the model is thus validated for pathological variant detection with 

specificity. The pathologic meniscus was more compressive to compression 

stress and thus more susceptible to continued joint damage and osteoarthritic 

symptomatology. 

      Comparative Evaluation 

A structured analysis between normal and abnormal menisci highlights distinct 

morphological and radiological differences: 

Parameter          Normal Meniscus Abnormal Meniscus 

Confidence Score 0.992 0.962 

Signal Intensity Homogeneous Hyperintense regions 

Structural Morphology Crescentic, intact Irregular, deformed 

Articular Margins Smooth, 

continuous 

Fragmented, disrupted 

Volume Preservation Maintained Reduced, degenerated 

Extrusion Beyond Joint 

Line 

Absent Present in severe cases 

Attachment to Tibial 

Plateau 

Stable Unstable, displaced 

Load Distribution Evenly distributed Altered, high pressure zones 

Clinical Implication Normal joint 

stability 

Potential instability, pain, 

and osteoarthritic risk 
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Training vs Validation Loss Analysis 

Training vs Validation Loss Plot is a critical metric to check model 

convergence and generalization. 

 

Training Loss (Blue Curve) 

Displays a decreasing trend from 2.5 to 1.2, indicating successful optimization 

and minimization of the objective function. 

The steady decline shows that the model is learning more meaningful feature 

representations from the training data. 

 

Validation Loss (Red Curve) 

Decreases from 2.6 to 1.3, following the same pattern as training loss, a metric 

for how well the model will be able to generalize on test data. 

No gap between the two lines is an indication of a low variance scenario, 

avoiding overfitting risks. 

 

Technical Implications: 

A small gap in loss is an indication that the model retains the capability to 

generalize, with stable performance on training and validation sets. 

No loss plateaus or oscillations are common in a well-tuned learning rate and 

successful backpropagation updates. 

There is no initial stagnation that indicates the model is not underfitting nor 

overlearned too early, thus achieving the most learning efficiency. 
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Training vs Validation Accuracy Plot 

The Training vs Validation Accuracy Plot provides critical insights into the 

model’s convergence behavior and generalization efficacy. 

Training Accuracy (Green Curve) 

Exhibits a progressive increase from 60% to 90%, signifying the model’s 

capacity to effectively learn discriminative features. 

The smooth, upward trajectory indicates a well-optimized learning process, 

with no signs of underfitting or stagnation. 

Validation Accuracy (Orange Curve) 

Improves from 58% to 88%, closely mirroring training accuracy, 

demonstrating strong generalization to unseen data. 

The minimal deviation between training and validation accuracy highlights 

low variance, reducing the likelihood of overfitting. 

Technical Implications: 

The absence of accuracy degradation across epochs confirms that the model 

maintains stability and avoids catastrophic forgetting. 

The parallel trend of training and validation accuracy suggests an optimal 

balance between model complexity and dataset representation. 
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Consistent performance gain without abrupt fluctuations indicates effective 

parameter tuning and gradient optimization. 
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10. DISCUSSION 

The deep learning model developed in this study demonstrated excellent 

performance in screening for normal and abnormal medial menisci using PD-

FS sagittal MRI images. With an AUC of 0.992 for normal menisci and 0.963 

for abnormal cases, our model shows significant potential as an AI-assisted 

screening tool in MRI evaluation. The high accuracy suggests that deep 

learning can play a crucial role in streamlining radiological workflows by 

providing rapid and reliable preliminary assessments, reducing the burden on 

radiologists, and improving diagnostic efficiency. 

Our model was trained on a dataset consisting of 807 MRI scans from our 

hospital, ensuring a standardized and controlled dataset for algorithm 

development. The inclusion of both normal and abnormal cases allowed the 

model to effectively learn distinguishing features. The results align with 

previous research in AI-driven meniscus evaluation, further supporting the 

feasibility of deep learning in musculoskeletal imaging. However, unlike 

studies such as Bien et al., which classified meniscal tears and other 

abnormalities separately, our model focused on a binary classification—

normal versus abnormal—without subclassifying abnormal cases into specific 

pathology types. 

Despite the promising results, certain limitations need to be addressed 

before clinical implementation. One major limitation is that all images were 

sourced from a single institution, which may limit the model’s generalizability. 

Variations in scanner type, imaging protocols, and patient demographics across 

multiple institutions could impact performance. Future studies should include 
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multi-center datasets to improve the model’s robustness and ensure broader 

applicability. Additionally, incorporating different MRI sequences and 

parameters could further enhance generalizability. 

Another limitation is that our model does not subclassify abnormal menisci 

into tears, degenerative changes, or other specific pathologies. Since these 

conditions have different clinical implications, future iterations of the model 

should incorporate finer classifications. The ability to differentiate between 

various abnormalities would significantly enhance the clinical relevance and 

decision-making process for radiologists and orthopedic specialists. 

Despite the high accuracy of our model, several limitations must be considered. 

One major drawback is the lack of external validation, as our dataset was 

obtained from a single institution. This may limit the model’s generalizability 

to different imaging protocols, scanner types, and patient demographics. A 

multi-center dataset would be necessary to ensure broader applicability. 

The integration of AI tools into real-world clinical workflows also presents 

challenges. While our model demonstrates high accuracy, successful 

deployment in clinical practice requires seamless integration into picture 

archiving and communication systems (PACS), automated pre-processing of 

images, and real-time analysis capabilities. Additionally, structured radiology 

reporting and natural language processing techniques could be leveraged to 

facilitate continuous learning and model refinement. 
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Another important consideration is the interpretability of deep learning models. 

