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Introduction 

Breast cancer (BC) is the most ‘prevalent malignancy among women globally. 

Triple-negative breast cancer (TNBC), characterized by the absence of ER, PR, and 

HER2 expression, remains a particularly aggressive subtype with limited treatment 

options and poor prognosis.’ ‘Recent evidence suggests that the vitamin D receptor 

(VDR) and estrogen receptor beta 1 (ERβ1) may serve as tumor suppressors in 

TNBC.’ ‘This study investigates the therapeutic potential of modulating VDR and 

ERβ1 pathways using calcitriol and 17β-estradiol, respectively.’ 

 

Methods 

This study was conducted in three phases. ‘In Phase I, immunohistochemical 

analysis of VDR and ERβ1 expression was performed on 30 formalin-fixed, paraffin-

embedded invasive ductal carcinoma samples, spanning 4 molecular BC subtypes.’ 

Phase II involved ‘molecular docking simulations to evaluate the binding affinities of 

calcitriol and 17β-estradiol to VDR, ERβ, EGFR, VEGF, and caspase-3 using Cresset 

Flare software.’ In Phase III, ‘in vitro assays using MDA-MB-468 TNBC cells were 

conducted to assess the effects of individual and combined treatments on cell viability 

(MTT assay) and expression of ERβ1, VDR, EGFR, VEGF, and caspase-3 

(Immunoblotting).’ 

 

Results 

The results ‘of this study were obtained across three integrated experimental 

phases: immunohistochemistry, molecular docking, and in vitro functional assays, 

each contributing to a comprehensive understanding of the therapeutic relevance of 

VDR and ERβ1 in TNBC.’ 

Immunohistochemical (IHC) ‘findings from Phase I revealed that VDR and 

ERβ1 are variably expressed across molecular subtypes of BC. Notably, in TNBC 

cases, VDR was localized to both the cytoplasm and nucleus, whereas ERβ1 showed 

cytoplasmic expression only. This pattern was distinct from other subtypes such as 

Luminal A and B, which showed relatively higher nuclear staining, particularly for 

ERβ1. The exclusive cytoplasmic localization in TNBC suggests altered receptor 

signaling, possibly indicative of non-genomic pathways or receptor dysfunction.  
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These VDR and ERβ1 expression may play subtype-specific roles in tumor 

suppression and provide a basis for evaluating these receptors as therapeutic targets.’ 

In Phase II, ‘molecular docking simulations provided computational insights into the 

binding interactions between ligands (calcitriol and 17β-estradiol) and their target 

proteins. Calcitriol showed high binding affinity for VDR, confirming a strong ligand-

receptor interaction at the predicted active site. Additionally, it exhibited moderate 

binding with EGFR and caspase-3, suggesting possible indirect regulatory effects on 

proliferative and apoptotic signaling. Similarly, 17β-estradiol demonstrated strong 

affinity for ERβ and VEGF, implicating its potential role in modulating estrogen-

responsive and angiogenic pathways. These in silico findings support the therapeutic 

plausibility of targeting multiple signaling axes through ligand-mediated receptor 

activation.’ 

Phase III involved functional ‘validation through in vitro assays using MDA-

MB-468 TNBC cells. Treatment with calcitriol (1–5 µM), 17β-estradiol (100–500 

nM), and their combination significantly reduced cell viability in a dose- and time-

dependent manner. Notably, the combination treatment produced greater reduction in 

viability compared to either agent alone, indicating potential additive or combination 

effects.’ 

Immunoblot ‘analysis further validated the molecular impact of treatment. 

Calcitriol exposure led to decreased ERβ1 expression and downregulation of EGFR 

and VEGF over time, while increasing caspase-3 levels, suggesting an induction of 

apoptosis. Treatment with 17β-estradiol similarly modulated ERβ1 expression, with 

limited effect on EGFR but a notable increase in VEGF modulation and caspase-3 

downregulation. Most importantly, combined treatment resulted in the most robust 

molecular changes, showing simultaneous downregulation of proliferative and 

angiogenic markers and strong upregulation of caspase-3.’ 

Together, ‘these results demonstrate that dual modulation of VDR and ERβ1 

using calcitriol and 17β-estradiol disrupts oncogenic signaling, promotes apoptosis, 

and may serve as an effective therapeutic strategy for ERβ1-positive TNBC.’ 

  



ABSTRACT 

 

Vitamin D3 Mediated Regulation of Hormone Receptors in the Pathogenesis of Triple- Negative Breast Cancer       3 
 

Conclusion 

This study ‘demonstrates that dual targeting of VDR and ERβ1 using calcitriol 

and 17β-estradiol elicits favorable antitumor responses in TNBC cells. The 

combination strategy regulates key oncogenic pathways involved in proliferation, 

angiogenesis, and apoptosis, highlighting the therapeutic promise of receptor-based 

induced in ERβ1-positive TNBC. These findings warrant further validation in animal 

models and could contribute to the development of novel combination treatments for 

this aggressive BC subtype.’ 

 

Keywords: Breast cancer, TNBC, VDR, ERβ1, IHC, Vitamin D/D3, Calcitriol, 17β-  

                   Estradiol, Molecular Docking 
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1. INTRODUCTION 

Breast cancer ‘is a malignant neoplasm characterized by the uncontrolled 

proliferation and invasive behavior of epithelial cells within the breast tissue.
1
 Over 

the past three decades, its incidence and mortality rates have risen globally, posing a 

significant public health burden.
2
 Although considerable progress has been made in 

characterizing its molecular subtypes, the precise mechanisms underlying BC 

pathogenesis remain incompletely understood. This gap in knowledge, combined with 

the persistent issue of delayed diagnosis, continues to impede timely and effective 

therapeutic intervention. While early detection is widely recognized as a critical factor 

in improving treatment outcomes, existing diagnostic modalities still face important 

limitations.
3’

 

The majority of ‘breast cancers (BCs) arise from the epithelial lining of the 

lactiferous ducts and are classified as ductal carcinomas. A smaller subset originates 

in the lobular epithelium, referred to as lobular carcinomas.
4
 In contrast, non-

epithelial malignancies such as sarcomas and lymphomas though rare develop from 

the stromal, vascular, or lymphoid components of the breast tissue.
5
 The complex 

histological architecture and diverse cellular composition of the breast contribute to 

the varied morphological and molecular subtypes of BC; each associated with distinct 

prognostic and therapeutic implications.
6
 The association between BC subtypes and 

the risk of developing distant metastasis has been well established. Newly diagnosed 

BCs have been reported to present with bone (3.28%), lung (1.52%), liver (1.2%), and 

brain (0.35%) metastases at the time of diagnosis.
7
 Among the molecular subtypes, 

TNBC exhibits a higher incidence of brain, liver, and lung metastases, but a 

significantly lower rate of bone metastases compared to the luminal A subtype. 

Additionally, patterns of recurrence vary by subtype; HER2-positive and TNBC 

subtypes demonstrate the highest rates of local and regional recurrence, with 

recurrence rates of 7.5% and 3.4% for HER2, and 7.6% and 3.3% for TNBC, 

respectively.
8’ 

 

1.1 TRIPLE NEGATIVE BREAST CANCER  

TNBC ‘is regarded as the most aggressive and therapeutically challenging subtype 

of BC.
9
 It is defined by the absence of ER, PR, and human epidermal growth HER2 

expression. Clinically, TNBC is associated with high invasiveness, elevated 
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metastatic potential, early disease recurrence, and poor overall prognosis.
10

 The lack 

of hormone receptors and HER2 renders TNBC unresponsive to both endocrine 

therapies and HER2-targeted treatments, thereby limiting current therapeutic options.
9
 

As a result, the development of novel, targeted treatment strategies is an urgent 

priority in the management of TNBC.’ 

 

1.1.1 Therapeutic Potential of Vitamin D and VDR Signaling Axis in TNBC 

Cancer cells, ‘including those in TNBC, often exploit shared regulatory 

pathways that govern proliferation, differentiation, and apoptosis. Vitamin D 

signaling has been shown to modulate these critical cellular processes, indicating its 

potential role in tumor suppression alongside immune regulation.
11

 The anticancer 

effects of vitamin D are largely attributed to its ability to regulate cellular growth and 

differentiation.
12’

 

Among the ‘key mediators of vitamin D signaling is the VDR, a nuclear receptor that 

becomes activated upon binding to the hormonally active form of vitamin D, 

calcitriol.
13

 The ligand-bound VDR forms a heterodimer with retinoid X receptor 

(RXR) and interacts with vitamin D response elements (VDREs) in the promoter 

regions of target genes, thereby modulating transcriptional networks that influence 

cell cycle regulation, apoptosis, angiogenesis, and metastatic potential.
14

 In 

experimental TNBC models, calcitriol has been shown to downregulate genes 

involved in invasion and metastasis, indicating a tumor-suppressive role.
15

 These 

effects were absent in VDR-knockout mice but were restored upon reintroduction of 

human VDR, confirming the receptor’s essential role in mediating the antitumor 

activity of calcitriol in TNBC cells.
16’

 

Clinical evidence further ‘reinforces the functional relevance of VDR 

signaling in TNBC.16 VDR expression has been identified in a substantial proportion 

of breast tumors and is consistently associated with favorable clinical outcomes. 

Patients with VDR-positive tumors exhibit significantly longer disease-free survival 

compared to those with VDR-negative tumors.
17

 Furthermore, high VDR expression 

is frequently observed in BCs with lower mortality risk and improved prognosis.
18

 

Conversely, the absence of VDR expression has been correlated with an increased 

incidence of ER-negative and PR-negative subtypes, which are characteristic features 

of TNBC.
19

 Given the limited treatment options in TNBC and the observed inverse 
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relationship between VDR expression and tumor aggressiveness, therapeutic 

strategies aimed at restoring or enhancing VDR signaling are of considerable interest. 

Notably, emerging data suggest that combining calcitriol with ERβ agonists may 

effectively reduce tumor invasiveness and offer synergistic benefits in TNBC models, 

highlighting a potential avenue for targeted intervention in this challenging BC’ 

subtype.
20 

 

1.1.3 ‘Estrogen Receptor Beta and Its Role in TNBC’ 

ERβ, ‘identified in 1996 as a homolog of estrogen receptor alpha (ERα), is 

encoded by the ESR2 gene and functions as a ligand-activated transcription factor 

involved in modulating gene expression, cell proliferation, and differentiation.
21

 

Unlike ERα, which promotes proliferation in hormone-responsive tissues, ERβ has 

been recognized for its tumor-suppressive functions in various cancers, including 

BC.
22 

In the context of TNBC, which lacks expression of ERα, PR, and HER2, ERβ 

has attracted attention as an alternative therapeutic target.
23

 Although TNBC is 

typically considered hormone receptor–negative, subsets of TNBC tumors have been 

found to express ERβ, and its presence correlates with a less aggressive phenotype 

and better clinical outcomes.
24

 Experimental studies demonstrate that ERβ expression 

in TNBC cell lines leads to inhibition of proliferation, reduced invasiveness, and 

suppression of tumorigenicity’ both in vitro and in vivo.
25

 

Among the ‘various isoforms of ERβ, ERβ1 is the only full-length, 

transcriptionally active form capable of binding DNA and regulating gene expression. 

ERβ1 has been identified as a functionally distinct tumor suppressor in TNBC. In vivo 

xenograft models using human TNBC cells overexpressing ERβ1 showed significant 

reductions in primary tumor growth and metastatic dissemination.
26

 Mechanistically, 

elevated ERβ1 expression in TNBC is associated with downregulation of epithelial-

to-mesenchymal transition (EMT) markers and BC stem cell markers, alongside 

increased expression of genes involved in suppressing cell invasiveness and 

metastasis.
27

 Furthermore, genomic and transcriptomic analyses have identified both 

ligand-dependent and ligand-independent ERβ1 target genes, many of which are 

relevant to tumor’ progression control.
25 
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The natural ligand of ERβ1 is 17β-estradiol (E2), ‘which upon binding 

activates ERβ1-mediated transcriptional regulation. In TNBC models, treatment with 

17β-estradiol has been shown to enhance the antitumor effects of ERβ1, including 

induction of G1 cell cycle arrest, reduction in proliferation, and promotion of 

apoptosis.
26,27

 Notably, these effects are dependent on an intact DNA-binding domain 

of ERβ1, underscoring the importance of its nuclear’ function.
28

 

Beyond the ‘classical genomic pathway where the 17β estradiol-ER complex 

translocates to the nucleus to modulate gene expression, recent studies have 

highlighted the importance of rapid, non-genomic estrogen signaling. These non-

genomic actions are mediated by membrane-bound estrogen receptors and are capable 

of triggering rapid cellular responses independent of direct gene transcription. Such 

mechanisms have garnered growing interest for its role in cancer progression and their 

potential as novel endocrine-associated therapeutic targets.
29

 Targeting ERβ1 using 

17β-estradiol or selective ERβ agonists represents a promising therapeutic approach 

for ERβ1-positive TNBC. IHC studies using the isoform-specific PPG5/10 

monoclonal antibody have reported ERβ1 positivity in approximately 18% of TNBC 

tumors.
30

 Based on this potential, an ongoing phase II clinical trial (NCT03941730) is 

currently evaluating the efficacy of ERβ1 stimulation using estradiol in patients with 

advanced or metastatic ERβ1-positive TNBC.
31

 Although emerging evidence 

highlights the individual tumor-suppressive functions of ERβ1 and the VDR in 

TNBC, their combined therapeutic targeting remains underexplored. Specifically, 

there is a lack of integrated data on the co-expression and subcellular localization of 

VDR and ERβ1 across BC subtypes, particularly in ERβ1 positive TNBC. Moreover, 

while calcitriol and 17β-estradiol have been investigated independently, the 

mechanistic interplay between VDR and ERβ1 signaling pathways, including their 

influence on downstream targets such as EGFR, VEGF, and caspase-3, has not been 

comprehensively characterized. To date, no study has systematically combined 

immunohistochemistry, molecular docking, and in vitro functional assays to elucidate 

the biological relevance of dual receptor modulation in ERβ1-positive’ TNBC. 

Therefore, ‘our study is designed to fill this critical gap by systematically 

evaluating the expression and biological significance of VDR and ERβ1 signaling in 

TNBC. Collectively, these insights provide a mechanistic rationale for targeting both 
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VDR and ERβ1 using calcitriol and 17β-estradiol, respectively, as a dual-targeted 

therapeutic approach.’ 

To ‘investigate this, in the present study, we planned to evaluate the 

expression patterns and functional significance of VDR and ERβ1 in TNBC.’  

Through this ‘integrative approach, the study aims to elucidate the molecular 

crosstalk between VDR and ERβ1 signaling pathways activated by calcitriol and 17β-

estradiol, and to provide a mechanistic basis for dual receptor-targeted strategies in 

the management of ERβ1-positive TNBC.’ 
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2. REVIEW OF LITERATURE 

2.1 ANATOMY OF THE BREAST 

The female breast is composed of multiple integrated structures. Externally, it is 

covered by skin and includes the areola and nipple. Internally, the breast comprises 

adipose tissue and glandular components such as lactiferous glands and lactiferous 

ducts, which are responsible for the production and transport of milk. These ducts 

converge at the nipple. The glandular tissue is embedded within supportive connective 

and fatty tissues.
32 

Posteriorly, the breast is situated over the pectoralis major muscle 

and the ribs, with the intercostal muscles forming the deeper thoracic wall.
33

 

Structurally, the gland consists of 15 to 20 lobes arranged radially around the nipple, 

each drained by an individual lactiferous duct, as shown in Figure 1. Although these 

lobes are separated by fibrous connective tissue septa, they are not distinctly 

identifiable during surgical procedures due to their close integration within the 

glandular stroma.
34

 This anatomical organization underpins both the physiological 

functions and structural support of the breast.’ 

 

 

 

 

 

Figure 1. ‘Anatomical structure of the female breast. 

A sagittal section of the female breast illustrating key components, including the skin, adipose tissue, 

areola, nipple, lactiferous ducts and glands, as well as the underlying pectoralis major and intercostal muscles. 

The breast lies over the ribs and consists of glandular tissue supported by connective and fatty tissue, with ducts 

converging toward the nipple for milk secretion. Source: https://www.vectorstock.com/royalty-free-

vector/female-breast-cross-section-anatomy-vector-41766610    Accepted on 16.06.2024.’ 

 

https://www.vectorstock.com/royalty-free-vector/female-breast-cross-section-anatomy-vector-41766610
https://www.vectorstock.com/royalty-free-vector/female-breast-cross-section-anatomy-vector-41766610
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2.1.2 Lymphatic System of the Breast’ 

The lymphatic system ‘plays a critical role in the metastatic spread of BC. It 

consists of a network of lymphatic vessels and lymph nodes that facilitate immune 

surveillance and drainage of interstitial fluid.
35

 Lymph nodes are small, bean-shaped 

structures containing immune cells that help fight infections. In the context of BC, 

malignant cells can infiltrate the lymphatic vessels and disseminate to regional lymph 

nodes, particularly those in the axillary, and internal mammary regions. The presence 

of cancer cells in lymph nodes is a key prognostic indicator, as it significantly 

increases the likelihood of systemic spread to distant’ organs.
36

 

 

2.1.3 ‘Benign Breast Lumps’ 

The ‘majority of palpable breast lumps are benign and do not indicate cancer.
37

 

Benign breast tumors typically arise from non-cancerous proliferations such as 

fibrosis (formation of fibrous connective tissue) and cysts (fluid-filled sacs).
38

 These 

lesions can cause the breast to feel nodular or lumpy, and in some cases, may be 

associated with a slightly cloudy nipple discharge. Although benign, such findings 

warrant thorough clinical and radiological evaluation to distinguish them from 

malignant lesions and guide appropriate management.
38’ 

 

2.1 ‘OVERVIEW OF BREAST CANCER’ 

BC is a ‘heterogeneous group of malignant neoplasms originating primarily from 

the epithelial components of the breast tissue.
39

 Anatomically, as illustrated in Figure 

2, the female breast comprises; 

i. Lobules (milk-producing glands) 

ii. Ducts (channels that transport milk to the nipple) 

iii. Stromal elements including adipose and fibrous connective tissue 

iv. Blood vessels, and an extensive lymphatic network.
32’

 

The ‘majority of BCs arise from the epithelial lining of the lactiferous ducts 

and are classified as ductal carcinomas. A smaller subset originates in the lobular 

epithelium, referred to as lobular carcinomas.
4
 In contrast, non-epithelial malignancies 

such as sarcomas and lymphomas though rare develop from the stromal, vascular, or 

lymphoid components of the breast tissue.
5
 The complex histological architecture and 

diverse cellular composition of the breast contribute to the varied morphological and 
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molecular subtypes of BC; each associated with distinct prognostic and therapeutic 

implications.
6
 The association between BC subtypes and the risk of developing distant 

metastasis has been well established. Newly diagnosed BCs have been reported to 

present with bone (3.28%), lung (1.52%), liver (1.2%), and brain (0.35%) metastases 

at the time’ of diagnosis.
7
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Among the molecular subtypes, ‘TNBC exhibits a higher incidence of brain, 

liver, and lung metastases, but a significantly lower rate of bone metastases compared 

to the luminal A subtype. Additionally, patterns of recurrence vary by subtype; 

HER2-positive and TNBC subtypes demonstrate the highest rates of local and 

regional recurrence, with recurrence rates of 7.5% and 3.4% for HER2 and 7.6% and 

3.3% for TNBC, respectively.
8’

 

 

  

Figure 2. ‘Schematic representation of a malignant tumor breast. 

The image depicts the anatomical structures of the female breast, including the nipple, mammary ducts, fat 

cells, blood vessels, and underlying muscular layers such as the pectoral and intercostal muscles. A malignant 

tumor is localized within the glandular tissue, demonstrating its potential proximity to the ductal system, 

vasculature, and chest wall structures, which can influence tumor progression and metastasis.  

Source: https://alaskasurgicaloncology.com/treatment/breast-cancer-treatment-in-anchorage/   

Accepted on 10.06.2025.’ 

https://alaskasurgicaloncology.com/treatment/breast-cancer-treatment-in-anchorage/
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2.3 ‘BREAST CANCER SYMPTOMS’  

BC ‘presents with a range of symptoms that can vary in severity and visibility. One of 

the most common signs is a painless lump in the breast, often detected during self-

examination or routine screening. Some women experience pain in the breast or 

armpit, sometimes accompanied by changes in breast size or shape. A noticeable lump 

in the breast or underarm area may also be present. Additional symptoms include 

nipple rash, redness or swelling of the breast skin, and discharge or bleeding from the 

nipple. In certain cases, swelling of lymph nodes in the armpit can occur, indicating 

possible early metastasis. Heaviness, breast deformity, or retraction of the nipple may 

appear in more advanced stages. These signs may develop gradually, and early 

symptoms are often subtle or absent, emphasizing the importance of regular breast 

self-examinations and adherence to screening guidelines for timely’ detection and 

intervention.
40, 41 

 

2.4 ‘BREAST CANCER CAUSES’ 

The ‘exact cause of BC remains unknown, but researchers have identified 

several factors that increase its risk. These include hormonal influences, lifestyle 

choices such as diet and alcohol consumption, and environmental exposures. 

However, not all individuals with risk factors develop BC, and some without any 

known risks may still be affected. This suggests that BC likely results from a complex 

interaction between genetic predispositions and external influences.’ 

BC begins ‘when there is a mutation or alteration in the DNA of cells within 

breast tissue. Normally, DNA directs healthy cells to grow, divide, and die in a 

controlled manner. In cancerous cells, however, these instructions are altered, leading 

the cells to multiply rapidly and evade normal cell death. This uncontrolled growth 

may result in a mass or tumor, which can invade surrounding tissues and, over time, 

spread to other parts of the body. This process is known as metastasis.’ 

Most BC ‘originate in the cells lining the milk ducts, termed invasive ductal 

carcinoma. Others may begin in the milk-producing lobules, known as invasive 

lobular carcinoma. Though rare, cancer can also arise from other cell types within the 

breast, highlighting the complexity of BC development.
42’
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2.5 ‘RISK FACTORS OF BREAST CANCER’ 

BC is a ‘multifactorial disease influenced by both non-modifiable and modifiable risk 

factors, illustrated in Table 1. Understanding these determinants is essential for 

individualized risk assessment, early detection, and the development of targeted 

prevention strategies. The following sections present an overview of established and 

emerging risk factors supported by epidemiological and molecular evidence.’ 

 

2.5.1 ‘NON-MODIFIABLE RISK FACTORS’ 

2.5.1.1 Sex 

Female is a ‘major determinant of BC risk due to prolonged exposure to estrogen and 

progesterone. Unlike men, women possess hormonally sensitive breast tissue, and 

elevated or imbalanced hormone levels increase the risk of carcinogenesis.
43

 Although 

BC in men accounts for less than 1% of cases, factors such as older age, BRCA 

mutations, Klinefelter syndrome, and elevated estrogen levels can raise their risk.
44’

 

 

Table 1. ‘Modifiable and non-modifiable risk factors of BC.’ 

‘Non-Modifiable Factors’ ‘Modifiable Factors’ 

‘Sex Hormonal replacement therapy 

Older age Diethylstilbestrol 

Family history (of breast or ovarian 

cancer) 

Physical activity 

Genetic mutations Overweight/obesity 

Race/ethnicity Alcohol intake 

Pregnancy and breastfeeding Smoking 

Menstrual period and menopause Insufficient vitamin supplementation 

Density of breast tissue Excessive exposure to artificial light 

Previous history of BC Intake of processed food 

Non-cancerous breast diseases Exposure to chemicals 

Previous radiation therapy’ Other drugs’ 
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2.5.1.2 ‘Advancing Age 

Age is a strong predictor of BC risk, with approximately 80% of cases occurring in 

women over 50 years and more than 40% in women over 65 years. The lifetime risk 

increases with age 1.5% at 40, 3% at 50, and over 4% by 70. 
45

 Younger women (<40 

years) are more likely to develop aggressive triple-negative subtypes, while older 

women (>70 years) often present with luminal A types.
46’

 

 

2.5.1.3 ‘Family History 

Having a first-degree relative with BC cancer increases risk significantly. Between 

13–19% of BC patients report such familial history 
47

, with the risk amplified if the 

relative was diagnosed before age 50. Epigenetic factors and shared environmental 

exposures contribute to this association.
48’

  

 

2.5.1.4 ‘Genetic Mutations 

Mutations in BRCA1 (chromosome 17) and BRCA2 (chromosome 13) confer a high 

risk for BC.
49

 Inherited mutations in p53, PTEN, CDH1, and STK11 also increase 

susceptibility.
50- 53

 Recent studies have linked XRCC2 mutations with increased risk 

as well.
54’

 

 

2.5.1.5 ‘Race and Ethnicity 

Race and ethnicity impact BC outcomes. While white non-Hispanic women have the 

highest incidence, Black women have higher mortality and poorer survival, partly due 

to later-stage diagnoses and higher prevalence of aggressive subtypes.
55’

 

 

2.5.1.6 ‘Reproductive History 

Hormonal fluctuations during menarche, pregnancy, breastfeeding, and menopause 

influence BC risk. Early menarche and late menopause increase lifetime estrogen 

exposure, raising risk.
56

 Early first full-term pregnancy and extended breastfeeding 

offer protective effects.
57

 No association has been established between abortion and 

increased BC risk.
58’
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2.5.1.7 ‘Breast Tissue Density 

High breast density, commonly observed in younger women and those on hormone 

therapy, is associated with a greater risk of BC.
59

 Breast density can obscure tumor 

detection on mammograms and is being explored as a screening parameter.’ 

 

2.5.1.8 ‘Personal or Benign Breast Disease History 

A history of BC or benign lesions like atypical hyperplasia or carcinoma in situ 

increases the risk of recurrence or new tumors.
60

 Histological subtype and familial 

predisposition further modulate this risk.
61’

 

 

2.5.1.9 ‘Previous Radiation Therapy 

Patients who received radiation therapy, especially before the age of 30, are at 

increased risk for BC.
62

 Techniques like tangential field intensity-modulated 

radiotherapy (IMRT) are associated with lower secondary cancer risk compared to 

multi-field methods. Additional radiation boosts may reduce local recurrence risk.
63’

 

 

2.5.2. ‘MODIFIABLE RISK FACTORS 

2.5.2.1 Pharmacologic Agents 

Use of diethylstilbestrol (DES) during pregnancy has been associated with BC in both 

mothers and offspring.
64

 Prolonged hormonal replacement therapy (HRT), especially 

over 5–7 years, significantly increases risk.
65

 The role of antidepressants, antibiotics, 

and other drugs (e.g., NSAIDs, statins, antihypertensives) remains inconclusive but is 

under investigation.
66

 

 

2.5.2.2 Physical Inactivity 

Regular physical activity reduces BC risk across menopausal stages. Mechanisms 

may involve lowering sex hormones, improving insulin sensitivity, and modulating 

immune response.
67

 Both pre- and postmenopausal women benefit, though studies 

differ on which group shows stronger associations.
68
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2.5.2.3 Obesity and Body Mass Index 

Obesity, especially in postmenopausal women, elevates estrogen production via 

adipose tissue and is linked to estrogen-receptor-positive BC.
69

 Obesity also correlates 

with worse prognosis, higher-grade tumors, and increased lymph node involvement.
70’

 

 

2.5.2.4 ‘Alcohol Consumption 

Alcohol increases estrogen levels and promotes DNA damage, contributing to breast 

carcinogenesis.
71

 Risk is particularly elevated with consumption prior to first 

pregnancy
72

 and is more pronounced in estrogen receptor-positive tumors.
73

 

 

2.5.2.5 Tobacco Smoking 

Active and passive smoking increases the risk of mutations in oncogenes and tumor 

suppressor genes (e.g., p53).
74

 Risk is further elevated when smoking begins before 

the first full-term pregnancy, especially in individuals with a family history.
75

 

 

2.5.2.6 Vitamin Deficiency 

Deficiencies in vitamins particularly vitamin D have been associated with increased 

BC risk.
76

 Higher serum 25(OH)D levels are inversely correlated with BC incidence 

and mortality
77

, though evidence remains inconsistent.
78

 

 

2.5.2.7 Artificial Light Exposure 

Exposure to artificial light at night (ALAN) disrupts melatonin secretion and 

circadian rhythms, potentially increasing BC risk via epigenetic changes.
79

 Evidence 

on the effects of electronic devices remains mixed. 

 

2.5.2.8 Diet and Processed Food Intake 

A diet high in ultra-processed foods, saturated fats, and sugars is linked to increased 

BC risk, likely through its impact on obesity and inflammation.
80

 Conversely, diets 

rich in vegetables, fiber, phytonutrients, and omega-3 polyunsaturated fatty acids 

(PUFAs) are considered protective.
81
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2.5.2.9 Environmental Chemical Exposure 

Long-term exposure to chemicals like DDT, PCBs, and PAHs has been associated 

with increased BC risk, especially with early-life exposure.
82

 Disruption of mammary 

gland development and hormonal signaling are key mechanisms. 

 

2.5.2.10 Other Medications 

Various drugs including NSAIDs, statins, calcium channel blockers, and 

antihypertensives have been studied for possible associations with BC, but current 

evidence remains inconclusive. 
45’ 

 

2.6 ‘BREAST CANCER CLASSIFICATION 

2.6.1 Histological Classification 

Invasive BCs (IBCs) comprise a heterogeneous group of tumors with substantial 

variation in morphology, clinical behavior, and biological characteristics. The World 

Health Organization (WHO) recognizes at least 18 different histological types of 

BC.
83

 Among these, invasive breast carcinoma of no special type (NST) formerly 

referred to as invasive ductal carcinoma, is the most prevalent, accounting for 

approximately 40–80% of all cases.
84

 This category is defined by exclusion, as it 

includes tumors that do not fit into any of the specific histological subtypes.
83

 

Approximately 25% of IBCs, however, demonstrate distinct cytological and 

architectural patterns and are classified into special subtypes, including invasive 

lobular carcinoma, tubular carcinoma, mucinous types A and B, neuroendocrine 

carcinoma, among others, illustrated in Figure 1. 
85

 

 

 2.6.2 Molecular Subtypes of Breast Cancer 

Independent of histology, BCs are also classified into molecular subtypes based on 

gene expression profiles.’  
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In a ‘landmark study in 2000, Perou et al. identified four intrinsic molecular 

subtypes, Luminal, HER2-enriched, Basal-like, and Normal Breast-like through 

microarray analysis of mRNA expression data in 38 breast tumors.
86

 Later studies 

refined this classification by dividing the Luminal group into Luminal A and Luminal 

B subtypes.
87, 88

 

The “Normal Breast-like” group was eventually excluded as it is now believed 

to represent contamination with normal tissue. The Cancer Genome Atlas (TCGA) 

project further validated this classification by analyzing over 300 primary tumors at 

the DNA, RNA, and protein levels, reaffirming the existence of four molecular 

subtypes, Luminal A, Luminal B, HER2-enriched, and Basal-like based on 

transcriptomic data, as depicted in Figure 3.
89

 In 2007, an additional subtype Claudin-

low was identified through integrated analysis of human and mouse mammary 

tumors.
90’

 

Parker et al. ‘introduced the PAM50 classifier, a 50-gene signature capable of 

assigning tumors to intrinsic subtypes with a reported accuracy of 93%.
91

 This 

Figure 3: ‘Schematic overview of BC classification. Illustrating (a) histopathological subtypes of 

in-situ and invasive carcinomas, (b) molecular subtypes based on hormone receptor and HER2 

status, and (c) a timeline of major milestones in BC, including advancements in ER quantification, 

molecular profiling, and genomic sequencing technologies. Source: DOI: 10.1155/2022/9605439 

Abbreviations: BC: Breast cancer, HRE2: Human epithelial growth factor receptor 2, ER: Estrogen 

receptor  

https://doi.org/10.1155/2022/9605439
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classifier has since been implemented in clinical practice using the NanoStringna 

Counter® platform, forming the basis of the Prosigna® test. Prosigna® integrates the 

PAM50 gene expression profile with clinical parameters to estimate the risk of distant 

recurrence in postmenopausal women with hormone receptor-positive, node-negative 

or node-positive early-stage BC, and assists in the decision-making process regarding 

adjuvant chemotherapy.
92-94’

 

 

 

 

 

 

2.6.2.1 ‘Luminal Breast Cancer 

Luminal BCs are characterized by ER positivity and constitute nearly 70% of all BC 

cases in Western populations.
95

 These tumors frequently present as invasive 

carcinomas of no special type but may occasionally exhibit features of other 

histological subtypes, including invasive lobular, tubular, cribriform, mucinous, and 

micropapillary carcinomas.
4,96

 Luminal subtypes are distinguished primarily by 

differential expression of proliferation-associated and luminal-associated genes. 

 

2.6.2.2 Luminal A tumors exhibit ER and/or PR positivity with HER2 negativity, as 

presented in the Figure 4. In this group, ER transcriptional activity drives the 

expression of genes associated with luminal epithelial differentiation.
97,98

 These 

Figure 4: ‘Molecular subtypes of breast cancer. 

Subtypes vary based on hormone receptor and HER2 status, showing differences in prognosis, 

proliferative index (Ki-67), and responsiveness to targeted therapies. 

Source: DOI:10.3390/biomedicines9080876 

 

 

 

 

 

https://doi.org/10.3390/biomedicines9080876
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tumors have low proliferative indices and demonstrate favorable clinical features, 

including low grade, slow growth, and excellent prognosis.
99

  

 

2.6.2.3 Luminal B tumors are more proliferative, exhibit higher histological grade, 

and have worse prognosis. While also ER positive, they may be PR negative and/or 

HER2 positive and are characterized by elevated expression of proliferation-related 

genes such as MKI67.
100-102 

Luminal B tumors typically show reduced expression of 

luminal differentiation markers, including PR,
 98

 as illustrated in Figure 4. 

 

2.6.2.4 HER2-Enriched Breast Cancer 

HER2-enriched BCs represent approximately 10 - 15% of all cases and are defined by 

high expression of HER2 (ERBB2) and absence of both ER and PR, as shown in 

Figure 4. This subtype is dominated by the expression of proliferation-related genes 

such as ERBB2/HER2 and GRB7, rather than luminal or basal gene signatures.
102, 103

 

Recent research suggests that mutagenesis in this group may be driven by 

APOBEC3B, a member of the cytidine deaminase family responsible for inducing 

cytosine-to-uracil transitions and generating clustered mutations.
104

 

HER2-enriched cancers are typically high-grade and rapidly growing. Before the 

introduction of targeted HER2 therapies, they were associated with poor outcomes. 

Importantly, HER2-enriched is a molecular subtype and not synonymous with 

clinically HER2-positive disease; some ER-positive/HER2-positive tumors are 

actually luminal B, while approximately 30% of HER2-enriched tumors may be 

HER2-negative by IHC or FISH.
105

 

 

2.6.2.5 Basal-Like/TNBC 

TNBC is a heterogeneous group of ER-negative, PR-negative, and HER2-negative 

tumors (see Figure 4), accounting for about 20% of all BCs. TNBC is more common 

in women under 40 and among African-American populations.
105

 Up to 80% of 

tumors in patients with BRCA1’ germline ‘mutations are TNBC, and 11–16% of 

TNBC cases harbour BRCA1 or BRCA2 mutations. These tumors are aggressive and 

often have a poor prognosis.
106

 Histologically, TNBC typically presents as invasive 

ductal carcinoma but may also manifest as medullary-like, metaplastic, or adenoid 

cystic carcinomas.
107’
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While the ‘terms “basal-like” and “TNBC” are often used interchangeably, gene 

expression profiling reveals distinct TNBC subtypes: Basal-like 1 and 2 (BL1, BL2), 

mesenchymal (M), mesenchymal stem-like (MSL), immunomodulatory (IM), luminal 

androgen receptor (LAR), and an unspecified group (UNS).
108, 109 

The clinical utility 

of these subtypes remains under investigation, and their application to treatment 

decision-making is still evolving.
110’

 

 

2.6.2.6 ‘Claudin-Low Breast Cancer 

Claudin-low (CL) BCs are typically ER-, PR-, and HER2-negative and represent 7–

14% of all BCs.
96 

They do not differ significantly in prognosis from other poor-

outcome subtypes like Luminal B, HER2-enriched, or Basal-like. CL tumors are 

defined by low expression of tight junction proteins such as claudins 3, 4, and 7, 

occludin, and E-cadherin, along with high expression of epithelial-to-mesenchymal 

transition (EMT) and stem cell-associated genes.
111,112 

They are also characterized by 

prominent immune and stromal infiltration 
113

 and their relatively undifferentiated 

state contributes to genomic stability, potentially mediated by EMT-regulating 

transcription factors like ZEB1.
114

 

 

2.6.2.7 Surrogate Marker-Based Classification 

Due to the high cost and limited availability of genomic assays, clinical practice often 

relies on surrogate classification using immunohistochemical markers. St. Gallen’s 

2013 guidelines advocate for using IHC-based markers such as ER, PR, HER2, Ki-67, 

and others for treatment decisions.
115

 These markers guide subtype identification and 

predict therapeutic response.
116

 Additional markers like cytokeratin 5/6 and EGFR 

help identify basal-like tumors within the TNBC group.
117 

However, IHC-based 

subtyping is an approximation; discordance with gene expression-based subtypes can 

reach up to 30%.
118

 

 

2.6.2.8 American Joint Committee on Cancer (AJCC) Classification 

The AJCC staging system, first established in 1977, traditionally relied on anatomical 

criteria: tumor size (T), lymph node involvement (N), and metastasis (M). The 8th 

edition (2018) incorporates biologic markers such as ER, PR, HER2, grade, and 

multigene assay results into prognostic staging.
119

 The Elston - Ellis modification of 
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the Scarff -Bloom - Richardson grading system, or Nottingham grade, is commonly 

used and assesses tubule formation, nuclear pleomorphism, and mitotic count.
120, 121

 

Multigene assays like the 21-gene Oncotype DX® test provide additional prognostic 

value and are integrated into staging for patients with hormone’ receptor-positive, 

‘HER2-negative, node-negative tumors smaller than 5 cm. Patients with a recurrence 

score below 11 achieve high survival rates (98.6% at 6.9 years) with endocrine 

therapy alone, enabling omission of chemotherapy.
122, 123 

 The AJCC system 

distinguishes between clinical and pathological prognostic staging, incorporating 

molecular and pathological findings before and after surgical resection. Validation of 

the updated staging system using large datasets (e.g., SEER, MD Anderson Cancer 

Center) has confirmed its superior prognostic accuracy compared to purely anatomical 

staging.
124, 125’

 

 

2.7 ‘DIAGNOSIS OF BREAST CANCER  

2.7.1 History and Physical Examination 

Diagnosis begins with a detailed medical history to assess BC risk. Key factors 

include age at menarche, menopausal status, use of hormone therapy, prior 

pregnancies, and personal or family history of breast or ovarian cancer. Patients are 

evaluated for symptoms such as breast pain, bone pain, fatigue, nipple discharge, and 

weight loss. A thorough physical examination involves palpation of the breasts, 

axillary, and supraclavicular lymph nodes to detect lumps or abnormalities.
126,127

 

 

2.7.2 Self-Examination 

Though its impact on mortality reduction is debated, breast self-examination (BSE) 

remains a recommended method for women to familiarize themselves with their 

breast structure. Awareness campaigns, including SMS-based education, have 

improved BSE practice and knowledge among women and healthcare students.
128

 

 

2.7.3 Imaging Techniques 

 Digital Mammography: Gold standard for early detection, though less 

sensitive in dense breasts.
129

 

 MRI: More accurate in detecting tumors in high-risk women and those with 

dense breasts or BRCA mutations.
130
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 PEM and MRI: Both offer high sensitivity for invasive and in situ cancers; 

PEM is a good alternative when MRI is not preferred.
131 

 Ultrasound: Especially useful in evaluating palpable lumps and distinguishing 

cystic from solid lesions, particularly in dense breasts.
132

 

 

2.7.4 Nuclear Medicine Techniques 

 SPECT: Utilizes gamma-emitting radionuclides (e.g., technetium-99m) for 

accurate detection of primary and metastatic lesions.
133’

 

 PET/CT: ‘Uses [18F]-FDG to detect hypermetabolic cancer cells. It is highly 

sensitive for staging, detecting occult metastases, and monitoring treatment 

response.
134

 

 

2.7.5 Tumor Markers 

 CA 15-3: Elevated in around 70% of advanced-stage cases; useful in 

monitoring treatment efficacy.
135

 

 CA 27.29: Comparable to CA 15-3; not superior in early detection and can be 

elevated in other conditions.
136 

 

2.7.6 Receptor and Molecular Testing 

 Estrogen and Progesterone Receptors: Detection of ER, PR, and HER2 helps 

classify tumor subtypes and guides hormonal and targeted therapy 

decisions.
137

 

 IHC: Crucial for confirming diagnosis and subtype classification. IHC 

enhances diagnostic accuracy when combined with H&E staining.
138

 

 

2.7.7 Biopsy Techniques 

Fine Needle Aspiration cytology (FNAC): Extracts individual cells for 

cytological evaluation; often guided by ultrasound.
139

 

 Core Biopsy: Provides tissue samples with preserved architecture; performed 

under local anesthesia.
139

 

 Vacuum-Assisted Stereotactic Core Biopsy: Offers multiple samples through a 

small incision; guided by mammogram, MRI, or ultrasound.
140

 



2. REVIEW OF LITERATURE  

 

Vitamin D3 Mediated Regulation of Hormone Receptors in the Pathogenesis of Triple- Negative Breast Cancer       24 
 

 Surgical Biopsy: Performed when non-invasive methods are inconclusive; 

involves excising tissue under general anesthesia.
141

 

 

2.7.8 Artificial Intelligence (AI)  

 Asif Hassan Syed studied the importance of AI in oncology. He reported that 

AI has emerged as a transformative tool in precision oncology, offering 

promising applications in early BC diagnosis and prognosis assessment. 

 Each modality offers unique advantages in identifying tumors at an early, 

asymptomatic stage, thus enabling timely medical or surgical intervention. 

However, variations in sensitivity, specificity, and access to these technologies 

across different healthcare systems have led to inconsistent outcomes, 

particularly in low- and middle-income regions.
142’

 

 

2.8 ‘PROGNOSTIC BIOMARKERS’ 

2.8.1 Estrogen Receptor 

The ‘ER serves as a critical diagnostic and therapeutic marker, with approximately 

70–75% of invasive breast carcinomas showing high ER expression.
143

 Evaluation of 

ER status is mandatory for both primary tumors and recurrences to guide endocrine 

therapy, which includes selective estrogen receptor modulators, estrogen receptor 

downregulators, and aromatase inhibitors.
144

 While ER assessment is pivotal for 

selecting appropriate treatment, it also holds prognostic relevance, as high ER levels 

are linked to favorable outcomes.
145

 A positive family history correlates with ER 

expression, enhancing its role as a diagnostic marker in hereditary BC.
146

 

Furthermore, Konan et al. found that ERα-36 could serve both as a target and 

prognostic marker in PR-positive BCs.
147

 

 

2.8.2 Progesterone Receptor 

PR expression is prevalent (>50%) in ER-positive patients but uncommon in ER-

negative tumors. As a downstream target of ER, PR expression reflects an intact ER 

signaling axis.
148 

Both ER and PR are co-expressed in many BCs and jointly act as 

prognostic and diagnostic markers, especially in hormone-responsive subtypes.
149

 

Higher PR levels are associated with improved survival, delayed recurrence, and 
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reduced treatment failure, whereas lower levels suggest aggressive disease and poorer 

outcomes.
150

 Despite its clinical value, PR predictive utility remains debated.
151

 

 

2.8.3 Human Epidermal Growth Factor Receptor 2 

HER2 is overexpressed in 15–25% of BC cases and has substantial implications for 

targeted therapy selection; its overexpression often occurs early during 

oncogenesis.
152

 HER2 detection enhances the identification of metastatic or relapsed 

disease, raising detection rates from 50% to over 80%.
153

 Serum HER2 serves as a 

promising real-time indicator of disease burden or recurrence.
154

 HER2 amplification 

drives activation of oncogenic pathways, leading to unchecked proliferation and poor 

outcomes.
155

 Additionally, HER2 overexpression correlates with reduced disease-free 

survival (DSF) and is linked to tumor histology, pathological stage, and nodal 

metastasis.
156

 

 

2.8.4 Antigen Ki-67 

Ki-67 is a nuclear protein indicative of cell proliferation, and its index is a validated 

marker for estimating tumor aggressiveness and treatment response in BC.
157

 The Ki-

67 index is integral in determining appropriate therapeutic strategies and monitoring 

for recurrence. Nevertheless, limitations in assay reproducibility necessitate cautious 

interpretation in clinical decisions. A meta-analysis involving 12,155 cases from 68 

studies confirmed that elevated Ki-67 is linked’ to worse outcomes.
158

 ‘High Ki-67 

expression is also indicative of reduced survival rates in BC patients.
159’

  

 

2.8.5 ‘Circulating Circular RNA 

Circular RNAs (circRNAs), a class of non-coding RNAs, are increasingly recognized 

for their role in oncogenic processes such as proliferation, apoptosis evasion, and 

metastasis.
160

 Notable circRNAs in BC include circFBXW7, a potential diagnostic 

and therapeutic candidate in TNBC, and hsa_circ_0072309, linked with poor 

survival.
161’

 

 

2.8.6 p53 

p53 ‘gene mutations particularly loss-of-function alterations are common in many 

cancers, including breast, leukemia, osteosarcoma, and brain tumors.
162

 The p53 
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protein governs essential responses like cell cycle arrest, apoptosis, DNA repair, and 

senescence.
163

 p53 mutations frequently arise in early tumorigenesis, especially in 

TNBC (up to 80%) and less commonly in Luminal A cancers (10%).
164

 Numerous 

studies underline the prognostic importance of p53 loss in BC.
165

 Missense mutations 

may confer oncogenic gain-of-function activity in addition to loss of native 

function.
166

 p53 IHC status divides TNBC into two subgroups: p53-negative, 

resembling normal breast tissue, and p53-positive, basal-like tumors with poorer 

survival.
167

 Yet, neither mutational analysis nor IHC has been universally accepted for 

prognosis in routine practice.
168

 

 

2.8.7 MicroRNA 

MicroRNAs (miRNAs) are short, non-coding RNAs (19–25 nt) that regulate gene 

expression in various biological pathways.
169

 Many miRNAs contribute to tumor 

initiation, progression, and therapy response.
170

 A meta-analysis by Adhami et al. 

identified consistent upregulation of miR-21 and miR-210 and downregulation of six 

miRNAs including miR-145, miR-139-5p, miR-195, miR-99a, miR-497, and miR-

205 across BC studies.
171

 Still, more robust studies are necessary to validate their 

utility as specific and sensitive diagnostic tools. 