Clinicians may be hesitant to trust black-box models without clear explanations 

of their decision-making processes. Enhancing model transparency through 

explainable AI techniques, such as heatmaps or attention mechanisms, could 

improve trust and adoption in clinical settings. 

In summary, our findings support the potential of machine learning for 

screening medial meniscus abnormalities in MRI scans. However, improving 

dataset diversity, refining classification capabilities, and ensuring seamless 

integration into clinical workflows will be essential steps toward real-world 

application. Future research should focus on addressing these challenges to 

maximize the impact of AI in musculoskeletal imaging. 
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11.DRAWBACKS 

Despite the high accuracy of our model, several limitations must be 

considered. One major drawback is the lack of external validation, as our 

dataset was obtained from a single institution. This may limit the model’s 

generalizability to different imaging protocols, scanner types, and patient 

demographics. A multi-center dataset would be necessary to ensure broader 

applicability. 

Another limitation is the binary classification approach. While 

distinguishing between normal and abnormal menisci is useful, clinical 

decision-making often requires a more granular diagnosis. Subclassifying 

abnormalities—such as meniscal tears, degenerative changes, and complex 

pathologies—could enhance the clinical utility of the model. 

Additionally, while our model demonstrated high AUC values, the real-

world implementation of AI in radiology involves more than just classification 

accuracy. Factors such as interpretability, integration into clinical workflows, 

and regulatory approvals must be addressed. Furthermore, the black-box nature 

of deep learning models raises concerns about explainability, which is crucial 

for clinical trust and adoption. 
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12. CONCLUSION 

This study demonstrates the feasibility of using a deep learning model for 

screening medial menisci abnormalities in PD-FS sagittal MRI scans. With 

high AUC values for both normal and abnormal cases, the model presents a 

promising AI-assisted tool for streamlining radiological workflows. By 

providing rapid and reliable preliminary assessments, AI can alleviate 

radiologists' workload and enhance diagnostic efficiency. 

However, to transition this model into clinical practice, several 

improvements are necessary. Expanding the dataset to include multi-center 

scans will enhance generalizability, while subclassifying abnormalities will 

increase clinical relevance. Additionally, seamless integration into radiology 

reporting systems and improving model interpretability will be key to real-

world adoption. Future research should focus on addressing these limitations 

to maximize the potential of AI in musculoskeletal imaging. 
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`14. ANNEXURES 

I. CONSENT FORM 

ARTIFICIAL INTELLIGENCE (MACHINE LEARNING) AS A SCREENING TOOL 

FOR MRI EVALUATION OF NORMAL AND ABNORMAL MEDIAL MENISCUS. 

  

GUIDE                            :   DR. RAJASHEKAR MUCHCHANDI 

P.G. STUDENT           :   DR. VAISHNAVI REDDY BONDUGULA 

 

PURPOSE OF RESEARCH: 

I have been explained that the purpose of this study is to determine 

artificial intelligence  (machine learning) as a screening tool for MRI 

evaluation of normal and abnormal medial meniscus. 

 

  

PROCEDURE: 

I understand that I will compare the diagnosis of machine learning to that of a 

practicing radiologist. 

  

 

RISKS AND DISCOMFORTS: 

I understand that there is no risk involved in the above study. 

 

BENEFITS: 

I understand that my participation in this study will help artificial intelligence 

(machine learning) as a screening tool for MRI evaluation of normal and 

abnormal medial meniscus. 
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CONFIDENTIALITY:  

I understand that the medical information produced by the study will become a 

part of the hospital record and will be subjected to confidentiality and privacy 

regulations of the hospital. If the data is used for publications, the identity of the 

patient will not be revealed. 

  

REQUEST FOR MORE INFORMATION: 

I understand that I may ask for more information about the study at any time. 

  

REFUSAL OR WITHDRAWAL OF PARTICIPATION: 

I am aware that I have the option to opt-out of the study at any time and that my 

participation is completely voluntary. 

  

INJURY STATEMENT: 

I understand in the unlikely event of injury to me during the study; I will get 

medical treatment but no further compensation. I will not hold the hospital and 

its staff responsible for any untoward incident during the course of my study. 

  

        Date: 

 

Dr. Rajashekar Muchchandi                    Dr. Vaishnavi Reddy Bondugula             

                                

 (Guide)                                                             (Investigator) 
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STUDY SUBJECT CONSENT STATEMENT: 

I/my ward confirm that Dr. Vaishnavi Reddy Bondugula has explained to me 

the purpose of this research, the study procedure that I will undergo, and the 

possible discomforts and benefits that I may experience in my own language. 

         I/my ward have been explained all the above in detail in my own 

language, and I understand the same. Therefore I hereby consent to participate 

as a subject in this project. 

  

  

                                                                                                                                  

                        Participant                                                          Date: 

  

 

                                                                                                                                 

 

          

Witness to above signature                                                   Date: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 | Page 
 

 

II. PROFORMA 

BLDEU'S S.H.R.I. B.M.PATIL MEDICAL COLLEGE 

HOSPITAL AND RESEARCH CENTRE, VIJAYAPUR 

  

ARTIFICIAL INTELLIGENCE (MACHINE LEARNING) AS A SCREENING 

TOOL FOR MRI EVALUATION OF NORMAL AND ABNORMAL MEDIAL 

MENISCUS. 

 

PROFORMA 

1. Name: 

2. Age/Sex      

3. Hospital No.:                                                                    

4. Relevant complaints & history: 

5. MRI knee medial menisci  images and Radiological diagnosis: 

6. Machine learning model interpretations. 
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                   15.  INSTITUTIONAL ETHICAL CLEARANCE CERTIFICATE 

 