 

2.9 TREATMENT STRATEGIES 

2.9.1 Surgery 

Surgery remains the primary intervention for early-stage BC and typically involves 

mastectomy or breast-conserving surgery (BCS).
172 

Mastectomy is preferred in 

multicentric tumors and in patients unable to receive radiotherapy.
173

 BCS followed 

by radiotherapy offers survival rates equivalent to mastectomy in suitable cases.
174

 

Axillary lymph node dissection (ALND) and sentinel lymph node biopsy (SLNB) are 

crucial for nodal staging and therapeutic’ planning.
175

 ‘SLNB has replaced ALND in 

clinically node-negative cases due to lower morbidity.
176 

 

2.9.2 Radiotherapy 

Radiotherapy is integral to BC management, particularly after BCS, to reduce local 

recurrence.
177

 It is also indicated following mastectomy in patients with large tumors 

or nodal involvement.
178

 Hypo fractionated radiotherapy has shown comparable 
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efficacy to conventional regimens with fewer side effects.
179

 Additionally, advanced 

techniques like IMRT improve dose distribution and minimize toxicity.
180

 Radiation 

also enhances locoregional control and overall survival (OS) in high-risk patients.
181

 

 

2.9.3 Chemotherapy 

Chemotherapy is administered in neoadjuvant, adjuvant, and metastatic settings. It is 

crucial for triple-negative and HER2-positive subtypes.
182

 Common regimens include 

anthracyclines (e.g., doxorubicin), taxanes (e.g., paclitaxel), and alkylating agents 

(e.g., cyclophosphamide).
183 

Neoadjuvant chemotherapy improves operability and 

enables breast conservation.
184 

The achievement of pathological complete response 

(pCR) correlates with better outcomes, especially in TNBC and HER2-positive 

cases.
185

 However, chemotherapy has limited benefit in low-risk Luminal A 

tumors.
186

 

 

2.9.4 Hormone Therapy 

Hormone therapy targets ER and/or PR-positive tumors and significantly improves 

survival.
187

 Tamoxifen, a selective estrogen receptor modulator, is widely used in 

premenopausal women.
188

 Aromatase inhibitors (e.g., anastrozole, letrozole) are 

preferred in postmenopausal women to suppress peripheral estrogen synthesis.
189 

Ovarian suppression with gonadotropin-releasing hormone (GnRH) analogs enhances 

outcomes in premenopausal women when combined with other endocrine therapies.
190

 

Endocrine resistance remains a clinical challenge, prompting combination approaches 

with targeted therapies.
191

 

 

2.9.5 Targeted Therapy 

Targeted therapies have revolutionized the treatment of HER2-positive BCs. 

Trastuzumab, a monoclonal antibody against HER2, significantly improves disease-

free and OS.
192

 It is often combined with chemotherapy or pertuzumab in dual-

targeted regimens.
193 

Small molecule tyrosine kinase inhibitors like lapatinib and 

neratinib also show efficacy in HER2-positive disease, especially in the metastatic 

setting.
194

 CDK4/6 inhibitors (palbociclib, ribociclib, abemaciclib) are used in 

combination with endocrine therapy in ER-positive, HER2-negative metastatic BC.
195

 

Additionally, PI3K/AKT/mTOR pathway inhibitors and PARP inhibitors’ (e.g., 
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olaparib) have ‘shown promise in selected molecular subtypes, including BRCA-

mutated TNBC.
196’

 

 

2.9.6 ‘Immunotherapy 

Immunotherapy is gaining traction in the treatment of triple-negative BC. Immune 

checkpoint inhibitors, such as anti-PD-1 and anti-PD-L1 antibodies, enhance T-cell-

mediated antitumor responses.
25

 Atezolizumab, in combination with nab-paclitaxel, 

has shown improved progression-free survival in PD-L1-positive TNBC.
197

 However, 

benefits are limited to subsets with high immune infiltration or biomarker positivity. 

Immunotherapy remains under investigation for broader application in other BC 

subtypes.
198’

 

 

2.9.7 ‘Challenges in TNBC Management 

TNBC presents significant clinical challenges due to its aggressive nature, 

heterogeneity, and lack of well-defined molecular targets.
199

 Unlike hormone 

receptor-positive or HER2-overexpressing subtypes, TNBC does not benefit from 

endocrine or HER2-targeted therapies, limiting treatment options to surgery, 

chemotherapy, and radiotherapy.
200

 Although many TNBCs initially respond to 

chemotherapy, the risk of relapse remains high, and long-term survival is 

comparatively lower.
201

 

The lack of specific biomarkers further hinders the development of targeted therapies. 

While PARP inhibitors show efficacy in BRCA1/2-mutated TNBC, their benefit is 

confined to a small subset of patients.
201

 Similarly, immune checkpoint inhibitors 

have shown promise only in PD-L1-positive tumors, with limited success in 

unselected populations.
202

 Moreover, immune-related adverse effects and the cost of 

immunotherapy limit widespread application.
203

 Another major concern in TNBC is 

the early onset and higher prevalence among younger women and those of African 

ancestry, often associated with more aggressive disease and poorer outcomes. 

Socioeconomic disparities, delayed diagnosis, and limited access to specialized care 

further exacerbate survival differences in these populations.
204

 Resistance to 

chemotherapy, both intrinsic and acquired, remains a pressing issue. Mechanisms 

such as EMT, overexpression of drug efflux pumps, and activation of compensatory 

signaling pathways contribute to treatment failure.
201

 Furthermore, the absence of 
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validated predictive and prognostic biomarkers restricts precision medicine 

approaches in TNBC. Liquid biopsies, circulating tumor DNA (ctDNA), and multi-

omics profiling hold potential for early detection and real-time monitoring but are not 

yet routinely used in clinical settings.
205’

 

 

2.10 ‘EFFECTS OF 1,25(OH)₂D₃ ON CANCER STEM CELLS (CSCs) 

CSCs, first identified in acute myeloid leukemia, represent a subpopulation with the 

ability to initiate, sustain, and propagate tumors, contributing to recurrence and 

therapeutic resistance.
206

 Saeg and Anbalagan et al. stated that several critical 

signaling cascades, including Notch, Wnt/Frizzled/β-catenin, Hippo, and Hedgehog, 

govern the maintenance and self-renewal of CSCs, and their dysregulation is 

intricately linked to BC development. CSCs in BC, particularly those with a basal-like 

phenotype, are phenotypically defined by a CD44⁺/CD24⁻ surface marker profile. 

CD44, a transmembrane adhesion receptor involved in cell - cell and cell - matrix 

interactions, facilitates tumor cell dissemination and is widely accepted as a CSC 

marker. 206, 207
 CD24, a sialo glycoprotein acting as a ligand for P-selectin on 

endothelial cells, enables intravascular migration of cancer cells, thus promoting 

metastasis.
208, 209

 Al-Hajj et al. reported that the co-expression and plasticity of CD44 

and CD24 in various malignancies prompted their establishment as core CSC 

markers. They demonstrated that CD44⁺/CD24⁻/low cells possess greater tumor-

initiating capacity compared to CD44⁺/CD24⁺ cells, reinforcing their role as 

functional markers of breast CSCs.
210

  

Calcitriol and its analogues modulate CSC characteristics through several 

mechanisms. Treatment of basal-like MCF10DCIS cells with the Gemini vitamin D₃ 

analogue BXL0124 led to significant reductions in CD44 mRNA and protein 

expression.
211, 212 

Transcriptomic profiling of mammospheres derived from these cells 

revealed that 1,25(OH)₂D₃ and BXL0124 downregulated genes essential for CSC 

maintenance (e.g., GDF15), EMT, invasion, and metastasis (e.g., LCN2, S100A4), 

and chemoresistance (e.g., NGFR, PPP1R1B, AGR2), while upregulating basal-like 

differentiation markers (e.g., KRT6A, KRT5) and tumor suppressor genes (e.g., 

EMP1).
213
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2.11 BIOCHEMICAL BASIS OF CANCER 

Cancer cells exhibit distinct characteristics that enable uncontrolled proliferation, 

evasion of programmed cell death, and reliance on lactate as the principal metabolic 

fuel.
214

 Hanahan and Weinberg identified ten hallmark capabilities that drive the 

neoplastic transformation of normal cells. These hallmarks include genome instability, 

evasion of immune surveillance, resistance to growth suppressors, enabling 

replicative immortality, evasion of apoptosis, tumor-promoting inflammation, 

sustained proliferative signaling, induction of angiogenesis, activation of invasion and 

metastasis, and deregulation of cellular energetics, as detailed in Figure 5.
215

 

Biochemically, the key metabolic alteration in tumor cells is the Warburg effect, 

characterized’ by an ‘increased rate of aerobic glycolysis. This phenomenon, observed 

nearly a century ago, involves reduced mitochondrial function despite adequate 

oxygen availability. As a result, glucose is predominantly converted into lactate, 

which supports rapid cell division by contributing to the production of biomolecules 

(lipids, proteins, and nucleotides).
216, 217’

 

 

 

 

 

 

 

 

 

Figure 5: ‘Hallmarks of cancer - updated framework (circa 2022). 

The figure summarizes the evolving understanding of cancer biology. The left panel illustrates the 

core hallmarks and enabling characteristics, including the original six hallmarks (e.g., sustaining 

proliferative signaling, evading growth suppressors) along with validated additions such as 

deregulating cellular metabolism and avoiding immune destruction. The enabling characteristics, 

genome instability and tumor-promoting inflammation—facilitate acquisition of these traits. The right 

panel highlights newly proposed emerging hallmarks and enabling features, including unlocking 

phenotypic plasticity, nonmutational epigenetic reprogramming, senescent cells, and polymorphic 

microbiomes. Adapted from Hanahan and Weinberg.  

Source: DOI: 10.1158/2159-8290.CD-21-1059’ 
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2.12 ‘DEFICIENCY OF VITAMIN D IN BREAST CANCER 

Díaz et al. highlighted that in both in vitro and in vivo models, calcitriol has 

demonstrated anti-proliferative, pro-differentiative, and pro-apoptotic effects on 

cancer cells, suggesting its potential in limiting cancer progression or even preventing 

it. A wealth of observational studies correlates low circulating levels of cholecalciferol 

with an increased risk of cancer and poorer prognoses. However, the role of vitamin D 

in cancer risk, incidence, and mortality remains controversial. In cancer metastasis, a 

cascade of events, including extravasation and the subsequent outgrowth of 

disseminated cells, leads to epithelial-mesenchymal transition at secondary sites. 

Additionally, acquired resistance to chemotherapy remains a significant challenge in 

treating BC. Despite the presence of the VDR and the enzymatic machinery for’ 

vitamin D ‘metabolism in breast epithelial cells, the association between serum 

25OHD levels and BC risk remains debated. While some studies find no significant 

relationship, others report an inverse correlation between serum 25OHD levels and 

BC risk.
218, 219 

Villaseñor et al. reported that limited evidence suggests vitamin D 

status may influence outcomes in BC survivors, with higher 25OHD levels being 

associated with improved OS, though not necessarily with cancer-specific survival.
220

 

Prentice, R.L. et al reported reduced BC risk in certain cohort after supplementation 

with calcium and vitamin D.
221

 Nevertheless, whether hypovitaminosis D is a cause or 

a consequence of BC remains unclear, as does the optimal 25OHD level for cancer 

prevention. However, serum 25OHD levels exceeding 52 ng/mL are linked to a 50% 

reduced risk of BC compared to women with levels below 13 ng/mL, highlighting the 

importance of preventing vitamin D deficiency.
222, 223

 Consequently, hypovitaminosis 

D emerges as a modifiable risk factor for BC, which can be mitigated through 

supplementation or adequate sun exposure.’ 

 

2.12.1 ‘Effects of Calcitriol in Cancer Prevention and Treatment 

Calcitriol non-calcemic effects have gained considerable attention, with evidence 

showing that its role in cancer prevention extends beyond regulating calcium and 

phosphate levels. It influences various organ systems in a paracrine and autocrine 

manner, offering a promising approach to cancer treatment. It is estimated that by 

raising serum calcidiol levels to 40 - 60 ng/mL, over 220,000 cases of breast and 

colorectal cancer could be prevented annually worldwide.
224

 The mechanisms by 
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which calcitriol exerts its anti-cancer effects are diverse, and its actions vary 

depending on tissue type. The VDR is essential for these effects, and its loss in 

malignant cells can lead to resistance to calcitriol.
225

 Calcitriol supplements can 

activate the VDR, thereby restoring balance by recruiting Sirt1, which reduces pro-

inflammatory factors such as NF-κB and enhances anti-inflammatory factors like 

interleukin 10 (IL-10).
225

 Jeon and Shin noted that vitamin D₃ is primarily obtained 

through dietary sources such as fatty fish or synthesized in the skin following sunlight 

exposure (UVB radiation). Sun exposure is a significant factor influencing vitamin D 

synthesis, and geographical location, season, and lifestyle can impact vitamin D 

levels, as illustrated in Figure 6. 
226

 

Christakos et al. explained that the biologically active form of vitamin D₃, 

1α,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃), is produced through two hydroxylation 

steps. Initially, vitamin D₃ is converted to 25-hydroxyvitamin D₃ (25(OH)D₃) in the 

liver, which serves as a marker of vitamin D status. Subsequently, in the kidney, 

CYP27B1 hydroxylates 25(OH)D₃ to form the active 1,25(OH)₂D₃. The enzyme 

CYP24A1 regulates the levels of 1,25(OH)₂D₃ by degrading both 1,25(OH)₂D₃ and 

25(OH)D₃, thus maintaining homeostasis.
227’ 

  

Figure 6: ‘Schematic overview of vitamin D metabolism. 

Vitamin D is synthesized via UV-B exposure and obtained from dietary sources, followed by hepatic 

and renal hydroxylation. Its metabolism is regulated by PTH and FGF-23, with feedback mechanisms. 

The active form, calcitriol, exerts genomic and nongenomic actions through VDR-mediated signaling 

in target cells. Source: DOI:10.1038/s12276-018-0038-9 

Abbreviations: VDR: Vitamin D receptor, UV-B: Ultraviolet B, PTH: Parathyroid hormone, FGF-23: 

Fibroblast growth factor 23.’ 
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Once ‘formed, 1,25(OH)2D3 binds to the VDR, which forms a heterodimer with the 

retinoid X receptor (RXR), a member of the nuclear receptor superfamily. The VDR-

RXR complex then binds to vitamin D response elements (VDREs) in the DNA of 

target genes, modulating transcriptional activity by recruiting co-activators and 

releasing co-repressors.
227

 While the primary function of 1,25(OH)2D3 is to regulate 

calcium and phosphate homeostasis, the VDR is expressed not only in tissues 

involved in mineral metabolism but also in various cancerous tissues. Both in vitro 

and in vivo studies have shown that 1,25(OH)2D3 modulates signaling pathways 

involved in cell proliferation, apoptosis, differentiation, inflammation, invasion, and 

angiogenesis, as shown in Figure 7.
227, 228’ 

  

Figure 7: ‘Pleiotropic effects of calcitriol on cancer-associated cellular processes. 

Calcitriol exerts pleiotropic regulatory functions by modulating a range of cancer-relevant pathways, 

including proliferation, apoptosis, differentiation, metastasis, angiogenesis, inflammation, invasion, 

and autophagy. Source: DOI: 10.1007/s12032-022-01855-0’ 
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2.13 ‘BREAST CANCER AND VITAMIN D: MECHANISTIC INSIGHTS 

Breast epithelial cells are capable of locally converting vitamin D precursors into their 

active forms due to the presence of the enzymatic machinery for vitamin D 

metabolism, including 1α-hydroxylase and 24-hydroxylase, along with the expression 

of the VDR. Calcitriol plays an essential role in normal mammary gland development. 

This was evidenced in VDR knockout mouse models, where mammary 

morphogenesis was disrupted, and an exaggerated proliferative response to estrogen 

and progesterone was observed relative to wild-type controls.
229-231

 Several studies 

have demonstrated higher serum calcitriol levels in early-stage BC relative to 

advanced and metastatic disease, suggesting progressive dysregulation of vitamin D 

signaling during cancer evolution.  

Notably, aberrant overexpression of the CYP24A1 gene, encoding 24-

hydroxylase the enzyme responsible for calcitriol degradation has been identified in 

BC tissues, which may result in attenuation of calcitriol-mediated growth control.
232, 

233
 Eisman et al. reported that the presence of functional VDR in both normal and 

malignant breast cells suggests that neoplastic cells remain partially responsive to 

vitamin D metabolites.
234

 Experimental data in multiple’ in vitro and in vivo ‘BC 

models have confirmed the antiproliferative and pro-apoptotic actions of calcitriol and 

its analogs. However, the magnitude of these effects is modulated by tumor subtype, 

disease stage, VDR expression status, and combination with other therapies.
235-237

 

Comparative studies show that malignant breast tissues exhibit higher VDR 

expression than benign counterparts, suggesting a compensatory or regulatory role of 

VDR signaling in cancerous contexts.
238

 Mechanistically, calcitriol exerts tumor-

suppressive functions by modulating multiple cellular pathways, including inhibition 

of cell proliferation, induction of differentiation, G1 phase cell cycle arrest, 

suppression of oncogene expression, and attenuation of pro-inflammatory cytokine 

production.
214,239

 Chen et al. noted that these effects provide the rationale for 

exploring calcitriol and its analogs as therapeutic agents in oncology.
240

 

The clinical relevance of VDR expression extends across multiple BC 

subtypes, including ER-positive, PR-positive, and HER2-positive tumors where it has 

been associated with favorable prognostic features and less aggressive phenotypes.
17

 

Koshizuka et al. demonstrated that calcitriol and its analogs, EB1089 and 1,25(OH)₂-

16-ene-23-yne-19-nor-26,27-F6-D₃, synergistically enhanced the antitumor efficacy 
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of paclitaxel in vivo. Among these, EB1089, a non-calcemic analog, produced the 

most potent additive antineoplastic response. Given the high prevalence of VDR 

expression in breast tumors, exploiting VDR activation in conjunction with 

conventional chemotherapeutics emerges as a promising strategy.
241

 Further validation 

using MCF-7 xenograft models showed that the vitamin D analog CB1093 also 

potentiated paclitaxel cytotoxicity more effectively than cisplatin, highlighting 

subtype-specific chemo potentiation.
242

 Wang et al. later expanded this observation to 

ER-positive (MCF-7, T-47D) and TNBC (MDA-MB-231) cell lines. Pretreatment 

with calcitriol led to a significant reduction in the IC₅₀ of paclitaxel (up to 100-fold) 

and doxorubicin (up to 10-fold), primarily through enhanced apoptosis and Bcl-2 

phosphorylation a key marker of chemotherapeutic response.
243’

 

 

2.14 VITAMIN D AND BREAST CANCER 

2.14.1 ‘Observational and Meta-Analytical Evidence 

Initial epidemiological observations in the 1980s linked higher cancer incidence to 

regions with reduced sunlight exposure, particularly at higher latitudes. This 

geographic variation was hypothesized to reflect differences in cutaneous vitamin D 

synthesis due to lower ultraviolet B (UVB) radiation (Figure. 6), implicating vitamin 

D deficiency as a potential cancer risk factor.
244, 245

 Subsequent studies assessing 

baseline 25-hydroxyvitamin D [25(OH)D] concentrations at diagnosis confirmed that 

BC patients often present with vitamin D’ deficiency.
245

 ‘Karthikayan et al. observed 

that this deficiency appears to be particularly pronounced in patients with higher-

grade tumors, non-luminal molecular subtypes, and ER-negative status.
246

 

Observational studies have aimed to delineate the relationship between vitamin D 

status including 25(OH)D serum levels and dietary intake and BC risk, prognosis, and 

survival. However, limitations in sample size, study design, and confounders often 

preclude definitive conclusions. To address this, several meta-analyses have pooled 

results from independent cohorts to enhance statistical power. These analyses have 

demonstrated a modest protective association between higher serum 25(OH)D 

concentrations and decreased BC risk, with some reporting a 6% risk reduction per 5 

nmol/L increment in vitamin D levels.
247-250

 Notably, the protective effect was more 

evident in premenopausal women.
248
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Despite these findings, no consistent link has been observed between dietary vitamin 

D intake BC risk.
248

 While some meta-analyses support a reduction in BC progression 

or mortality with higher serum 25(OH)D levels.
251

 

 

2.14.2 Mendelian Randomization (MR) Studies 

To overcome confounding inherent in observational designs, MR studies have been 

employed. These studies utilize single nucleotide polymorphisms (SNPs) as 

instrumental variables to assess causality between genetically determined vitamin D 

status and BC risk. Initial MR studies identified SNPs in key vitamin D metabolism 

genes GC (encoding vitamin D binding protein), DHCR7, CYP2R1, and CYP24A1 as 

significant determinants of serum 25(OH)D levels. A large-scale genome-wide 

association study (GWAS) involving over 79,000 individuals later identified two 

additional loci: SEC23A and AMDHD1.
252

 

Jiang et al. analyzed six SNPs in a large dataset of 122,977 BC cases; however, no 

association was found between these genetic determinants of vitamin D status and BC 

risk.
253 

Expanding this approach, an MR study incorporating 138 SNPs across 69 

vitamin D-associated loci also failed to establish a causal role for serum 25(OH)D in 

BC development.
254

 Bouillon et al. found that these findings were consistent across 

both hormone receptor - positive and - negative subtypes. Thus, despite the increased 

statistical power and rigor of MR analyses, there remains no genetic evidence to 

support a causal role for vitamin D insufficiency in BC etiology. 255
 

 

2.14.3 Randomized Controlled Trials (RCTs) 

RCTs are the gold standard for evaluating causal relationships between interventions 

and outcomes. The VITamin D and OmegA-3 TriaL (VITAL) is one of the largest 

RCTs to assess vitamin D effect on cancer prevention. It enrolled 25,871 individuals 

in a randomized, double-blind, placebo-controlled design to test daily 

supplementation with 2000 IU of vitamin D₃, alone or combined with omega-3 fatty 

acids. The mean baseline 25(OH)D level’ was 30 ± 10 ng/mL, ‘increasing to 41.8 

ng/mL in the intervention group after one year.
256

 Although no significant difference 

in overall BC incidence was found, secondary analyses revealed a reduction in 

metastatic and fatal cancers, particularly in normal-weight participants (BMI <25).
257
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Lappe et al. conducted a 4-year randomized controlled trial involving 2,303 

postmenopausal women, in which daily supplementation with 2000 IU of vitamin D₃ 

and 1500 mg of calcium did not significantly reduce cancer incidence. Other RCTs 

have similarly explored the relationship between vitamin D₃ supplementation and 

cancer outcomes.
258

 The ViDa study, utilizing high-dose monthly supplementation 

(100,000 IU), also failed to show an effect on overall cancer incidence.
259

 Arnaout et 

al. conducted a targeted trial assessing the impact of vitamin D on tumor and found 

inconclusive results. In their study, preoperative high-dose vitamin D₃ 

supplementation (40,000 IU/day for 2–6 weeks) did not affect markers of proliferation 

(Ki67) or apoptosis (cleaved caspase-3) in breast tumor tissue, despite increased 

serum 25(OH)D levels.260
 Likewise, a study in high-risk premenopausal women 

receiving 20,000 IU/week for 12 months did not reduce mammographic density, a 

known surrogate marker of BC risk.
261

 

Recent meta-analyses of pooled RCTs also failed to confirm any significant 

reduction in BC risk with vitamin D supplementation.
78, 262

 Furthermore, no major 

RCTs in the last 5 years have addressed the effect of vitamin D on survival or 

therapeutic response in BC patients. However, two ongoing trials are exploring this 

domain: one evaluating the impact of neoadjuvant vitamin D₃ (50,000 IU/week) on 

pathological complete response (NCT03986268), and another assessing 5-year DFS 

following neoadjuvant vitamin D₃ therapy (NCT01608451). In sum, RCTs to date do 

not support a clear preventive or therapeutic role for vitamin D supplementation in 

BC. The heterogeneity in trial design, dosing regimens (daily vs. monthly), baseline 

vitamin D status, and uncontrolled self-supplementation during study periods pose 

challenges in interpreting outcomes. Thus, the optimal dosing strategy and target 

serum 25(OH)D level for BC prevention remain unresolved.
263’

 

 

2.15 ‘VDR EXPRESSION IN HUMAN BREAST CANCER CELLS 

The VDR is expressed in various cell types of the mammary gland, including lobular 

and ductal epithelial cells, where it contributes significantly to mammary gland 

development during key physiological stages such as puberty, lactation, and 

pregnancy periods marked by intense tissue growth and remodeling.
17, 264

 Zinser, 

Packman, and Welsh observed that in murine’ models, VDR ‘expression peaks in the 

differentiated cells of terminal end buds during puberty, with relatively lower levels in 
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proliferative zones.
265 

Knockout (KO) models lacking VDR exhibit accelerated ductal 

morphogenesis and branching compared to wild-type mice, highlighting VDR 

regulatory role during pubertal development. Additionally, in MMTV-neu transgenic 

mice, VDR deletion was associated with mammary fat pad atrophy, estrogen 

deficiency, weight loss, and reduced survival by 12 months of age.
266

 Adipocytes also 

influence mammary gland development, and VDR ablation in adipose tissue increases 

epithelial density during hormone-driven glandular expansion.
267

 Welsh et al. 

highlighted that adipose tissue serves as a reservoir for vitamin D metabolites, and 

VDR-mediated signaling between adipocytes and epithelial cells is implicated not 

only in physiological development but also in breast carcinogenesis.
268

 Furthermore, 

VDR is expressed in cancer-associated fibroblasts (CAFs), where its activation by 

1,25(OH)₂D₃ downregulates proliferative genes such as Neuregulin-1 (NRG1), 

suggesting a potential anti-tumorigenic function.
269

 

In human BC tissues, VDR expression is inversely associated with tumor 

aggressiveness. Studies have shown significantly higher VDR levels in benign lesions 

compared to both in situ and invasive carcinomas.
270

 Multiple reports indicate a 

progressive decline in VDR expression during tumor advancement, correlating with 

reduced responsiveness to vitamin D3.
268

 Indeed, BC cell lines lacking or exhibiting 

minimal VDR expression show poor sensitivity to 1,25(OH)₂D₃ or its analogs.
271 

Several studies have explored VDR as a prognostic biomarker for cancer progression 

and survival.
272 

Elevated total VDR expression, both nuclear and cytoplasmic, has 

been linked with favorable tumor characteristics such as lower histological grade, 

smaller tumor size, ER/PR positivity, reduced Ki-67 proliferation index, and 

improved BC specific survival.
16, 264

 Heublein et al. observed that in BRCA1-mutated 

BC cases, significantly elevated VDR expression is correlated with extended OS.273 

Xu et al. conducted a meta-analysis of seven studies and found no overall correlation 

between VDR expression and BC OS or DFS. However, subgroup analyses revealed 

that high total VDR expression in both nuclear and cytoplasmic compartments was 

positively associated with OS. Moreover, when immunoreactive score (IRS) 

thresholds other than IRS >5 or IRS >25 were used, a strong association emerged 

between higher VDR expression and improved survival outcomes.
272

 IRS is a semi-

quantitative immunohistochemical scoring method based on the product of the 

percentage of positive cells (scale 0–4) and staining intensity (scale 0-3), yielding a 
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composite score ranging from 0 to 12.
274

 Although Murray et al. did not find a 

significant correlation between VDR expression and DFS overall, they did observe a 

positive association within luminal A BC subtypes, with no corresponding association 

in’ basal-like, HER2-positive, or ‘luminal B subtypes. Collectively, these findings 

suggest the potential utility of VDR expression levels as a prognostic indicator for 

tumor progression.
 271

 

Further studies have examined the regulation of vitamin D metabolism in BC 

via CYP27B1 and CYP24A1. These enzymes modulate VDR signaling and are 

frequently deregulated during tumor dedifferentiation and progression.
268

 Most 

analyses indicate a reduction in CYP27B1 (responsible for converting 25(OH)D₃ to 

the active 1,25(OH)₂D₃) and an upregulation of CYP24A1 (which inactivates 

1,25(OH)₂D₃) in invasive carcinomas, a pattern suggestive of tumor cells evading 

vitamin D mediated antitumor effects.
270, 233

 Albertson et al. consequently recognized 

CYP24A1 as an emerging oncogene in BC.
232

 Beyond epithelial cells, CYP27B1 is 

also expressed in mammary adipose tissue, facilitating the local activation of 

25(OH)D₃ and paracrine modulation of neighboring cells.
268

 Notably, transcriptional 

induction of CYP24A1 by 1,25(OH)₂D₃ is stronger in CAFs than in normal 

fibroblasts, potentially accelerating vitamin D catabolism in the tumor 

microenvironment.
269

 However, a more recent investigation found reduced CYP24A1 

mRNA expression in breast tumor tissues, with lower levels correlating with 

improved OS.
275’

 

 

2.16 ‘PRECLINICAL ANTI-NEOPLASTIC EFFECTS OF 1,25(OH)2D3 ON 

BREAST CANCER  

2.16.1 Effects of 1,25(OH)2D3 on cell proliferation  

1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃), the active hormonal form of vitamin D, 

exerts its antiproliferative effects on BC cells primarily through the activation of the 

VDR. Binding of 1,25(OH)₂D₃ to VDR initiates a cascade of transcriptional events 

that suppress cell cycle progression. Notably, in VDR-knockout cells, these growth-

inhibitory effects are absent, confirming the VDR-dependent mechanism of action.
14, 

276
 Upon activation, 1,25(OH)₂D₃ upregulates the expression of cyclin-dependent 

kinase inhibitors (CDKIs), including CDKN2D (p19), CDKN1A (p21), and CDKN1B 

(p27), while simultaneously downregulating the expression of cyclins (D1, D3, A1, 
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E1) and cyclin-dependent kinases CDK2 and CDK4.
277-279

  This results in the 

suppression of CDK4/6 activity, reducing phosphorylation of the retinoblastoma (Rb) 

protein, a key cell cycle checkpoint regulator. The hypophosphorylated form of Rb 

retains its ability to bind and sequester E2F transcription factors, thereby blocking the 

transcription of E2F-regulated genes essential for G1/S transition, such as CDK2.
227

 

Dhawan, Weider, and Christakos reported that inhibition of E2F-driven gene 

expression leads to cell cycle arrest at the G0/G1 phase. Additionally, in ER-positive 

MCF7 cells, 1,25(OH)₂D₃ upregulates the transcription factor C/EBPα, which 

enhances the expression of’ VDR itself, establishing a ‘positive feedback loop that 

amplifies antiproliferative signaling.
280

 Beyond direct gene regulation, 1,25(OH)₂D₃ 

influences non-coding RNA pathways, particularly microRNAs (miRNAs), to exert 

growth control. miR-1204, for instance, has been shown to promote BC cell 

proliferation, EMT, and invasiveness both in vitro and in vivo. Mechanistic studies 

revealed that miR-1204 directly targets the 3′ untranslated region (UTR) of VDR 

mRNA, leading to translational suppression of VDR. Silencing miR-1204 results in 

increased VDR expression and a corresponding reduction in proliferation and 

invasion, indicating a crucial role of the miR-1204 VDR axis in tumorigenesis.
281

 

The antiproliferative effects of 1,25(OH)₂D₃ are further supported by in vivo findings. 

In the MMTV-PyMT transgenic mouse model, continuous subcutaneous 

administration of either 1,25(OH)₂D₃ or its precursor 25(OH)D₃ via osmotic 

minipumps significantly reduced the expression of proliferative markers such as Ki67, 

ErbB2, and cyclin D1, and suppressed overall tumor growth.
282

 Importantly, while 

25(OH)D₃ enhanced local intratumoral conversion to 1,25(OH)₂D₃ without inducing 

hypercalcemia, direct 1,25(OH)₂D₃ infusion resulted in elevated serum calcium levels. 

However, these effects are not universal. In a xenograft model derived from highly 

proliferative BC tissues, intratumoral injection of 1,25(OH)₂D₃ failed to reduce 

proliferation (measured by BrdU incorporation, Ki67, CDKN1A, CDKN1B) or 

induce apoptosis (assessed by Bcl-2 levels), suggesting that tumor type and local 

microenvironment influence the efficacy of vitamin D treatment.
283

 

In addition to 1,25(OH)₂D₃, its metabolite 24R,25-dihydroxyvitamin D₃ 

(24R,25(OH)₂D₃) also modulates BC cell behavior. In vitro, 24R,25(OH)₂D₃ 

stimulates DNA synthesis in ER-positive MCF7 and T47D cells through a caveolae-

associated phospholipase D-dependent pathway involving crosstalk with estrogen 
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receptors. Interestingly, in vivo administration of 24R,25(OH)₂D₃ in MCF7 xenograft 

models reduced tumor burden and enhanced survival. These effects were 

accompanied by the downregulation of pro-metastatic markers such as Snail1 and the 

CXCR4/CXCL12 chemokine axis, indicating an inhibitory role in invasion and 

metastasis.
284’

 

 

2.16.2 ‘Effects of 1,25(OH)2D3 on apoptosis  

1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃) induces apoptosis in BC cells by 

modulating multiple apoptotic signaling pathways in a cell type specific manner. The 

hormone promotes a shift in the apoptotic balance by downregulating anti-apoptotic 

proteins such as Bcl-2 and Bcl-xL, while concurrently upregulating pro-apoptotic 

mediators like Bax and Bak. This altered Bcl-2/Bax ratio favors mitochondrial outer 

membrane permeabilization and subsequent cell death over survival.
285

 Christakos et 

al. and Zheng et al. demonstrated that one of the key molecular pathways targeted by 

1,25(OH)₂D₃ is the RAS/MEK/ERK axis, which plays a critical role in both 

proliferation and anti-apoptotic signaling. Treatment of both ER-positive MCF7 and 

ER-negative MDA-MB-453 BC cells with 1,25(OH)₂D₃ significantly reduced RAS 

expression and inhibited phosphorylation of downstream kinases MEK and ERK1/2. 

This signaling blockade led to suppression of cell survival, and reactivation of RAS 

signaling reversed the antiproliferative effects of 1,25(OH)₂D₃, indicating that 

inhibition of this pathway is essential for its pro-apoptotic function.
227, 286

  Weitsman 

et al. provided further mechanistic insight into mitochondrial apoptosis by showing 

that pre-treatment of MCF7 cells with 1,25(OH)₂D₃ sensitized them to reactive 

oxygen species (ROS)-induced cytotoxicity. This occurred through a loss of 

mitochondrial inner membrane potential, triggering cytochrome c release into the 

cytosol, a hallmark of the intrinsic apoptotic pathway. The culmination of this cascade 

is caspase activation and cell death.
287

 Thus, 1,25(OH)₂D₃ acts as a mitochondrial 

stress sensitizer in hormone receptor positive BC cells. 

Duffy, Synnott, and Crown reported that the tumor suppressor gene p53, which 

encodes p53, is mutated in a high proportion of BCs, particularly in TNBC (80%) and 

HER2-positive subtypes (70%), while it is less commonly altered in luminal A (10%) 

and luminal B (30%) tumors.
168

 Notably, the VDR gene has been identified as a direct 

transcriptional target of p53 and its family members.
288

 However, in cells harbouring 
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mutant p53 (mutp53), a paradoxical interaction occurs between mutp53 and VDR. 

These mutant forms of p53 not only bind VDR but also functionally modify its 

activity, converting vitamin D from a pro-apoptotic to an anti-apoptotic agent. This 

phenomenon has been observed in TNBC cell lines such as MDA-MB-231 and MDA-

MB-468, which endogenously express mutp53R280K and mutp53R273H, 

respectively. Although the exact mechanism underlying this functional conversion 

remains unclear. This suggests that additional molecular alterations may cooperate 

with mutp53 to mediate an anti-apoptotic response to vitamin D3 in certain tumor 

contexts.
289

 

 

2.17 MicroRNA AND REGULATION OF VITAMIN D SIGNALING 

MicroRNAs (miRNAs) are a class of small, non-coding RNAs approximately 18 - 22 

nucleotides in length that regulate gene expression post-transcriptionally by binding to 

complementary sequences in the 3′ untranslated region (3′-UTR) of target mRNAs, 

resulting in mRNA degradation or translational repression.
290

 The biogenesis of 

miRNAs is a tightly regulated, as outlined in Figure 8, multistep process, and these 

molecules play key roles in various physiological and pathological processes 

including development, differentiation, proliferation, and apoptosis.
290

 Iorio and 

Croce and Croce highlighted that aberrant’ miRNA expression ‘has been implicated in 

numerous malignancies, where miRNAs function either as tumor suppressors or 

oncogenes depending on the cellular context. 
170, 291’ 

Mohri et al. Zhang et al. Chen et al. and Li et al. demonstrated that 

microRNAs (miRNAs) modulate key components of the vitamin D signaling 

pathway, including the VDR, the activating enzyme CYP27B1, the deactivating 

enzyme CYP24A1, and the nuclear co-receptor retinoid X receptor alpha (RXRα). 

Specifically, four miRNAs, miR-125b, miR-27b, miR-298, and miR-346 have been 

shown to directly target the VDR transcript, as represented in Figure 9.
 292-295

 The first 

such interaction was identified by Mohri et al. who demonstrated that miR-125b 

suppresses VDR expression in MCF-7 BC cells, abolishing the antiproliferative 

effects of 1,25(OH)₂D₃.
292’
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Figure 8: ‘Canonical pathway of miRNA biogenesis. 

In the nucleus, RNA polymerase II transcribes the miRNA gene, producing the primary transcript (pri-

miRNA). This is processed by the Drosha-DGCR8 complex to generate precursor miRNA (pre-miRNA), 

which is then exported to the cytoplasm via Exportin 5/RAN-GTP. In the cytoplasm, Dicer and TAR RNA-

binding protein (TARBP) further process pre-miRNA into a mature miRNA duplex. One strand of the 

duplex is incorporated into the RNA-induced silencing complex (RISC), composed of AGO2, GW182, and 

PABP. Imperfect base pairing between miRNA and target mRNA leads to translational repression or 

deadenylation mediated by CCR4-NOT, while perfect complementarity results in mRNA cleavage and 

degradation.  

Source: DOI: 10.1007/s00438-017-1301-9.’ 
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Similarly, ‘miR-27b regulates VDR expression in melanoma, colon (LS-180), 

pancreatic (PANC1), and lung fibroblast (MRC5) cell lines. Li et al. confirmed, using 

a luciferase reporter assay, that miR-27b directly binds the VDR 3′UTR, reducing 

VDR protein expression without affecting mRNA levels.
295

 Pan, Gao, and Yu found 

that the binding site for miR-298 in the VDR 3′UTR is evolutionarily conserved 

across humans, rats, and mice, and verified its interaction with VDR through 

luciferase-based assays.
296’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 9: ‘MicroRNAs regulated by 1α,25-dihydroxyvitamin D₃ and their associated target 

genes in various cancer types. This figure illustrates specific miRNAs modulated by 1α,25(OH)₂D₃, 

along with their respective target genes. The direction of regulation (upregulation or downregulation) 

of both miRNAs and their targets is indicated, highlighting the potential role of vitamin D in 

influencing oncogenic or tumor-suppressive pathways. 

Abbravations: VDR, vitamin D receptor; p27, CDKN1B—cyclin-dependent kinase inhibitor 1B; 

MCL-1, myeloid cell leukemia 1; hTERT, human telomerase reverse transcriptase; E2F3, E2F 

transcription factor 3; CDK6, cyclin-dependent kinase 6; p21, CDKN1A (WAF1/CIP1)—cyclin-

dependent kinase inhibitor 1A; E2F7, E2F transcription factor 7; JMJD1A, Jumonji domain 

containing 1A; MICA/B, MHC class I polypeptide-related sequence A/B; ULBP2, UL16-binding 

protein 2. Source: DOI: 10.1007/s00438-017-1301-9.’ 
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In the context ‘of inflammation, miR-346 was reported to downregulate VDR 

expression in intestinal epithelial cells by direct binding to the VDR 3′UTR.
294

 Other 

components of the vitamin D pathway are also regulated by specific miRNAs. 

CYP24A1, the enzyme responsible for catabolizing 1,25(OH)₂D₃, is regulated by 

miR-125b and the oncogenic miR-17~92 cluster. Functional studies in KGN and 

MCF-7 cell lines validated that miR-125b directly targets CYP24A1 mRNA.
297

 On 

the other hand, the activating enzyme CYP27B1 was shown to be targeted by miR-21 

in Mycobacterium leprae-infected monocytes, where luciferase reporter assays 

confirmed the direct interaction between miR-21 and CYP27B1.
298’

 

Ji et al. ‘demonstrated that miR-27a and miR-27b downregulate RXRα 

expression in hepatic stellate cells, while Adlakha et al. confirmed that miR-128-2 

suppresses RXRα expression in HEK293T cells via luciferase assay. RXRα, which 

forms a heterodimer with VDR to mediate vitamin D transcriptional responses, is 

regulated by several miRNAs, including miR-27a, miR-27b, miR-128-2, and miR-

574-3p.
299, 300

 Furthermore, Guérit et al. reported that miR-574-3p negatively 

regulates RXRα during chondrogenic differentiation of mesenchymal stem cells.
301

 

Collectively, these findings illustrate that miRNAs are critical post-transcriptional 

regulators of the vitamin D signaling pathway, influencing VDR activity, ligand 

metabolism, and nuclear co-receptor interactions. Their dysregulation can 

significantly alter vitamin D responsiveness in both physiological and pathological 

contexts, including cancer. 

 

2.18 VITAMIN D MODULATES miRNA EXPRESSION IN BREAST CANCER 

Vitamin D influences miRNA expression through multiple mechanisms that span both 

transcriptional and post-transcriptional regulation. Upon activation, the VDR binds to 

vitamin VDREs located in the promoter regions of specific miRNA genes, thereby 

regulating their transcription. Additionally, vitamin D can modulate miRNA 

biogenesis by altering the expression of key enzymes involved in miRNA processing, 

such as Drosha and Dicer, or by influencing the stability of mature miRNAs.
302

 

Kasiappan et al. demonstrated that vitamin D alters miRNA expression profiles that 

contribute to tumor suppression. A dose-dependent transcriptional induction of miR-

498 by vitamin D was observed in both MCF-7 breast and Ishikawa endometrial 

cancer cell lines, indicating a conserved mechanism across hormone-responsive 
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cancers. This upregulation of miR-498 has been implicated in mediating part of 

vitamin D anticancer activity.
303

 Additionally, in MCF-7 and MDA-MB-231 TNBC 

cells, vitamin D treatment led to reduced expression of miR-302c and miR-520, two 

miRNAs known to suppress the immune surveillance pathway. As a result, vitamin D 

enhanced the susceptibility of cancer cells to natural killer (NK) cell-mediated 

cytotoxicity by upregulating NKG2D pathway ligands such as MICA/B and ULBP2, 

which are known targets of these miRNAs.
304

 

Further supporting a regulatory role of VDR in miRNA expression, Alimirah 

et al. demonstrated that the miR-199a/miR-214 cluster (including miR-199a-3p, miR-

199a-5p, and miR-214) is negatively regulated by VDR through modulation of the 

Dnm3os gene in BC cell lines MCF-7 and T47D, as well as in murine VDR wild-type 

(WT-145) and knockout (VDRKO) mammary tumor models. Treatment of T47D 

cells with 50 nM of vitamin D for 24 hours led to a marked induction of VDR and p21 

at both mRNA and protein’ levels.
305

 Interestingly, ‘overexpression of miR-214 was 

found to attenuate vitamin D signaling in both MCF-7 and T47D cells, suggesting a 

feedback loop where certain miRNAs can dampen VDR-mediated transcriptional 

activity and partially reverse the anticancer effects of vitamin D.
305’

 

 

2.19 ‘MicroRNA GENE REGULATION IN TNBC 

miRNAs play a critical role in the post-transcriptional regulation of gene expression 

and have emerged as key regulators in the molecular pathology of TNBC. Several 

miRNAs have been identified as either tumor suppressors or oncogenes in TNBC, and 

their dysregulation contributes to cancer progression, cell cycle disruption, apoptosis 

resistance, and metastasis. One such tumor suppressor miRNA is miR-205, which is 

frequently downregulated in TNBC. miR-205 expression is positively regulated by 

p53, a well-known tumor suppressor that enforces cell cycle checkpoints and prevents 

the propagation of damaged DNA. Loss of p53, common in TNBC, leads to reduced 

miR-205 levels and impaired control over proliferative and invasive pathways.
306, 307

 

Functionally, p53 ensures that cells do not transition through the G1/S checkpoint 

with unrepaired DNA damage, a safeguard lost in many cancers.
308

 

Similarly, the Rb, another key tumor suppressor responsible for enforcing G1 

checkpoint fidelity, is often inactivated in TNBC. Loss of Rb function has been 

mechanistically linked to the post-transcriptional downregulation of Smurf2, an E3 
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ubiquitin ligase involved in the regulation of cell polarity, migration, and apoptosis, as 

presented in Figure 10. This downregulation is mediated by miRNA interference, 

highlighting the role of miRNAs as key regulators of tumor suppressive networks in 

TNBC.
309, 310

 Filipowicz et al.  explained that microRNAs typically act through 

mechanisms such as mRNA cleavage, chromatin remodeling, and translational 

repression, ultimately leading to decreased protein synthesis from target transcripts.
311

 

Additional miRNAs with tumor suppressor functions in TNBC include miR-203, 

which inhibits BIRC5 and LASP1, leading to reduced cell proliferation and migration 

and miR-200c, which suppresses the anti-apoptotic protein XIAP, thereby enhancing 

apoptosis and limiting tumor progression.
312

 Park et al. reported that miR-200c, a 

member of the miR-200 family, is essential for maintaining the epithelial phenotype 

of cancer cells by inhibiting EMT.
313 

Jang et al. found that the loss of other miR-200 

family members, such as miR-200a, has similarly been associated with aggressive 

tumor behavior and metastatic potential in BC.
314

 Conversely, certain miRNAs exhibit 

oncogenic properties in TNBC. For example, miR-221 promotes proliferation and 

survival; its knockdown results in cell cycle arrest and apoptosis induction, indicating 

its pro-tumorigenic role.
315

 Dong et al. reported that miR-21, a well-characterized 

oncomiR, is significantly overexpressed in TNBC’ tissues and is associated with poor 

prognosis. ‘It modulates multiple oncogenic pathways, including PTEN and PDCD4, 

thereby contributing to tumor cell proliferation and immune evasion.
316’

 

Similarly, ‘miR-182 is overexpressed in TNBC and has been linked to 

enhanced cell migration and invasion, thereby facilitating metastatic spread.
317

 Kong 

et al. demonstrated that miR-155 exemplifies oncogenic activity by targeting the 

tumor suppressor gene von Hippel–Lindau (VHL), which plays a key role in 

inhibiting angiogenesis. Downregulation of VHL by miR-155 promotes 

vascularization and tumor growth.
318 

Collectively, these findings emphasize that 

miRNAs are central modulators of TNBC. Tumor-suppressive miRNAs are frequently 

downregulated, allowing oncogenic pathways to dominate, while oncomiRs are 

upregulated to support unchecked proliferation, resistance to apoptosis, and 

metastasis. Understanding these regulatory circuits provides opportunities for 

developing miRNA-based diagnostics and targeted therapies. Additional findings on 

miRNAs in TNBC are summarized in Table 2.’ 
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Table 2. ‘Various microRNAs and their regulatory role in TNBC.’ 

 

microRNA Significance in TNBC 

miR-106b, ‘miR-17/92, miR-200 (a,b,c), miR-21, 

miR-155  

Upregulated ‘in TNBC 

miR-126, miR-145, miR-205 Downregulated in TNBC 

miR-424, miR-125a, miR-627, miR-579, miR-101 Metastasis 

miR-520g, miR-149, miR-342, miR-107, miR-520g-

h, miR-155, miR-30c, miR-382 

Markers for ER status 

miR-520g, miR-520d, miR-328, miR-373, miR-217, 

miR-504, miR-485-3p 

Markers for PR status 

miR-520d, miR-30b, miR-217, miR-363, miR-383, 

miR-377, miR-130a, miR-422a 

Markers for HER2/neu status 

miR-342, miR-27b, miR-150’ Prognostic markers’ 

 

 

 

Figure 10: ‘Post-transcriptional mechanism of microRNA action. 

This schematic illustrates the processing of pre-microRNA by Dicer into a miRNA duplex, 

consisting of a guide strand and a passenger strand. The guide strand is incorporated into the 

Argonaute-containing RNA-induced silencing complex (RISC), enabling recognition of 

complementary target mRNA. Binding of RISC to the 3′ untranslated region (UTR) of target 

mRNAs leads to translational repression or degradation. Abbreviations: miRNA – microRNA; 

AGO – Argonaute; UTR – untranslated region.  

Source: DOI: 10.1016/j.canlet.2014.07.036’ 

Abbreviations: ‘miR, microRNA; ER, estrogen receptor; PR, progesterone receptor; HER2, human 

epidermal growth factor receptor 2.’ 
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2.20 ‘MicroRNAs AND METASTASIS IN TNBC 

Several miRNAs have been implicated in the regulation of metastatic processes in 

TNBC, functioning either as metastasis suppressors or promoters. Among these, miR-

31 has been identified as a key anti-metastatic miRNA. Augoff et al. demonstrated 

that downregulation of miR-31 enhances metastatic potential in TNBC. The reduced 

expression of miR-31 was attributed to epigenetic silencing, specifically through 

hypermethylation of its promoter CpG island. Treatment with demethylating agents 

restored miR-31 expression, confirming that promoter methylation directly regulates 

its transcriptional silencing. These findings suggest that restoring miR-31 expression 

could be explored as a therapeutic strategy to inhibit metastasis in TNBC.
319 

In a related mechanism, miR-200b has also been shown to function as a 

metastasis-suppressive miRNA in TNBC. Humphries et al. reported that miR-200b is 

significantly downregulated in metastatic TNBC tissues, and this downregulation 

correlates with increased invasive behavior. Mechanistically, miR-200b targets 

protein kinase C alpha (PKCα), a key modulator of cytoskeletal dynamics and cell 

motility. Loss of miR-200b leads to unchecked PKCα expression, thereby promoting 

cell migration and metastatic’ dissemination. These findings highlight miR-200b ‘as a 

potential therapeutic target for preventing or reversing metastasis in aggressive TNBC 

subtypes.
320 

 

2.21 VITAMIN D SIGNALING IN TNBC 

Den Hollander, Savage, and Brown noted that unlike hormone receptor - positive or 

HER2-positive tumors, TNBC lacks effective targeted therapies and is currently 

managed with conventional chemotherapy, with or without radiotherapy. To date, no 

prophylactic agents have been approved for TNBC.
321

 Studies have reported 

significantly lower serum vitamin D levels in patients with TNBC, particularly in 

those with poor prognoses, compared to other BC subtypes.
322

 Thakkar et al. 

demonstrated that a majority of TNBC tumors express VDR, and that VDR agonists 

exert antiproliferative effects by inducing apoptosis and cell cycle arrest in TNBC cell 

lines. Growing interest has therefore emerged around the therapeutic potential of 

targeting the VDR pathway in TNBC.
323

 These findings suggest that VDR ligands 

could serve as adjuncts to standard chemotherapy. Supporting this, Chiang et al. 

reported that the calcitriol analog MART-10, when combined with calcitriol, 
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significantly suppressed metastatic potential in TNBC cell lines, with MART-10 

demonstrating greater potency than calcitriol alone.
324

 Additional evidence from 

LaPorta and Welsh and Flanagan et al. also confirmed the growth-suppressive effects 

of calcitriol and its analogs in TNBC cell lines such as SUM-159PT and WT145.
14, 325

 

Ferronato et al. further advanced this line of inquiry by evaluating two vitamin D 

analogues, EM1 and UVB1, in both HER2-positive and TNBC patient-derived 

xenograft (PDX) models.
326

 Among African-American women, who often present 

with lower baseline 25(OH)D levels, inverse associations were observed between 

vitamin D supplementation and TNBC risk, particularly with increased sun 

exposure.
327

 These population-level observations underscore a plausible association 

between vitamin D deficiency and BC. However, the inability to eliminate 

confounding variables in observational studies renders the causal inference difficult to 

establish.
328, 329

 VDR expression levels are notably higher in luminal A subtypes 

relative to TNBC, the most aggressive BC variant.17, 268 
These analogs significantly 

reduced tumor viability, with UVB1 additionally showing antiproliferative effects in 

trastuzumab-emtansine resistant cell lines and modulating VDR expression in PDXs. 

A mechanistic review by Blasiak et al. suggested that vitamin D may exert protective 

effects in BRCA1-mutated TNBC by stabilizing p53BP1 (tumor protein p53 binding 

protein 1) and preventing its degradation by cathepsin L. Vitamin D was also 

proposed to interact with proteins from the growth arrest and DNA damage-inducible 

45 (GADD45) family, further contributing to DNA’ repair and tumor suppression.
15 

‘
Despite these promising findings, some TNBC cell lines, such as MDA-MB-157, 

MDA-MB-231, and MDA-MB-468, have shown resistance to vitamin D treatment.
330

 

Stambolsky et al. and Hirshfield and Ganesan observed that the ineffectiveness of 

vitamin D in these models was attributed to the absence or dysfunction of the p53 

gene, resulting in a paradoxical anti-apoptotic rather than pro-apoptotic effect. They 

further emphasized that the presence of mutp53 may confer resistance to vitamin D 

signaling.
289, 331 

Santos-Martínez et al. found that calcitriol, through VDR activation, induced 

functional expression of ERα in ER-negative BC cells. This re-expression of ERα 

restored responsiveness to anti-estrogen therapy and inhibited cell proliferation.
332

 

Zheng et al. demonstrated the therapeutic synergy between calcitriol and paclitaxel 

(PTX) in TNBC. Calcitriol enhanced the antitumor efficacy of paclitaxel by 
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downregulating matrix metalloproteinase-9 (MMP-9) and Bcl-2, while upregulating 

E-cadherin expression.
333

 Moreover, it counteracted the elevation of C-C motif 

chemokine ligand 2 (CCL2) and Ly6C⁺ monocytes induced by paclitaxel, both of 

which are associated with metastatic spread. Supporting this, the combination of 

paclitaxel and calcitriol delivered via pH-sensitive micelles significantly suppressed 

primary tumor growth and lung metastasis in 4T1 tumor-bearing mice, a model of 

stage IV BC.
333

 These findings suggest a clinically translatable strategy to overcome 

the pro-metastatic side effects of chemotherapy. 

In addition, treatment of TNBC cells with ERβ agonists was shown to reduce 

invasiveness, while ERβ knockdown resulted in enhanced cell migration and 

invasion. These data indicate that combining calcitriol with ERβ agonists may offer 

an effective therapeutic strategy in ERβ-expressing TNBC cells.
334

 Due to the absence 

of hormone receptors and HER2 expression, TNBC is typically managed using broad-

spectrum chemotherapeutic agents such as platinum compounds (e.g., cisplatin, 

carboplatin), taxanes (e.g., paclitaxel, docetaxel), anthracyclines (e.g., doxorubicin, 

epirubicin), antimetabolites (e.g., 5-fluorouracil, methotrexate), and alkylating agents 

(e.g., cyclophosphamide).
335,336 

Interestingly, approximately one-third of TNBC 

tumors express VDR, and this expression has been inversely correlated with mitotic 

score, histological grade, proliferation index, and recurrence rate.
337

 Patients with 

VDR-positive TNBC tumors also exhibit prolonged OS (26 months) compared to 

VDR-negative cases. More recently, RNA-sequencing data from basal-like PDX 

models confirmed that VDR is among the most highly expressed genes in TNBC,’ 

further highlighting its potential as a therapeutic target.
338

 

 

2.22 ‘MECHANISTIC INSIGHTS INTO CALCITRIOL AND VDR 

SIGNALING IN BREAST CANCER AND TNBC 

Blasiak et al. illustrated that vitamin D₃ acts through VDR-mediated genomic 

and non-genomic mechanisms. Recent literature increasingly highlights VDR 

signaling as a context-dependent, subtype-specific, and therapeutically exploitable 

pathway, particularly in TNBC, as shown in Figure 11.
15

 Huss et al. provided 

compelling evidence that nuclear membrane-localized vitamin D receptor 

(VDR^num) expression in breast tumors is strongly associated with favorable 

prognosis.
339

 In a cohort of 878 BC patients, immunohistochemical analysis revealed 
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that VDR^num positivity correlated with better tumor differentiation, ER and PR 

positivity, and significantly prolonged BC free interval and OS. This effect was 

particularly pronounced in large, clinically detected tumors, suggesting that the 

transcriptionally active nuclear-bound form of VDR may represent a functional 

biomarker for endocrine-responsive BC subtypes.
339

 Veeresh et al. supported these 

findings through in vitro and in vivo studies, demonstrating that cholecalciferol 

reduced viability of BC cells by inducing G0/G1 or G2/M arrest and triggering 

apoptosis via upregulation of p53 and Bax and downregulation of Bcl-2 and cyclin 

D1. These antiproliferative effects were corroborated in mouse models bearing 

Ehrlich ascites carcinoma (EAC), where intraperitoneal administration of vitamin D3 

significantly decreased ascitic volume and tumor burden. This dual-level evidence 

emphasized the applicability of vitamin D3 across diverse subtypes, particularly in 

HER2-negative and TNBC, where conventional hormone therapies remain 

ineffective.
340

  

Wong et al. evaluated the combination of talazoparib, a PARP inhibitor, with 

calcitriol in BRCA1-wild-type and BRCA1-deficient TNBC cells (BT-20 and MDA-

MB-468). This combination therapy markedly increased S and G2/M phase arrest, 

triggered apoptosis and necrosis, and more effectively inhibited cell migration and 

viability than monotherapies. Notably, calcitriol potentiated the action of talazoparib 

by activating VDR-mediated transcription of cell cycle and apoptosis-related genes, 

while talazoparib impaired DNA repair by inhibiting PARP activity, offering a 

strategic pairing for BRCA-associated or triple-negative tumors.
341

 Similarly, 

Schneider et al. demonstrated the synergistic efficacy of calcitriol and ruxolitinib, a 

JAK2 inhibitor, in HER2-enriched and TNBC subtypes. Their combined treatment in 

MDA-MB-468 and SKBR3 cells significantly inhibited proliferation and induced 

G0/G1 and G2/M arrest through downregulation of c-Myc, cyclin D1, CDK1/4, and 

phosphorylated JAK2, while simultaneously upregulating p21, p27, p53, and cleaved 

PARP. These mechanistic findings were further validated in vivo using xenograft 

models, confirming reduced tumor growth and minimal toxicity.
342’
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Figure 11. ‘Synthesis, activation, and cellular actions of vitamin D₃ in cancer regulation. 

The figure illustrates the biosynthesis and molecular mechanisms by which vitamin D₃ exerts anticancer 

effects. Vitamin D₃ is synthesized in the skin from 7-dehydrocholesterol upon UVB exposure or obtained 

through dietary and supplemental sources. Following absorption, it undergoes hepatic hydroxylation by 

CYP27A1 and CYP2R1 enzymes to form 25-hydroxyvitamin D₃ \[25(OH)D₃], the primary circulating form. 

Renal conversion by CYP27B1 then produces the hormonally active form, 1,25-dihydroxyvitamin D₃ 

\[1,25(OH)₂D₃]. 

In the context of cancer, 1,25(OH)₂D₃ binds to the vitamin D receptor (VDR), which forms a heterodimer with 

retinoid X receptor (RXR) and translocates to the nucleus. This complex binds to vitamin D response elements 

(VDREs) in DNA, modulating the transcription of genes involved in tumor suppression, including those 

regulating proliferation, differentiation, apoptosis, angiogenesis, and metastasis. Additionally, 1,25(OH)₂D₃ 

can initiate non-genomic actions through membrane-associated rapid response steroid-binding (MARRS) 

proteins and intracellular signaling intermediates such as p62 and SCR1. These pathways influence cancer cell 

behavior by interacting with growth factor receptors and downstream signaling cascades. Together, the 

genomic and non-genomic actions of vitamin D₃ contribute to its anticancer potential, particularly in 

aggressive subtypes such as TNBC. Source: DOI: 10.3390/ijms21103670 

https://doi.org/10.3390/ijms21103670
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Mechanistic ‘studies have further elaborated the diverse genomic and non-

genomic functions of vitamin D in BC, revealing its interference with signaling 

cascades, metabolic circuits, immune modulation, and epigenetic regulation. 

Vanhevel et al. offered a detailed systems-level description of calcitriol-mediated 

tumor suppression, highlighting its capacity to halt the cell cycle via upregulation of 

CDK inhibitors (p21, p27), repress cyclins and CDKs, and prevent Rb 

phosphorylation. Apoptosis was induced through BAX and BAK activation, while 

EMT was reversed via SLUG suppression and E-cadherin restoration. In addition to 

its effects on tumor cell dynamics, calcitriol impaired CSC maintenance by 

suppressing CD44 and OCT4 and reprogrammed energy metabolism by 

downregulating LDH, PC, and SLC1A5. Furthermore, it enhanced tumor 

immunogenicity by increasing CD8+ T cell infiltration and sensitized cells to 

oxidative stress.
343

 Complementarily, Gkotinakou et al. demonstrated that calcitriol 

inhibits hypoxia-driven oncogenesis in breast tumors by suppressing HIF-1α and HIF-

2α expression through blockade of PI3K/AKT/mTOR and ERK pathways. This 

repression reduced VEGF and EGFR levels, limiting angiogenesis and proliferation. 

However, they also noted that hypoxic conditions promote calcitriol inactivation via 

CYP24A1 overexpression, highlighting the need for dual-targeting approaches to 

sustain VDR pathway integrity under unfavorable tumor microenvironments.
345

 

The regulatory interplay between calcitriol and epigenetic elements has 

emerged as another promising frontier in BC research. Blasiak et al. examined the 

vitamin D and VDR axis in relation to long noncoding RNAs (lncRNAs), including 

MALAT1, LINC00511, MEG3, and HOTAIR, and showed that calcitriol modulates 

these lncRNAs to suppress proliferation, EMT, and CSC phenotypes. Through both 

genomic and non-genomic routes, VDR influences epigenetic remodeling, 

transcription factor availability, and miRNA interactions. These findings suggest that 

restoring tumor-suppressive lncRNAs while repressing oncogenic ones via VDR 

activation may offer a precision-medicine strategy in BC therapy.
346

 Segovia-

Mendoza et al. further strengthened this notion by highlighting that calcitriol 

sensitizes TNBC cells to paclitaxel and cisplatin, and exhibits synergistic effects when 

combined with agents like curcumin, genistein, and melatonin. These combinations 

target multiple pathways, MAPK, β-catenin, and RelB, enhancing radiosensitivity, 

reversing drug resistance, and eliminating ALDH1⁺ CSC populations. Such evidence 
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consolidates the rationale for using calcitriol as a central adjuvant in multidrug 

regimens.
229

 Notably, calcitriol and BXL0124 suppress ductal carcinoma progression 

in vivo and inhibit the expansion of CSCs in mammosphere cultures, largely by 

inducing cellular differentiation and reducing expression of pluripotency-associated 

markers in TNBC models.
 212, 347’

 

From a ‘prognostic standpoint, variable VDR expression patterns in breast 

tumors have shown significant correlations with clinical outcomes, with studies 

suggesting a focality-specific dimension to VDR function. Zehni et al. found that in 

unifocal tumors, VDR positivity correlated with low grade, smaller size, and nodal 

negativity, indicating a tumor-suppressive role. In contrast, multifocal tumors with 

high VDR expression paradoxically showed higher metastatic staging and worse DSF, 

suggesting that spatial tumor distribution influences VDR functionality.
348

 Martínez-

Reza et al. introduced a new layer by showing that calcitriol induces autocrine 

production of IL-1β and TNF-α in TNBC cells, contributing to its antiproliferative 

effect. This mechanism was reversed upon blocking IL-1R1 and TNFR1, 

underscoring the relevance of immune-modulating cytokine signaling downstream of 

VDR activation.
349

 Huss et al. observed that both nuclear and cytoplasmic VDR 

staining were associated with lower tumor grade, ER/PR positivity, and longer 

survival, with cytoplasmic localization indicating possible non-genomic effects. These 

studies collectively point toward VDR as both a prognostic biomarker and therapeutic 

target, the utility of which may depend on localization, receptor status, and tumor 

heterogeneity.
17 

Further advancing the molecular understanding, earlier studies revealed 

crucial resistance mechanisms and metabolic interactions limiting vitamin D efficacy 

in BC. Fleet et al. (2012) outlined that calcitriol exerts its anti-tumor actions by 

upregulating apoptosis (Bax, caspase-3), cell cycle arrest (p21, p27), DNA repair 

(GADD45α), autophagy (Beclin-1), and antioxidant defense (SODs, TXNRD1). 

However, the overexpression of CYP24A1, silencing of VDR, and downregulation of 

CYP27B1 were identified as key factors that reduce calcitriol bioavailability and 

signaling in aggressive tumors.
350

 García-Quiroz et al.  demonstrated that astemizole, 

an antihistamine drug, enhances calcitriol efficacy by inhibiting Eag1 potassium 

channels, repressing CYP24A1, and amplifying VDR-RXR signaling. The combined 

treatment more effectively reduced Ki-67 and Eag1 expression and increased VDR 
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accumulation.
351 

Narvaez et al. emphasized that while VDR expression is largely 

retained in TNBC, tumor progression can disrupt its signaling due to ligand depletion 

and overactive metabolic degradation.
352

 LaPorta and Welsh (2014) further showed 

that 1,25(OH)₂D₃ regulates transcription of invasion-related and tumor suppressor 

genes in basal-like TNBC. VDR knockout abolished these effects, whereas restoration 

of human VDR reinstated responsiveness, confirming receptor dependency. These 

foundational insights reveal not only the mechanistic versatility of VDR signaling but 

also the potential for reversing resistance through metabolic or epigenetic 

intervention.
14’

 

Earlier ‘studies have laid the groundwork for the current understanding of 

vitamin D and VDR signaling as a multifaceted regulatory axis in BC. Ditsch et al. 

provided one of the earliest comprehensive analyses of VDR expression in breast 

tumors using immunohistochemistry, reporting that 92% of tumors exhibited 

detectable levels of VDR protein. Importantly, high VDR immunoreactivity scores 

correlated with smaller tumor size, absence of lymph node metastasis, and improved 

progression-free and OS. Both nuclear and cytoplasmic VDR staining patterns were 

observed, suggesting that VDR mediates its tumor suppressive effects via both 

genomic (nuclear) and non-genomic (cytoplasmic) mechanisms, as indicated in Figure 

11.’ These findings confirmed the prognostic significance of VDR ‘in BC and 

established a benchmark for evaluating receptor localization in future clinical 

studies.
353

 Around the same time, García-Quiroz et al. investigated the use of 

calcitriol in combination with astemizole, a known potassium channel blocker and 

CYP24A1 inhibitor. They demonstrated that this combination enhanced VDR 

expression and potentiated the antiproliferative effects of calcitriol by blocking the 

catabolism of 1,25(OH)₂D₃, effectively increasing its half-life and transcriptional 

activity. Downregulation of Ki-67 and Eag1 protein levels confirmed reduced 

proliferation, even at sub-cytotoxic doses, suggesting the feasibility of using calcitriol 

in combination therapies for hormone receptor-independent BC subtypes.
351

 

Adding further mechanistic depth, Banwell et al. uncovered that resistance to 

1,25(OH)₂D₃ in aggressive BC cell lines such as MDA-MB-231 could be attributed 

not to mutations in the VDR gene, but rather to epigenetic silencing of its downstream 

signaling. Despite having a wild-type VDR, these cells exhibited high expression of 

nuclear co-repressors such as SMRT and NCoR1, which recruited histone 
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deacetylases (HDACs) to VDR-bound chromatin. This led to transcriptional silencing 

of vitamin D-responsive genes, ultimately attenuating its antiproliferative effects. 

Remarkably, treatment with the HDAC inhibitor Trichostatin A restored VDR 

signaling and re-sensitized cells to vitamin D analogs such as Ro26-2198, 

highlighting a new therapeutic direction based on overcoming transcriptional 

repression. This early demonstration of VDR-related epigenetic resistance was pivotal 

in shaping subsequent strategies that combined calcitriol with HDAC inhibitors or 

CYP24A1 antagonists to enhance its anti-tumor efficacy, particularly in TNBC.
352’

 

The systemic relevance of vitamin D ‘levels in BC incidence and prognosis was 

further supported by Wu et al. who showed through epidemiological analysis that 

higher serum 25(OH)D levels were associated with reduced incidence of BC and 

improved survival, especially in premenopausal women. This observation 

complemented mechanistic data by demonstrating the physiological importance of 

maintaining adequate’ vitamin D levels not only for ‘bone health but also as a 

potential preventive strategy against BC development.
353

 Friedrich et al. also 

identified a potent anti-inflammatory and anti-proliferative synergy between calcitriol 

and the COX2 inhibitor celecoxib in both hormone receptor-positive and TNBC cell 

lines. Calcitriol suppressed COX2 mRNA and protein expression, thereby reducing 

the pro-inflammatory prostaglandin E2 (PGE2) levels, and this effect was amplified in 

combination with celecoxib. In addition, this dual therapy downregulated aromatase 

activity, implicating a crosstalk between vitamin D and estrogen biosynthesis 

regulation, especially relevant in hormone-responsive tumors.
355

 

Peng et al. introduced a novel application of vitamin D in photodynamic 

therapy (PDT) for BC by demonstrating that calcitriol pretreatment enhances the 

efficacy of hematoporphyrin derivative (HPD)-mediated PDT. Calcitriol upregulated 

the expression of coproporphyrinogen oxidase (CPOX), a key enzyme in the heme 

biosynthesis pathway, leading to increased accumulation of protoporphyrin IX 

(PpIX), the active photosensitizer in PDT. Upon light activation, this enhanced PpIX 

level produced significantly more reactive oxygen species (ROS), leading to increased 

apoptosis and tumor cell death. These findings revealed that calcitriol can be 

effectively employed as a sensitizing agent to improve PDT outcomes, especially in 

TNBC cells where limited therapeutic options exist. This strategy reflects a shift in 
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how vitamin D could be integrated into multimodal therapies that extend beyond its 

classical role as a transcriptional regulator.
356

 

These foundational studies laid the critical groundwork for contemporary 

translational research on vitamin D and VDR in BC. They highlighted the receptor 

role in tumor suppression via regulation of proliferation, apoptosis, differentiation, 

inflammation, and angiogenesis. The discovery of resistance mechanisms such as 

CYP24A1 overexpression, histone deacetylation, and hypoxia-mediated calcitriol 

degradation has prompted the development of new therapeutic strategies combining 

VDR agonists with metabolic inhibitors, epigenetic modulators, or targeted therapies. 

Collectively, this body of evidence supports the hypothesis that vitamin D signaling 

when intact and pharmacologically reinforced can offer a significant advantage in 

managing aggressive and receptor-negative BC subtypes such as TNBC. This 

evolving field continues to uncover deeper layers of VDR function and therapeutic 

application, reinforcing its potential as a cornerstone in future oncologic 

interventions.’ 

  

2.23 ‘ROLE OF ERα AND ERβ IN BREAST CANCER’ 

Estrogens ‘regulate key cellular processes including proliferation, 

differentiation, and survival through receptor-mediated mechanisms that function via 

both genomic and non-genomic pathways. Initially, estrogenic activity was believed 

to be mediated solely by a single estrogen receptor, now termed ERα.
357

 However, the 

discovery of a second isoform, ERβ, introduced a paradigm shift, as this receptor 

exhibits a distinct tissue distribution and regulatory profile compared to ERα.
358

 

Jefferson et al. reported that ERα and ERβ are widely expressed across mammalian 

tissues, and their transcriptional activity is influenced by promoter specificity and 

receptor-binding preferences. These factors may account for the tissue- and isoform-

specific effects of estrogens.
359’

 

ERβ, encoded by the ESR2 gene, ‘belongs to the nuclear transcription factor 

superfamily. Structurally, the DNA-binding domain of ERβ shares 96% homology 

with ERα, while the ligand-binding domain shares 60%, indicating both functional 

overlap and divergence.
360

 Although ERβ is primarily detected in normal mammary 

epithelial cells, it is also present in 20–30% of BCs [Hawse et al., 2020]. Later studies 
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suggest that the positivity rate of ERβ in breast tumors exceeds 60%, although its 

biological role remains incompletely defined.
360

 

Oueslati et al. demonstrated that ERβ acts as a negative regulator of ERα, 

opposing its oncogenic effects and correlating with better prognosis and prolonged 

DSF.
361

 Functional assays in vitro have confirmed that ERβ inhibits angiogenesis, 

tumor growth, and metastatic potential through repression of proliferation, migration, 

and invasion of BC cells.
362

’ 

 

2.24 ‘ERβ SIGNALING AND THERAPEUTIC RELEVANCE IN BREAST 

CANCER 

Chen et al. observed an association of ERβ expression with aggressive 

features such as high proliferation rates and distant metastases.
363

 However, its co-

expression with ERα has also been linked to high-grade tumors and metastatic 

behavior, indicating a complex interaction between the isoforms.
364

 Grober et al. 

demonstrated that ERβ can inhibit ERα transcriptional activity by competing for 

estrogen response elements (EREs) or by recruiting distinct co-repressors.
365

 This 

competitive inhibition highlights the importance of the ERα:ERβ ratio in determining 

cellular outcomes. 

Although ERα and ERβ bind EREs similarly, their ability to recruit different 

transcription factors and cofactors can result in divergent gene expression profiles. 

This duality leads to both overlapping and isoform-specific transcriptional 

programs.
366

 Notably, ERα functions predominantly as an oncogene by upregulating 

genes like cyclin D1 and Bcl-2, whereas ERβ functions as a tumor suppressor by 

promoting apoptosis and maintaining cellular differentiation.
366

 Miziak et al. reported 

a role of estrogen–estrogen receptor in mammary gland development and is a major 

determinant of BC.
367’

 

Oueslati et al. ‘noted that resistance to endocrine therapies such as tamoxifen 

often arises due to crosstalk between ER and EGFR or their downstream effectors.
361

 

In this context, ERβ-selective agonists have been proposed as potential therapeutic 

agents, particularly in early-stage ERα-positive ductal carcinomas where they may 

delay or prevent disease progression. For advanced lobular carcinomas, ERα 

antagonists may be more beneficial.
368
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Clinical observations support these mechanistic insights. Chang et al. reported a 

significant reduction in ERβ gene expression in breast tissue samples from 120 

patients following chemotherapy in phase II–IIIA stages, suggesting therapy-induced 

ERβ suppression.
369

 In contrast, another study in 78 postmenopausal women with 

invasive stage II–III disease reported no significant change in ERβ levels before and 

after endocrine therapy, pointing to variable responses depending on treatment type 

and tumor.
362

 

 

2.24.1 Prognostic and Predictive Implications of ERβ in Breast Cancer 

The precise prognostic value of ERβ remains under investigation. Recent 

studies have focused on epigenetic mechanisms, such as hypermethylation of the ERβ 

promoter, and on the predictive relevance of ERβ:ERα ratios in response to 

therapy.
360, 370

 Despite inconsistent findings across cohorts, cumulative evidence 

supports the role of ERβ as a potential independent prognostic and predictive 

biomarker, particularly in patients treated with chemotherapy and hormone therapy. 

ERβ isoform-specific analyses have shown that high expression of ERβ2 and ERβ5 

correlates with poor OS, particularly in ERα-negative subtypes and TNBC. Elevated 

Ki-67 and poor prognostic indicators are frequently associated with these isoforms, 

suggesting an isoform-dependent divergence in ERβ function.
371

 Studies also support 

the role of ERβ as a predictive and prognostic biomarker in benign and malignant 

breast tissues.
372 

 

2.24.2 Structure and Functional Domains of ERβ 

The discovery of ERβ in rat prostate and ovary by Kuiper et al. in 1996 

expanded the classical understanding of estrogen signaling pathways.
373

 ERβ belongs 

to the nuclear receptor superfamily (type I), functioning as a ligand-activated 

transcription factor. In its inactive state, ERβ resides in the cytoplasm and translocates 

to the nucleus upon ligand binding, forming homodimers that interact with 

palindromic EREs on DNA.
374

 The ERβ protein is structurally composed of five 

domains arranged from the N-terminal to the C-terminal: A/B (NTD), C (DBD), D 

(hinge), and E/F (LBD), as illustrated in Figure 12. The ESR2 gene, located on 

chromosome 14q23.2, encodes ERβ and spans approximately 61.2 kb, whereas ERα 

is encoded by the ESR1 gene on chromosome 6q25.1.
363’
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Full-length ‘ERα and ERβ consist of 595 and 530 amino acids, corresponding to 

molecular weights of approximately 66 kDa and 59 kDa, respectively. The A/B 

domain (NTD) confers receptor specificity and contains activation function 1 (AF1), 

which mediates ligand-independent transcriptional activity. The highly conserved C 

domain (DBD) enables specific DNA binding. The hinge region (D domain) contains 

nuclear localization signals and connects to chaperone proteins like heat shock 

proteins, stabilizing DNA binding. The E/F domain (LBD) includes activation 

function 2 (AF2), responsible for ligand-dependent transcriptional regulation.
375

 

Comparative analysis reveals that ERα and ERβ share 97% homology in their DBDs, 

59% in LBDs, and only 16% in NTDs, indicating significant divergence in 

transcriptional regulation and coregulator interaction.
363 

Swedenborg et al. reported that alternative splicing generates ERβ isoforms 

(ERβ2–5), which differ in the ligand-binding domain (LBD) sequence, resulting in 

truncated activation function 2 (AF2) domains and compromised ligand-binding 

Figure 12. ‘The structure of human ERβ1 and other human ERβ1 isoforms.  

Aa, Amino acids; NTD, NH2-terminal domain; AF1, activation function 1; HD, hing domine; DBD, 

DNA-binding domain; LBD, ligand-binding domine, AF-2, activation function 2; COOH, carboxyl 

terminal.’ 
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capacity. Among these, only ERβ1 retains full-length functionality, enabling it to bind 

estrogens and mediate downstream gene regulation, while the other isoforms exhibit 

limited or no estrogen responsiveness.
376

 

2.24.3 Estrogen Receptor Signaling Mechanisms: Genomic and Non-Genomic 

Pathways 

Estrogen signaling in cells is mediated via two principal mechanisms: genomic 

and non-genomic. In the genomic pathway, estrogen (primarily 17β-estradiol, E2) 

binds to intracellular ERα or ERβ, forming receptor dimers that translocate to the 

nucleus. These dimers interact with EREs and other cis-regulatory elements such as 

AP-1 and Sp1 on promoters of target genes (Figure 13), regulating transcription.
377

 

Chen et al. explained that the resulting’ transcriptional program influences various 

cellular processes, ‘including proliferation, apoptosis, differentiation, and vascular 

function. This genomic response is relatively slow, typically occurring over hours due 

to the need for chromatin remodeling and mRNA synthesis.
363

 

In contrast, the non-genomic mechanism involves rapid signal transduction 

initiated by membrane-localized receptors. E2 can activate G-protein-coupled 

estrogen receptor 1 (GPER1) or membrane-associated ERα/ERβ, triggering 

downstream cascades such as MAPK, STATs, and Src-family tyrosine kinases.
376

 

These rapid responses occur within seconds to minutes and do not require direct 

transcriptional engagement, although they can influence gene expression indirectly 

via kinase-mediated phosphorylation’ of transcription factors. 

 

2.24.4 ‘Functions of ERβ in TNBC 

Multiple studies have elucidated the non-genomic actions of estrogen signaling in 

TNBC, which operate independently of classical ERE. Wang et al. and De Francesco 

et al. demonstrated that 17β-estradiol suppresses VEGF expression and angiogenesis 

through activation of GPER-1.
378, 379

 Tao et al. identified the E2/GPER/miR-

148a/HOTAIR axis as a’ mediator of metastatic behavior in TNBC, ‘complementing 

previous findings that estrogen-mediated vascular regulation in ER-negative tumors 

involves ERK1/2 activation and HIF1α induction. This signaling cascade provides a 

mechanistic basis for estrogen-driven effects in the absence of classical estrogen 

receptors.
380

 Fuentes and Silveyra reviewed the interplay between genomic (ERE-
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dependent) and non-genomic (kinase-activated) pathways, highlighting the 

involvement of co-regulators such as PELP1, SRC-1, and CBP/p300 in modulating 

estrogen receptor function.
357

 These studies collectively underscore the significance of 

cytoplasmic signaling events and long non-coding RNAs in shaping ERβ’s functions 

within TNBC cells.’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further insights into ERβ1 transcriptional regulation and ‘prognostic 

implications in TNBC were provided by Shanle et al., who used inducible ERβ 

expression models in MDA-MB-468 cells to show suppression of Wnt/β-catenin 

signaling alongside upregulation of CDKN1A and CDH1. Despite ERβ1 being 

expressed in a subset of TNBC tumors and its correlation with Ki-67 in one cohort, its 

prognostic utility remained inconsistent, likely due to inter-study differences in 

Figure 13: ‘Mechanisms of estrogen action.  

E2 participates in the genomic route by attaching to intracellular ERα and ERβ receptors to produce a 

complex that reaches the nucleus and binds to DNA to control gene transcription. In the non-genomic 

route, E2 binds to a GPER1 and initiates fast signal transduction that involves STATS, and MAPK and 

Src. The non-genomic response happens in seconds to minutes, while the genomic process takes hours.  

Abbreviations: GPER1, G protein-coupled estrogen receptor 1; ERα, estrogen receptor alpha; ERβ, 

Estrogen receptor beta; STATS, signal transducers and activators of transcription; MAPK, mitogen-

activated protein kinase; Src, proto-oncogene tyrosine-protein kinase.’ 
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detection techniques and tumor heterogeneity.
24

 Expanding the functional landscape, 

Song et al. reported that mitochondrial-localized ERβ (mitoERβ) regulates energy 

metabolism through interaction with mtDNA, enhancing both ATP and ROS 

generation.
381

 Reese et al. further validated the therapeutic relevance of ERβ1 by 

demonstrating its capacity to sensitize ERα positive BC cells to anti-estrogen 

therapies and to suppress proliferation in TNBC models.
382

 In addition, Bado et al. 

revealed that ERβ1 counteracts mutp53-driven oncogenic signaling and upregulates 

epithelial markers such as E-cadherin and SHARP1, thereby mitigating metastatic 

progression.
383

 

Clinical investigations have offered translational relevance to these preclinical 

findings. In a phase II trial, Wisinski et al. administered high-dose oral estradiol to 

metastatic TNBC patients and reported modest efficacy restricted to ERβ-positive 

cases, supporting the selective utility of estrogen therapy in this subgroup.
384 

Rajah et 

al. demonstrated that genistein and 17β-estradiol synergistically reduced cell 

proliferation and induced apoptosis in MDA-MB-231 cells by modulating Bax/Bcl-2 

ratios.
385 

In parallel, Yang et al. reported that heteronemin triggered apoptosis in 

TNBC by inhibiting ERK1/2 and STAT3 pathways, revealing another potential 

avenue for therapeutic modulation.
3
 Zhao et al., through Mendelian randomization, 

provided epidemiological evidence that genetically elevated estradiol levels are 

associated with reduced systemic inflammation, suggesting estrogen broader’ 

immunomodulatory potential beyond its roles in tumor.
386

 

 

Foundational ‘research established the early framework for understanding 

ERβ role in BC subtypes. Mann et al. first identified ERβ expression in approximately 

47% of ERα-negative BCs, with a positive correlation to improved clinical outcomes 

among patients receiving adjuvant hormone therapy.
387

 These findings positioned 

ERβ as an independent prognostic factor and challenged the prevailing ERα-centric 

diagnostic paradigm. Harvey et al. contributed methodological advancements by 

demonstrating the superiority of IHC over ligand-binding assays in assessing ER 

status and predicting tamoxifen responsiveness.
388

 Ross et al. added a genetic 

dimension by reporting that ESR1 mutations can drive ligand-independent estrogen 

signaling, even when ER protein remains IHC - positive, potentially explaining some 

therapy-resistant phenotypes.
389

 Thomsen et al. advocated for combining ESR1 
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mRNA in situ hybridization with IHC to improve diagnostic accuracy, particularly in 

tumors with borderline or heterogeneous ER expression.
390

 Earlier, Mur et al. had 

demonstrated that prolonged estradiol exposure suppressed proliferation in ER-

negative cells, likely via non-genomic pathways, offering one of the first insights into 

alternative estrogen receptor signaling mechanisms.
391

 Collectively, these 

foundational and contemporary studies provide a comprehensive framework for 

advancing ERβ-targeted strategies in TNBC management.’ 

 

2.24.5 ‘ERβ in TNBC: Suppressor Role and Clinical Correlation 

ERβ plays a tumor-suppressive role in TNBC, a BC subtype characterized by the 

absence of ERα, PR, and HER2. Approximately 20–30% of TNBC tumors express 

ERβ, and this expression is linked to improved prognosis and survival outcomes.
30, 392

 

Aspros et al. demonstrated that ERβ forms a transcriptional co-repressor complex 

with enhancer of zeste homolog 2 (EZH2), which suppresses NFκB/p65 signaling, a 

known driver of oncogenic inflammation and tumor progression in TNBC. This 

complex formation is dependent on the presence of p65, suggesting that ERβ 

functions dually as a transcriptional repressor and a modulator of oncogenic 

signaling.
30

 The suppressive activity of ERβ has been visualized in molecular 

pathway studies (Figure 14), which illustrate its ability to reprogram EZH2 and block 

tumor-promoting transcription. Mukhopadhyay et al. reported that the biological 

effects of ERβ in TNBC are influenced by p53 mutation status, which alters its 

functional consequences. In TNBC cells harboring wild-type p53, ERβ 

overexpression promotes cell proliferation, whereas ERβ knockdown induces 

apoptosis. Conversely, in p53-mutant TNBC cells, ERβ acts as a tumor suppressor by 

promoting apoptosis and inhibiting proliferation, suggesting that p53 status is a key 

determinant of ERβ functionality.
393’

 

 

2.24.6 ‘Influence of p53 Mutations on ERβ-Mediated Therapeutic Responses 

Mut-p53 alters the transcriptional landscape of TNBC and significantly affects ERβ-

mediated signaling. When p53 is mutated, ERβ expression correlates with anti-

proliferative effects, while in wild-type p53 backgrounds, ERβ may paradoxically 

promote proliferation.
394

 Scarpetti et al. documented a clinical case of a TNBC patient 

with brain metastasis who responded to tamoxifen therapy. The patient exhibited 
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elevated ERβ expression and a reduced metastatic burden following treatment 

withdrawal, highlighting a potential anti-proliferative synergy between mut-p53 and 

ERβ.
395

 

Further, ERβ upregulation has been associated with enhanced doxorubicin 

sensitivity in ERβ-positive TNBC cell lines (MDA-MB-231 and BT-549) through 

inhibition of the PI3K/AKT/mTOR pathway. Combination therapy using doxorubicin 

and liquiritigenin (a selective ERβ agonist) has shown synergistic anti-proliferative 

effects in vitro, reinforcing the therapeutic promise of ERβ modulation in 

chemoresistant TNBC.
396’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 14. ‘ERβ-mediated tumor suppression via EZH2 and NF-κB pathway blockade in 

TNBC. ERβ acts as a tumor suppressor in TNBC by forming a complex with EZH2, blocking the 

NFκB/p65 oncogenic signaling pathway. 

Abbreviations: ERβ, Estrogen receptor beta; EZH2, enhancer of zeste homolog 2; NF-κB, nuclear 

factor kappa B.’ 
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2.24.7 ‘Potential Benefits of Targeting ERβ in TNBC: Mechanistic and 

Translational Perspectives 

Basal expression of ERβ is generally low in TNBC cell lines; however, its 

inducible upregulation has demonstrated promising translational relevance. Activation 

of ERβ via specific ligands reduces survivin expression, induces tumor suppressors, 

and inhibits cell proliferation, migration, and invasion through both ligand-

independent and ligand-dependent mechanisms.
3
 These findings support the 

feasibility of ERβ-targeted therapies to counteract metastatic progression in TNBC. A 

clinical study found reduced ERβ levels in breast tumor tissue compared to adjacent 

normal tissue, with mitoERβ levels inversely correlating with recurrence risk. In 

animal models, enforced mitoERβ expression hindered both TNBC cell growth and 

tumor volume.
381

 Furthermore, data from African-American TNBC patients revealed 

high ERβ expression in tumor tissue, with IGF2 shown to transcriptionally activate 

ERβ expression in TNBC cell lines. The IGF2 ERβ axis may thus represent a novel 

targetable mechanism for managing aggressive TNBC phenotypes.
397

 

At the molecular level, ERβ2/cx and ERβ4 - 5 isoforms promote tumor 

aggressiveness by enhancing hypoxia signaling, correlating with early relapse in 

TNBC patients. While ERβ1, ERβ2/cx, and ERβ5 share sequence identity except at 

the C-terminus, truncation in ERβ2 and ERβ5 compromises ligand-binding capacity, 

affecting dimerization and signaling. Despite their truncated domains, these isoforms 

may still heterodimerize with ERα, thereby modifying estrogen responsiveness in 

TNBC.
398’

 

 

2.25 ‘ERβ1 EXPRESSION IN TNBC: PROGNOSTIC ROLE AND CLINICAL 

UTILITY 

ERβ1, the full-length isoform with an intact ligand-binding domain, has been 

studied extensively for its potential tumor-suppressive functions in TNBC. Zambo et 

al. proposed that ERβ1 expression correlates with reduced tumor aggressiveness, but 

its prognostic value remains subject to cohort-specific variability.
392

 Yan et al. 

reported that IHC analysis of familial BC subtypes (BRCA1, BRCA2, and BRCAX) 

revealed that BRCA1-mutated tumors were significantly more likely to be ERα-

negative and ERβ1 - positive. Notably, nuclear ERβ1 expression predicted a favorable 

response to endocrine therapy at a 15 years follow-up.
399
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Nagandla and Thomas and Honma et al. reported that approximately 18 - 27% of 

TNBC tumors express ERβ1, and several studies support its independent prognostic 

value, particularly in postmenopausal women. In this subgroup, ERβ1 positivity was 

associated with significantly higher survival rates, challenging the traditional view of 

TNBC as a’ hormone-insensitive disease.
400

 Shanle et al. evaluated two TNBC 

‘cohorts using the VECTRA™ automated IHC platform and found that cytoplasmic 

and nuclear ERβ1 expression levels were correlated. However, a significant 

association with Ki-67 was observed in only one of the cohorts.
401

 Takano et al. 

similarly reported that ERβ1 expression, whether assessed using the Allred score or 

percentage positivity, was not predictive of clinical outcomes in TNBC.
402

 

Furthermore, the functional role of ERβ1 is isoform-dependent, with ERβ1 

exerting tumor-suppressive effects, while ERβ2 and ERβ5 have been implicated in 

promoting tumorigenesis. Yan et al. demonstrated that these isoforms modulate 

distinct signaling axes, reinforcing the importance of isoform-specific evaluation in 

prognostic stratification.
25

 

 

2.26 MOLECULAR MECHANISMS AND THERAPEUTIC IMPLICATIONS 

OF ERβ1 IN TNBC 

The tumor-suppressive functions of ERβ1 in TNBC involve its interaction 

with several oncogenic signaling pathways. Assunta Sellitto et al. demonstrated that 

ERβ1 interacts with the PTEN/PI3K/pAKT axis, where the ERβ1(+)/pAKT(−) status 

correlates with the most favorable prognosis in TNBC patients.
21

 Loss or 

downregulation of ERβ1 activates the transforming growth factor-beta receptor 

(TGFβR) pathway, leading to the upregulation of matrix metalloproteinase-13 (MMP-

13) and CXCL8, which are critical mediators of tumor invasion and metastasis. This 

activation is antagonized by cystatin secretion, which inhibits TGFβR signaling a 

response enhanced by ERβ1 activation, presented in Figure 15.
25

 

Gene expression profiling revealed that ERβ1 activation via chloroindazole 

(CLI), an ERβ-selective agonist, results in downregulation of pro-invasive genes and 

suppression of tumor migration and invasion, highlighting its therapeutic potential.
26

 

Furthermore, ERβ1 directly inhibits the PI3K/AKT/mTOR signaling pathway, 

sensitizing TNBC cells to doxorubicin, a key chemotherapeutic agent.
396’
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Samanta et al. demonstrated that ERβ1 modulates ‘EGFR-dependent signaling and 

indirectly suppresses IGF2 mRNA-binding protein 3 (IMP3), a known pro-metastatic 

factor in TNBC.
403

 In addition, Salahuddin et al. reported that ERβ1 activation 

downregulates VEGF expression, thereby impairing neovascularization within the 

tumor microenvironment. This inhibition of angiogenesis represents another crucial 

mechanism through which ERβ1 exerts its tumor-suppressive effects in TNBC.
404’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clinically, ‘ERβ1 expression has been positively associated with both OS and 

DSF in patients treated with tamoxifen, suggesting that ERβ1 may serve as a 

predictive biomarker and therapeutic target, especially in TNBC subtypes that were 

traditionally considered hormone-unresponsive.
405

 

  

Figure 15. ‘ERβ1 inhibits PTEN/PI3K/pAKT and TGFβR signaling. ERβ1 mediates inhibition of 

the PTEN/PI3K/pAKT pathway and blocks the TGFβR, leading to subsequent cystatin production, 

reduction in MMP-13 and CXCL8 production, and decreased TNBC invasion and migration.  

Abbreviations: ERβ1, Estrogen receptor beta 1; PTEN, phosphatase and tensin homolog; PI3K, 

phosphatidylinositol-3 kinase; AKT, protein kinase B; TGFβR, transforming growth factor beta 

receptor; MMP-13, matrix metalloproteinase 13; CXCL8, C-X-C motif chemokine ligand 8.’  
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2.26.1 Tumor-Suppressive Effects of ERβ1 and 17β-Estradiol in TNBC Cell 

Lines 

In vitro studies have established that ERβ1 expression suppresses tumor 

growth and metastatic potential in TNBC cell lines such as MDA-MB-231, MDA-

MB-468, and Hs578T. ERβ1 inhibits cell proliferation, induces G1 cell cycle arrest, 

suppresses colony formation, and significantly reduces xenograft tumor volume in 

animal models, as represented in Figure 16.
401, 406

 

Reese et al. observed that approximately 30% of TNBC cases express ERβ, 

and treatment with 17β-estradiol (E2) significantly reduces proliferation in ERβ-

positive TNBC cell lines. E2 further enhances these anti-proliferative effects through 

ERβ1’ activation.27
 These findings affirm that E2-ERβ signaling exerts a tumor-

suppressive effect, ‘contrasting with its traditionally perceived oncogenic role in ERα-

positive BC.’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treeck et al. ‘reported that the functional effects of 17β-estradiol (E2) in TNBC are 

context-dependent. E2 can exert anti-tumoral activity through activation of ERβ and 

GPER-1, while also interacting with estrogen-related receptors (ERRs), which 

modulate estrogen signaling in both ligand-dependent and ligand-independent 

Figure 16. ‘E2 activation of ERβ blocks G1 phase. E2 stimulates the ERβ and blocks the G1 phase, 

inhibiting colony formation and reducing tumor growth.  

Abbravations: E2, Estradiol; ERβ, Estrogen receptor beta; G1; Gap 1 phase; G0, resting phase; S, 

DNA synthesis; G2, Gap phase 2; M, mitosis.’ 
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manners.
401

 The dual capacity of ERβ to influence gene transcription through direct 

ligand binding or through coactivator-independent pathways underscores its complex 

role in hormonal regulation.
407,408

 

Importantly, E2-mediated ERβ1 activation has been linked to reduced 

proliferation in TNBC lines, as demonstrated by Reese et al., who showed that both 

E2 and ERβ-selective agonists inhibit TNBC cell growth via ERβ1-dependent 

mechanisms.
21

 Cittelly et al. suggested that these findings provide a rationale for 

combining E2-depletion strategies, such as aromatase inhibitors, with immune 

checkpoint blockade (e.g., PD-1 inhibitors) and radiotherapy, particularly in 

metastatic or recurrent TNBC.
409

 

Collectively, these data position ERβ1 as a central regulator of tumor 

suppression in TNBC, acting through multiple interconnected pathways, including 

inhibition of PI3K/AKT, EGFR, TGFβ, and angiogenic signaling. Its ability to 

mediate E2 - driven anti-tumor responses in ERα negative contexts broadens the 

therapeutic landscape for TNBC and supports’ its utility as a dual prognostic and 

therapeutic target. 

 

2.26.2 ‘Clinical Translation and its limitation 

Ongoing clinical trials are exploring the utility of ERβ activation in TNBC 

management. A Phase II trial titled “Therapeutic Targeting of ER β in TNBC” 

(ClinicalTrials.gov Identifier: NCT03941730) aims to evaluate the clinical efficacy of 

E2-based interventions in ERβ-positive TNBC cases.  

 

2.26.3 Limitations  

Despite the mechanistic support for E2-induced ERβ activation, a Phase II clinical 

study involving an unselected but largely ERβ-positive metastatic TNBC cohort failed 

to show a significant survival advantage with E2 therapy.
410

 Wisinski et al. 

demonstrated in xenograft models expressing inducible ERβ that administration of E2 

led to G1 cell cycle arrest and tumor regression. E2–ERβ interactions were associated 

with reduced tumor formation and growth, thereby validating ERβ as a potential 

therapeutic target for tumor suppression in vivo. These results underscore the 

importance of patient selection, isoform-specific expression, and functional receptor 

status in determining therapeutic outcomes.
384

 



2. REVIEW OF LITERATURE  

 

Vitamin D3 Mediated Regulation of Hormone Receptors in the Pathogenesis of Triple- Negative Breast Cancer       72 
 

The reviewed literature underscores the distinct, context-specific roles of both 

VDR and ERβ1 signaling in BC, especially in triple-negative subtypes. Calcitriol and 

VDR signaling demonstrates broad anti-tumor mechanisms through genomic, non-

genomic, metabolic, and immunologic pathways. Simultaneously, ERβ1 emerges as a 

tumor suppressor with isoform-specific and immune-modulatory functions in TNBC. 

However, gaps remain in translating these mechanistic insights into clinical 

applications, particularly in understanding the combinatorial effects of VDR and 

ERβ1 modulation. These findings provide the rationale for the current investigation 

into the cooperative effects of calcitriol and 17β-estradiol in ERβ1-positive TNBC 

models.’ 
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AIM  

o To ‘demonstrate the role of vitamin D3 and 17β-estradiol in TNBC progression 

and its therapeutic implications.’  

 
OBJECTIVES  

 

o To ‘demonstrate the association between the expression of vitamin D receptor 

and ERβ1 in triple negative breast cancer.’  

o To analyze ‘and compare the in silico binding affinities of vitamin D3 and 17β-

estradiol with key target proteins (ERβ, EGFR, VEGF and Caspase 3) in 

triple-negative breast cancer.  

o To elucidate the molecular mechanism of vitamin D3 and 17β-estradiol agonist 

treatment in triple negative breast cancer progression using in vitro model.’  
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Need for the study 

TNBC is an aggressive subtype ‘with limited targeted treatment options and poor 

prognosis. Vitamin D₃, through activation of the VDR, and 17β-estradiol, through 

ERβ1, have shown tumor-suppressive effects. However, the combined role of VDR 

and ERβ1 activation in TNBC progression has not been adequately investigated. This 

study is needed to explore whether vitamin D₃ with 17β-estradiol can modulate key 

oncogenic pathways and offer a novel therapeutic strategy for TNBC management.’ 

 

Hypothesis 

 

We hypothesize ‘that calcitriol, through activation of the VDR, and 17β-estradiol, via 

ERβ1, individually and in combination, exert regulatory effects on TNBC progression 

by modulating key oncogenic pathways including proliferation (EGFR), angiogenesis 

(VEGF), and apoptosis (caspase-3). Their combined receptor-targeted modulation 

may offer a promising therapeutic approach for ERβ1-positive TNBC.’ 
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4. MATERIALS and REAGENTS   

This study ‘was designed to explore the therapeutic potential of calcitriol and 17β-

estradiol in ERβ1-positive TNBC through a combination of experimental and 

computational approaches. This study was conducted from 2020 to 2025 using a 

structured, multi-phase design.  

It was carried out in three sequential phases:  

i. Immunohistochemical profiling of tumor tissues. 

ii. Molecular docking studies to evaluate receptor–ligand interactions. 

iii. In vitro assays using TNBC cell lines to assess functional responses to 

treatment. 

4.1 STUDY DESIGN 

Type of study: Cross-sectional and experimental. 

Study Duration: 2020-2025 

STUDY POPULATION  

The study focused specifically on invasive ductal carcinoma (IDC), given its high 

prevalence among BC subtypes and its well-documented clinical relevance. Human 

breast cancer tissue samples were used in this study, and all procedures were 

conducted in accordance with institutional ethical guidelines.’ Ethical clearance was 

obtained from the Institutional Ethical Committee of BLDE (Deemed to be 

University), Vijayapura, Karnataka, India (Approval No. BLDE(DU)/IEC/631-

C/2022-2023, dated 28/05/2022). FFPE tissue blocks were retrieved from the archives 

of the Department of Pathology, Shri B. M. Patil Medical College, Hospital and 

Research Centre, Vijayapura, for the period between August 2020 and May 2023. ‘A 

total of 30 histologically confirmed cases of IDC in female patients aged 30 to 75 

years (mean age: 56 years) were included in the study. 

BC molecular subtyping was performed using IHC evaluation of hormone receptor 

status, ER, PR and HER2 expression. Based on IHC profiles, tumors were classified 

into the following molecular subtypes:
410’ 

 Luminal A: ER+, PR+, HER2− 

 Luminal B: ER+, PR+/−, HER2+ 

 HER2-enriched: ER−, PR−, HER2+  

 TNBC: ER−, PR−, HER2−  
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The ‘distribution of cases was as follows: TNBC (n = 15), Luminal A (n = 8), Luminal 

B (n = 4), and HER2-enriched (n = 3). Clinicopathological data, including patient age, 

receptor status, histological subtype, and tumor grade (I and II), were obtained from 

the immunohistochemistry registry. 

 

4.2 General Consideration of IHC 

IHC is a technique that utilizes the specific binding between antigens and antibodies 

to detect protein expression within tissue sections. The core principle of IHC is based 

on antigen–antibody interactions, where a primary antibody binds selectively to its 

target antigen. This is followed by the application of a secondary antibody conjugated 

with an enzyme, typically horseradish peroxidase (HRP), which facilitates signal 

detection. Visualization is achieved through the enzymatic conversion of a 

chromogenic substrate, such as 3,3'-diaminobenzidine (DAB), producing a colored 

precipitate at the site of antigen localization. This enables morphological assessment 

and semi-quantitative evaluation of protein expression under light microscopy. IHC 

plays a vital role in cancer diagnosis, classification, and biomarker research due to its 

high specificity and tissue context preservation. 

 

Requirements 

i. Formalin-fixed, paraffin-embedded tissue blocks 

ii. Diagnostic Biosystems kit 

iii. Pressure cooker 

iv. VDR (anti-VDR, sc-13133, Santa Cruz Biotechnology, CA, USA) 

v. ERβ1 (ERβ1-sc-390243, Santa Cruz Biotechnology, CA, USA) 

vi. Microscopic slides 

vii. Coplin staining jars  

viii. Mayer’s hematoxylin  

ix. Coverslip 

x. Distrene Plasticiser Xylene (DPX) 

xi. Microscope 

xii. AR pro software 

xiii. Image J software’ 
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4.2.1 Optimized IHC Protocol 
411

 

‘The tissue sections were cut into 3–4 µm thickness. 

 

Deparaffinized using multiple changes of xylene (a few minutes each). 

 

Treated with isopropyl alcohol, then rinsed in water. 

 

Performed antigen retrieval in EDTA buffer at 120°C for 15 minutes. 

 

Washed with Tris-buffered saline (TBS, pH 7.4) for a few minutes. 

 

Incubated with tissue primer for 5 minutes; follow with TBS wash. 

 

Applied background blocker (5 minutes), then incubate with primary antibodies,                        

VDR and ERβ1 (each 1 hour). 

 

Washed in TBS, apply enhancer reagent (15–20 minutes). 

 

After TBS wash, incubated with Poly HRP secondary antibodies (30 minutes). 

 

Performed another TBS wash, then developed with DAB chromogen (3–5 minutes). 

 

Rinsed with distilled water; counterstained with Mayer’s hematoxylin. 

Rinsed again, allowed slides to air-dry, and mounted with DPX 

.’ 

 

 

  

Figure 17: ‘Stepwise representation of the optimized IHC protocol.’ 
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4.2.2 Patterns of VDR Expression in TNBC Subtypes 

VDR ‘expression was assessed across different subcellular compartments of tumor 

cells within TNBC subtypes. Immunohistochemical evaluation revealed the presence 

of VDR staining in both the cytoplasm and nucleus of tumor cells (Figure 18). The 

cytoplasmic expression of VDR was semi-quantitatively assessed based on staining 

intensity, which was graded into four distinct categories: negative (0), weak (1+), 

moderate (2+), and strong (3+). A sample was considered VDR-positive in the 

cytoplasm if at least 20% of the tumor cells demonstrated staining at the highest 

intensity grade.
339

 This threshold was established to ensure consistency in identifying 

cases with biologically meaningful expression. 

Nuclear expression of VDR was also assessed. A tumor was considered 

positive for nuclear VDR if 10% or more of the tumor cell nuclei showed visible 

immunoreactivity. This dual localization both cytoplasmic and nuclear suggests 

possible functional diversity in VDR-mediated signaling pathways within TNBC 

subtypes.
339’

 

  

Figure 18. ‘Immunohistochemical staining of VDR expression in ERβ1-positive TNBC 

tumour cells (40X). The image shows distinct subcellular localization of VDR: (a) cytoplasmic 

staining, (b) nuclear staining.’  
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4.3 ‘ERβ1 RECEPTOR EXPRESSION 

In addition to VDR, the expression of ERβ1 was evaluated in both TNBC and luminal 

A tumor tissues using a scoring system that accounted for both the extent and 

intensity of cytoplasmic staining.
382

 ERβ1 was considered positive when more than 

10% of tumor cells exhibited cytoplasmic immunoreactivity.
412

 This criterion was 

chosen based on previous studies that demonstrated its relevance for categorizing 

functional ERβ1 expression in breast tumors. The extent of ERβ1 staining was scored 

as follows: score 0 for <1% of positive cells, score 1 for 1%–25%, score 2 for 26%–

50%, score 3 for 51%–75%, and score 4 for 76%–100% positive cells. The intensity 

of staining was recorded using the four-tier system:  negative (0), weak (1+), 

moderate (2+), and strong (3+).  

To provide a comprehensive assessment, a combined score was calculated by 

summing the extent and intensity scores. Based on this cumulative score, ERβ1 

expression was categorized into three levels: low or negative (scores 0–2), moderate 

(scores 3–5), and high (scores 6–7).
382

 This classification allowed a nuanced 

differentiation between tumors with negligible expression and those with potentially 

functional ERβ1 signaling,’ as illustrated in Figure 19.  

 

 

 

 

Figure 19. ‘Immunohistochemical staining of ERβ1 receptor showing cytoplasmic localization 

in ERβ1-positive TNBC tumor cells (40X). (a) ERβ1 receptor expression in cytoplasm.’ 
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4.4 PROTEIN and LIGAND PREPARATION 

4. 4.1 General consideration 

Accurate preparation of protein and ligand structures is essential for reliable 

molecular docking and interaction studies. The predictive success of computational 

modeling is largely’ dependent on the quality of the input structures, ‘particularly the 

completeness and chemical accuracy of both receptors and ligands. 

For protein targets, only high-resolution crystal structures (≤2.5 Å) are 

considered to ensure fidelity in binding site definition and atomic positioning. These 

structures, typically obtained from the Protein Data Bank (PDB), often require 

preprocessing due to missing atoms, unresolved residues, or the presence of non-

essential crystallographic components such as water molecules and bound ligands. 

Standard preparation steps involve hydrogen addition, structural correction, and 

geometry optimization to ensure readiness for docking. 

Ligand preparation similarly focuses on ensuring the molecules reflect their 

biologically active conformations. This involves obtaining 3D structures from trusted 

chemical databases like PubChem and optimizing them through appropriate force 

fields to achieve accurate bond angles, stereochemistry, and energy-minimized 

geometry. Proper preparation directly influences the docking pose accuracy and 

binding affinity estimations. 

 

4.4.2 Protocol 

High-resolution 3D crystal structures of four key protein targets relevant to TNBC 

were selected based on their functional roles in proliferation, angiogenesis, and 

apoptosis. The following PDB IDs were used: 

 Estrogen Receptor Beta (ERβ) – PDB ID: 1QKM 

 Epidermal Growth Factor Receptor (EGFR) – PDB ID: 1A28 

 Vascular Endothelial Growth Factor (VEGF) – PDB ID: 2BCW 

 Caspase-3 – PDB ID: 3MZW 

Protein refinement was conducted using Cresset Flare v9.0, which facilitates structure 

optimization and receptor–ligand interaction modeling.  

The refinement process included: 

 Addition of polar hydrogen atoms. 

 Correction of missing residues or atoms based on structural validation reports. 
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 Removal of non-essential water molecules. 

 Energy minimization and geometry optimization to ensure docking 

compatibility. 

For ligand preparation, the bioactive compounds investigated were: 

 Calcitriol (PubChem CID: 5280453). 

 17β-Estradiol (PubChem CID: 5757).’ 

These ligands were downloaded from the PubChem database in SDF format. The 

structures were converted into PDBQT format for compatibility with docking tools. 

Following preparation, ‘both proteins and ligands were validated and aligned with the 

predicted active site residues using Flare’s binding site analysis tools. These 

optimized and pre-processed structures were used for downstream molecular docking 

studies, ensuring a high level of structural accuracy and consistency. 

 

4.5 CELL LINE and REAGENTS 

Requirements 

 T25 flask 

 Serological pipettes 

 Hand gloves 

 70% alcohol 

 Inverted microscope. 

 MDA-MB-468 cell line 

 Leibovitz’s L-15 medium  

 Fetal bovine serum (FBS) 

 Antibiotic-antimycotic (ABAM) solution 

 Trypsin-ethylenediaminetetraacetic acid (EDTA)  

 5% CO₂ incubator 

The MDA-MB-468 TNBC cell line was obtained from the National Centre for 

Cell Science (NCCS), Pune, India. Cells were cultured in Leibovitz’s L-15 medium 

supplemented with 10% FBS and 1% antibiotic-antimycotic solution. All cell culture 

media and reagents were procured from HiMedia Laboratories Pvt. Ltd., Mumbai, 

India. Cultures were maintained at 37°C in a humidified incubator under atmospheric 

conditions, as L-15 medium does not require CO₂ supplementation. Subculturing was 
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performed using trypsin-EDTA, and cells were regularly observed for morphology 

and confluence under an inverted microscope. 

The compounds used for treatment were calcitriol and 17β-estradiol. Calcitriol 

(Cat. No. S1466) was obtained from Selleckchem (Houston, TX, USA) and was 

dissolved in DMSO to prepare stock solutions. 17β-estradiol (Cas No. 50-28-2), 

purchased from Sigma-Aldrich (St. Louis, MO, USA), was dissolved in ethanol. 

Working concentrations were freshly prepared by diluting the stock solutions in 

culture medium immediately prior to each experiment.  

All cell handling procedures were performed under aseptic conditions in a 

biosafety cabinet. Reagents were freshly prepared, and all experiments were 

conducted in triplicate to ensure data accuracy and reproducibility.’ 

 

4.5.1 ‘Cell Culture 

4.5.2 Revival of MDA-MB-468 Cell Line 

Removed required reagents (e.g., complete medium, Leibovitz’s L-15 + 10% FBS + 

1% ABAM solution, from the refrigerator and kept them in a 37°C water bath for 15-

20 minutes.’ 

 

 

Wiped the exterior of all reagent bottles with 70% ethanol before placing them into 

the biosafety cabinet (BSC) 

 

 

‘Retrieved the cryovial containing MDA-MB-468 cells from liquid nitrogen (LN₂) 

storage. 

 

Thawed the cryovial quickly in a 37°C water bath for 1–2 minutes until just liquified. 

 

Clean the surface with 70% ethanol and transfer the cryovial to the biosafety cabinet 

(BSC) 

 

Transferred the vial contents into a 15 mL sterile centrifuge tube. 
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3 mL of complete medium was added to it 

 

 

Centrifuged at 800–1000 rpm for 4 minutes to pellet the cells. 

 

 

Carefully discarded the supernatant without disturbing the cell pellet. 

 

 

Gently resuspended the pellet by tapping the tube. 

 

 

4 mL of complete medium was added, and mixed gently.’ 

 

 

‘Transferred the cell suspension into a T25 cell culture flask. 

 

  

Examined the cells under an inverted microscope for morphology  

  

 

Incubated the flask at 37°C in a humidified CO₂ incubator under standard conditions.’ 

 

  

 

4.5.2 Post-revival monitoring 

 

‘Changed the complete medium every 3 days. 

 

 

Observed daily for contamination and color change in the medium  

(indicative of pH shift). 

 

Once MDA-MB-468 cells reached approximately 80% confluence, proceeded with 

the subculturing procedure.’ 

 

  

Figure 20: ‘Revival procedure of the MDA-MB-468 cell line’ 

Figure 21: ‘Post-revival monitoring procedure of the MDA-MB-468 cell line.’ 
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4.5.4 Subculturing of MDA-MB-468 cells 

     ‘(Performed when cells reach 80% confluence) 

Complete medium and trypsin-ethylenediaminetetraacetic acid solution kept in a 37°C 

water bath for 25-30 minutes. 

 

 

Transferred the reagents into the BSC  

 

  

 

Observed the cells under an inverted microscope to confirm 80% confluence. 

 

 

 

Carefully aspirated and discarded the spent medium from the T25 flask.’ 

 

 

 

‘Gently rinsed the cell monolayer with 1–2 mL of sterile PBS to remove residual 

serum that may inhibit trypsin activity. 

 

 

 

Discarded the PBS and add 0.5–1 mL of trypsin-EDTA solution to the flask. 

 

 

 

Tilt the flask to ensure even coverage of the cell surface. 

 

 

 

Incubated at 37°C for 3–5 minutes, monitoring periodically under the microscope 

until cells begin to round and detach for T25 flask. 

 

 

 

Once detachment is complete, 3–4 mL of complete medium was added to neutralize 

the trypsin. 

 

 

 

Gently pipette up and down to form a single-cell suspension. 
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Transfered the suspension into a 15 mL centrifuged tube and centrifuge at 800–1000 

rpm for 4 minutes. 

 

 

 

Discarded the supernatant and gently resuspended the cell pellet in fresh complete 

medium. 

 

 

 

Seeded the required volume of the cell suspension into a new culture T25 flask or 96 

well plate (e.g., split 1:2 or 1:3 depending on experimental needs). 

 

 

 

Incubated the flask at 37°C in a humidified CO₂ incubator.’ 

 

 

 

Labeled the flask with passage number, date, and cell line name for record-keeping. 
 

 

4.6. ‘MTT ASSAY - Measurement of Viable Cells 

4.6.1 General Consideration 

The MTT assay is a colorimetric method used to evaluate cell viability by 

measuring the metabolic activity of viable cells. It relies on the enzymatic reduction 

of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) into 

insoluble formazan crystals by nicotinamide adenine dinucleotide phosphate 

[NAD(P)H] dependent oxidoreductase enzymes within the mitochondria. The 

intensity of the purple color formed is proportional to the number of metabolically 

active cells. 

This assay is widely used for screening the cytotoxic effects of test compounds 

due to its simplicity, cost-effectiveness, and reproducibility. However, the results may 

be influenced by factors such as seeding density, incubation time, and uniform 

solubilization of formazan. Consistent handling of reagents and standardization of 

assay conditions are essential to generate reliable and interpretable data. Optical 

density (OD) is typically measured at 570 nm using a microplate reader, and the 

percentage of viable cells is calculated relative to untreated controls.
413

 

  

Figure 22. ‘Depicting the subculturing procedure of the MDA-MB-468 cell line.’ 
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Requirements 

 Leibovitz’s L-15 medium  

 MDA-MB-468 cell line 

 Hand gloves 

 70% alcohol 

 Calcitriol 

 17β-Estradiol 

 MTT 

 96-well flat-bottom plates 

 5% CO₂ incubator 

 DMSO’ 

 Cytation microplate reader 

 

Aim 

To evaluate the cytotoxic effects of calcitriol, 17β-estradiol, and their combination 

on MDA-MB-468 cells using the MTT assay. 

 

4.6.2 ‘Treatment Groups 

 Calcitriol: 1, 2, 3, 4, and 5 µM.’ 

 17β-Estradiol: ‘100, 200, 300, 400, and 500 nM. 

 Combination: 5 µM calcitriol + 500 nM 17β-estradiol. 

 Control: untreated cells. 

 

Treatment Duration 

 8, 16, 24, and 32 hours. 

 

4.6.3 Protocol 

MDA-MB-468 cells were seeded in sterile 96-well flat-bottom plates 

 

Cell density: 2 × 10⁴ cells per 96 well 
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Incubated overnight at 37°C for adherence 

 

After treatment (calcitriol 1-5μM and 17-beta -estradiol 100-500nM), 10% MTT 

solution (v/v) was added to each well 

 

Plates were incubated for 4 hours at 37°C in a 5% CO₂ humidified incubator 

 

Medium was discarded carefully to retain the formed formazan 

 

100 µL of DMSO was added to each well to dissolve the formazan crystals 

 

Plates were gently shaken to ensure complete dissolution 

 

Absorbance was measured at 570 nm using a Cytation microplate reader (BioTek 

Instruments Inc., USA) 

 

Cell viability (%) was calculated using the formula: 
413’

 

 

 

  

Experiments were performed in triplicate for statistical reliability 

 

 

 

  

Figure 23: ‘MTT assay procedure for the MDA-MB-468 cell line.’ 
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4.7. ‘IMMUNOBLOT STUDY 

 Requirements 

 Leibovitz’s L-15 plain medium  

 Calcitriol 

 17β-estradiol 

 Phosphate buffer saline (PBS)  

 MDA-MB-468 cells  

 60mm cell culture dishes  

 

4.7.1 Cell Growth 

Cell growth was continued from the previous experiment and maintained through 

regular subculturing. 

 

4.7.2 Treatment Studies/Protocol 

MDA-MB-468 cells were seeded at a density of 1 × 10⁶ cells per 60 mm culture plate 

and allowed to adhere overnight. Once the cells reached approximately 80% 

confluence, they were treated with calcitriol (5 µM), 17β-estradiol (500 nM), or their 

combination. Untreated cells served as the control group.’ 

 

4.7.3 Treatment groups 

 ‘MDA-MB-468 cells were treated with calcitriol and observed at multiple time 

points to study the temporal effects of treatment.’ 

 

 

 

 

 

 

 

 

 

 

Figure 24. ‘Calcitriol (5 µM) treatment in MDA-MB-468 cells observed at different time 

intervals (Control, 8 hr, 16 hr, and 32 hr). Cells were treated after reaching 80% confluence to 

assess time-dependent effects. C; control, hr; hour.’ 
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 ‘MDA-MB-468 cells were treated with 17β-estradiol and observed at multiple 

time points to study the temporal effects of treatment.’ 

 

 

 

  

 

 

 

 

 

 

 ‘MDA-MB-468 cells were treated with a combination of calcitriol and 17β-

estradiol and monitored at different time points to assess the time-dependent 

effects of combined treatment.’  

 

 

 

 

 

 

 

 

 

Figure 25. ‘17β-estradiol (500 nM) treatment in MDA-MB-468 cells observed at 

different time intervals (Control, 8 hr, 16 hr, and 32 hr). Treatment was initiated after cells 

reached 80% confluence to evaluate time-dependent cellular responses. C; Control, hr; hour.’ 

 

Figure 26. ‘Combination treatment of calcitriol (5 µM) and 17β-estradiol (500 nM) in 

MDA-MB-468 cells observed at various time intervals (Control, 8 hr, 16 hr, and 32 hr). 

Cells were treated after reaching 80% confluence to evaluate the effects of dual exposure over 

time. C; control, h; hour.’ 
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4.8. PREPARATION OF CELL LYSATE 

‘Requirements 

 Sterile cell scraper 

 Cell lysis buffer (with protease and phosphatase inhibitor cocktail) 

 1.5 mL microcentrifuge tubes’ 

 Sonicator 

 −80°C freezer 

After treatment, cell lysates were collected at designated time intervals for 

downstream protein analysis. 

 

4.8.1 Following Steps 

‘Scraped the cells gently from a 60 mm cell culture dish using a sterile cell scraper in 

the presence of lysis buffer supplemented with protease and phosphatase inhibitor 

cocktail. 

 

 

Collected the lysate and store at −80°C until further use.’ 

 

 

‘Thawed the lysate and sonicated on ice for 10 seconds, repeated twice, with cooling 

between cycles. 

 

 

Centrifuged the lysate at 12,000–14,000 rpm for 20–30 minutes at 4°C to removed 

cellular debris. 

 

 

Carefully transfered the clear supernatant to a fresh 1.5 mL microcentrifuge tube. 

 

 

The resulting lysate was either stored at −80°C or immediately used for protein 

quantification using the Bicinchoninic Acid (BCA) assay.’ 

 

  

 

Figure 27: ‘Preparation of cell lysate from treated MDA-MB-468 cells for 

protein’ analysis. 
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4.9 PROTEIN ESTIMATION BY BCA METHOD 

4.9.1 ‘General Consideration 

The BCA assay is a colorimetric method used for the quantitative estimation of total 

protein concentration in biological samples. The assay is based on the biuret reaction, 

in which peptide bonds reduce Cu²⁺ to Cu⁺ under alkaline conditions. The reduced 

copper ions then form a purple-colored complex with bicinchoninic acid, which 

absorbs strongly at 562 nm. The absorbance is directly proportional to the protein 

concentration. 

The BCA assay offers several advantages;’ 

 High sensitivity 

 Broad linear range 

 Compatibility with detergent-containing buffers 

 Minimal interference compared to Bradford or Lowry assays 

‘Both standards and unknown samples were incubated with the BCA reagent, and 

absorbance is measured at 562 nm after incubation at 37°C for 30 minutes.’ 

 

Reagent Preparation 

 Bovine serum albumin - Standard.  

 

Reagent A 
 

 Bicinchoninic Acid     – 1 g 

 Anhydrous sodium carbonate  – 1.72 g 

 Sodium potassium tartrate   – 160 mg 

 Sodium hydroxide    – 400 mg 

 Sodium bicarbonate    – 950 mg 

→ Dissolved ‘in 80 mL double-distilled water (DDH₂O), pH was adjusted to 

11.25. 

→ Made up to 100 mL and stored at 4°C. 

→ Adjusted the pH using NaOH (to increase) or sodium bicarbonate (to 

decrease).’ 
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Reagent B 

 CuSO₄ – 400 mg ‘dissolved in 100 mL DDH₂O. 

→ Stored in an amber bottle at room temperature. 

Working reagent 

• Reagent A and B were mixed in a 50:1 ratio immediately before use.’ 

 

4.9.2 PROTOCOL 

 

Table 3. ‘Composition of BCA assay reaction mixtures for BSA standards and 

unknown MDA-MB-468 cell lysate samples used in protein quantification.’ 

Components Blank S1 S2 S3 S4 S5 Unknown 

BSA (1μg/μL) - 2μl 4μl 6μl 8μl 10μl - 

DDH2O 10μl 8μl 6μl 4μl 2μl - - 

Cell lysate - - - - - - 5μl 

BCA [50:1] 200μl 200μl 200μl 200μl 200μl 200μl 200μl 

 

 ‘Incubated at 37°C for 30 minutes. 

 Absorbance was measured at 562 nm using a spectrophotometer or microplate 

reader. 

 

Protein Concentration Calculation 

 Protein content per microliter (µg/µL) was calculated using the known absorbance 

values corresponding to standard BSA concentrations using the formula;’  
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4.10 ELECTROPHORESIS [Sodium Dodecyl Sulfate–Polyacrylamide Gel 

Electrophoresis (SDS-PAGE)] 

 

4.10.1 ‘General Consideration 

SDS-PAGE operates on a discontinuous buffer system to separate proteins based on 

molecular weight.  

The gel matrix is composed of two distinct layers 

i. Stacking gel – A microporous gel of low acrylamide concentration with pH 

6.8, designed to concentrate proteins into a sharp band. 

ii. Separating (resolving) gel – A microporous gel of higher acrylamide 

concentration with pH 8.8, used for the effective separation of proteins during 

electrophoresis. 

The running buffer in the electrophoresis tank typically has a pH of 8.3, creating a 

discontinuous system in combination with the stacking and separating gels. Upon 

initiation of the electric field, chloride ions (from the gel), glycine ions (from the 

running buffer), and bromophenol blue migrate towards the anode, forming an ionic 

front. As glycine in the running buffer (pH 8.3) enters the stacking gel (pH 6.8), its 

dissociation decreases due to the lower pH being close to glycine’s isoelectric point, 

resulting in a drop in charge and reduced mobility. Meanwhile, protein samples, 

which are less affected by pH change than glycine, retain greater mobility. Thus, in 

the stacking gel, the migration order becomes: 

Cl⁻ < proteins < bromophenol blue < glycine. 

The large pore size of the stacking gel offers minimal resistance, allowing 

proteins to concentrate into sharp bands between the leading ion (Cl⁻) and the trailing 

ion (glycine), forming a localized high potential gradient. This gradient rapidly 

compresses and aligns proteins into narrow bands, enhancing resolution during 

separation. As the ions and proteins migrate into the resolving gel (pH 8.8), glycine 

fully dissociates, gains charge,’ and resumes normal migration. ‘The tighter pore size 

of the resolving gel causes differential migration based on protein molecular size, as 

the sieving effect becomes dominant. Proteins coated with SDS (imparting a uniform 

negative charge) were separated by size, with smaller proteins migrating faster than 

larger ones. This system enables high-resolution separation and quantitative analysis 

of protein samples prior to transfer or staining.’ 
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4.10.2 SDS-PAGE PROTOCOL 

4.10.3 General Consideration 

SDS-PAGE is ‘a widely used technique to separate proteins primarily based on their 

molecular weight. It is typically suitable for resolving proteins ≤ 10 kDa, as smaller 

proteins bind less efficiently to SDS and are harder to resolve. The system operates on 

a discontinuous buffer system involving a stacking and separating gel with different 

pH and acrylamide concentrations. 

 

4.10.4 Gel Preparation 

 System used: Bio-Rad Mini-PROTEAN® vertical gel electrophoresis system. 

 All glass plates, spacers, and combs should be clean and completely dry. 

 Assemble the gel cassette according to the manufacturer’s instructions. 

 

Reagents and Buffers 

4.10.5 30% Acrylamide Stock Solution’ 

 Acrylamide   29.2 g 

 Bisacrylamide  0.8 g 

 Dissolved ‘in 100 mL of distilled water (DH₂O) 

 

4.10.6 Tris-HCl Buffer (0.5 M, pH 6.8) – For Stacking Gel’ 

 Tris base   60.5 g in 800 mL DH₂O 

 Adjusted ‘pH to 6.8 using concentrated HCl 

 Made up to 1liter (L)with DH₂O’ 

 

4.10.7 Tris-HCl Buffer (1.5 M, pH 8.8) – For Separating Gel 

 Tris base   182 g in 800 mL DH₂O 

 Adjusted ‘pH to 8.8 with concentrated HCl 

 Made up to 1L with DH₂O’ 
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Table 4. ‘Resolving/separating gel composition (1.5M, Tris-HCl, pH 8.8)’ 

Components 8% 10% 15% 

DH2O 4.7mL 4.1mL 2.4mL 

Acrylamide -30%  2.7% 3.3% 5.0mL 

Tris-HCl- pH 8.8  2.5mL 2.5mL 2.5mL 

Ammonium persulfate (APS) – 10% 0.1mL 0.1mL 0.1mL 

Tetramethylethylenediamine (TEMED) 10μl 10μl 10μl 

 After ‘polymerization, the overlaying liquid was poured off, and the surface 

was cleaned with tissue paper. 

 

Table 5. Stacking gel composition (0.5M, Tris-HCl, pH 6.8)’ 

Components Quantity 

DH2O 3.45mL 

Acrylamide - 30%  0.83 mL 

Tris-HCl - pH 6.8  0.63 mL 

APS - 10%  50μL 

TEMED 15μL 

 

 Poured the ‘stacking gel directly over the polymerized separating gel and 

immediately inserted the comb carefully to avoid air bubbles. 

 Allow polymerization and removed the comb before sample loading. 

 

Precaution 

After adding TEMED, mixed quickly and poured the gel solution immediately to 

avoid premature polymerization. 

 

Note 

 Covered the separating gel with 0.1% SDS or overlay with isopropanol or 

water (for gels ≤8% acrylamide) or isopropanol (for gels ≥10%) during 

polymerization. 

 Gels were stored at 4°C for up to 1–2 weeks, wrapped in plastic and kept 

moist with a wet tissue. 
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4.10.8 Sample Preparation 

 Protein concentration in each sample was determined. 

 Transfer the calculated volume of each sample to a 200 µL tube or PCR tube. 

 5 µL of loading dye (Laemmli buffer) was added to it. 

 Heated the samples at 90°C for 3–5 minutes. 

 Allowed to cool and kept at room temperature until ready to load.’ 

 

4.10.9 Electrophoresis ‘Tank Buffer/Running Buffer (1X) 

Preparation of 5X Stock Buffer 

(Stored at 4°C)’ 

 Tris base   – 7.5 g 

 Glycine   – 36 g 

 SDS    – 2.5 g 

 Dissolved ‘in 500 mL of DH₂O 

 Mixed well until fully dissolved 

 

Preparation of 1X Working Buffer 

(Prepared fresh and stored at room temperature in a brown-colored bottle) 

 5X Stock Buffer  – 200 mL 

 DH₂O    – 800 mL 

 Mixed thoroughly to obtain 1 L of 1X running buffer’ 

 

4.10.10 Steps to Run Electrophoresis 

Remove ‘the polymerized gel cassette from the casting stand and inserted it into the 

electrode assembly. 

 

Secured the assembly inside the electrophoresis tank with the short glass plate facing 

inward. 

 

 

If necessary, sealed edges with sealing gel to prevent leakage. 
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Filled the inner chamber (between the plates) and the outer tank with 1X running 

buffer. 

 

 

Carefully loaded the prepared protein samples into the wells. 

 

 

Connected the tank to the power supply. 

 

 

Run the gel at 65 V until the samples migrate from the stacking to the separating gel.’ 

 

 

‘Increased the voltage to 90 V and continued the electrophoresis until the tracking dye 

reaches the bottom of the gel.’ 

 

 

4.11 IMMUNOBLOT REAGENTS PREPARATION 

4.11.1 ‘General Consideration 

In immunoblotting (Western blotting), buffer systems are critical for efficient protein 

transfer, membrane stabilization, and antibody interactions. Each chemical used in 

transfer and wash buffers serves a specific purpose:’ 

 Tris base: Acts ‘as a buffering agent, maintaining stable pH during 

electrophoretic transfer and washing.’ 

 Glycine: Serves as ‘an ionic carrier in the transfer buffer, allowing current 

flow during protein migration from the gel to the membrane.’ 

 Methanol: Facilitates protein ‘binding to nitrocellulose membrane by 

removing SDS and stabilizing protein structures; also reduces gel swelling.’ 

 NaCl: ‘Maintains ionic strength and isotonicity in TBS, supporting proper 

antibody-antigen interactions.’ 

 Tween 20: ‘A non-ionic detergent added to tris buffer saline T-20 (TBST) to 

minimize non-specific antibody binding by blocking hydrophobic interactions. 

Figure 28: ‘Steps involved in running SDS-PAGE electrophoresis for protein separation’ 
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All reagents were prepared using high-purity chemicals and DH₂O. Solutions were 

stored appropriately to ensure consistency and reliability in experimental outcomes.’ 

 

4.11.2 ‘TRANSFER BUFFER 

5X Transfer Buffer (Store at 4°C)’ 

 Tris base   – 15 g ‘(Buffering agent, pH stabilizer)’ 

 Glycine   – 72.5 g ‘(Provides ions for current flow during 

transfer)’ 

 Methanol   – 200 mL ‘(Facilitates protein binding to nitrocellulose  

                membrane, removes SDS)’ 

 DH₂O    – ‘Added to make up to 1L’ 

 

1X ‘Transfer Buffer (Working solution; store at room temperature)’ 

 5X Transfer Buffer  – 200 mL 

 Methanol   – 200 mL 

 DH₂O    – Added ‘to make up to 1L  

                                     → Mixed thoroughly before use’ 

 

4.11.3 WASH BUFFERS 

1M Tris-HCl Buffer (pH 8.0) (Store at room temperature) 

 Tris base   – 121 g (Maintains pH during wash steps) 

 DH₂O    – 800 mL 

 Adjust ‘pH to 8.0 using concentrated HCl (pH adjustment) 

 Made up final volume to 1L with DH₂O’ 

5X TBS Buffer (Tris-buffered saline), ‘pH 8.0 (Store at room temperature)’ 

 1 M Tris-HCl Buffer   – 400 mL ‘(Buffering agent)’ 

 NaCl    ‘ – 45 g '(Provides ionic strength and osmotic 

balance for  

          optimal antibody binding)’ 

 DH₂O    ‘ – Add to make up to 1L 

                                                 → Stirred until completely dissolved’ 
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1X TBST ‘Buffer (TBS with Tween 20) (Working solution; store at room 

temperature)’ 

 5X TBS Buffer   – 200 mL 

 Tween 20   ‘ – 1 mL (Reduces non-specific binding by 

blocking  

hydrophobic sites)’ 

 DH₂O    ‘ – Add to make up to 1L 

                                                → Mixed gently before use’ 

 

4.11.4 ‘IMMUNOBLOTTING PROTOCOL 

Following SDS-PAGE, immunoblotting was performed to detect the expression levels 

of ERβ1, EGFR, VEGF, and caspase-3 in MDA-MB-468 cell lysates using a 

nitrocellulose membrane. 

 

Requirements 

 Nitrocellulose membrane (0.45 µm pore size) 

 Primary antibodies: ERβ1, EGFR, VEGF, caspase-3, and GAPDH (internal 

control) – all monoclonal antibodies obtained from’ Santa Cruz 

Biotechnology, CA, USA. 

 HRP-conjugated ‘anti-mouse IgG secondary antibody’ (Santa Cruz 

Biotechnology) 

 Blocking ‘buffer: 2% BSA in TBS’ 

 TBST (TBS + 0.1% Tween 20) wash buffer 

 ECL substrate (Bio-Rad, UK) 

 Gel documentation system: G:BOX Chemi-XR5 (Syngene, UK) 

 Image analysis software: ImageJ  

 

‘Protein Transfer 

 After SDS-PAGE, the nitrocellulose membrane was soaked in distilled water and 

equilibrated in transfer buffer. 

 A standard wet transfer sandwich was assembled as follows: 

  Sponge → filter paper → gel → nitrocellulose → filter paper → sponge 
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 It was performed at 300 V for 90 minutes at 4°C. 

 Membrane staining with Ponceau S confirmed protein transfer. 

 

Blocking 

 The membrane was blocked in 2% BSA in TBS for 45 minutes at room 

temperature with gentle agitation to prevent non-specific binding. 

 

Primary Antibody Incubation 

 The blocked membrane was incubated overnight at 4°C in 1% BSA in TBS, with 

all primary antibodies diluted 1:1000:’ 

  - ERβ1 (sc-390243) 

  - EGFR (sc-53274) 

  - VEGF (sc-7269) 

  - Caspase-3 (sc-56046) 

  - GAPDH (sc-137179) – Housekeeping gene 

‘ 

Washing (post-primary) 

 The membrane was washed 10–12 times for 5 minutes each in TBST to 

remove unbound primary antibodies. 

 

Secondary Antibody Incubation 

 The membrane was incubated with HRP-conjugated anti-mouse IgG, diluted 

1:3000 in TBS, for 2 hours at room temperature with gentle rocking. 

 

Washing (post-secondary) 

 Post-incubation, the membrane was washed again 10–12 times for 5 minutes 

each in TBST to remove any excess secondary antibody.’ 

 

‘Detection and Imaging 

 The membrane was treated with ECL substrate for 1–2 minutes. 

 Protein bands were visualized using the G:BOX Chemi-XR5 imaging system, 

as illustrated in Figure 29.  

 GAPDH was used as a housekeeping control to normalize protein expression. 
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Quantification 

 Band intensities were quantified using ImageJ software. 

 Protein expression was normalized to GAPDH, and background subtraction 

was performed to ensure accurate comparisons across treatment groups. 

 

All experimental procedures were conducted following standardized protocols to 

ensure the accuracy, reproducibility, and reliability of the data. The combination of 

immunohistochemical analysis, molecular docking, and in vitro assays provided a 

comprehensive framework for evaluating the receptor-mediated effects of calcitriol 

and 17β-estradiol in ERβ1-positive TNBC models. The results derived from these 

methods are presented and discussed in the following chapter.’ 

 
Figure 29: ‘Summary of SDS-PAGE and Immunoblot’ 
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STATISTICAL ANALYSIS 

 
For ‘immunohistochemical data, categorical variables such as receptor expression 

patterns were presented as frequencies and percentages. The Chi-square (χ²) test was 

applied to assess associations between VDR and ERβ1 expression and BC molecular 

subtypes, including luminal A, luminal B, HER2-enriched, and TNBC categories. A 

p-value of <0.05 was considered statistically significant. All analyses were performed 

using IBM SPSS Statistics for Windows, Version 28.0 (IBM Corp., Armonk, NY, 

2021), ensuring rigorous statistical evaluation. 

For in vitro experiments, including cell viability assays, results were obtained from a 

minimum of three independent replicates (n = 3) and expressed as mean ± standard 

error of the mean (SEM). Statistical significance was determined using one-way 

analysis of variance (ANOVA), followed by Tukey’s post-hoc test for multiple group 

comparisons. A p-value ≤0.05 was considered statistically significant. Data 

visualization and graph generation were carried out using GraphPad Prism version 8 

to facilitate accurate and effective presentation of experimental outcomes.’ 

 

 

 

 

 

 





5. RESULTS  

 

Vitamin D3 Mediated Regulation of Hormone Receptors in the Pathogenesis of Triple- Negative Breast Cancer       103 
 

 

5.1 ‘Patterns of VDR Expression in Breast Cancer Subtypes 

 

The current study aimed to evaluate the differential expression and subcellular 

localization of VDR across major breast cancer subtypes, with a particular focus on 

TNBC. Immunohistochemical analysis was performed on FFPE BC tissue blocks, 

categorized into luminal A, luminal B, HER2-enriched and TNBC subtypes. The 

subcellular localization of VDR, specifically nuclear versus cytoplasmic was 

examined, and the expression patterns were statistically compared across subtypes to 

understand potential subtype-specific VDR signaling roles. 

In the TNBC, VDR expression exhibited a distinct pattern characterized by 

significant cytoplasmic localization. High cytoplasmic VDR staining was observed in 

(n = 10, 33.33%), while nuclear localization was noted in (n = 5, 16.6%) as shown in 

Figure 30. Importantly, dual cytoplasmic and nuclear expression was evident in some 

samples, suggesting that VDR may function through both genomic and non-genomic 

pathways in TNBC. The cytoplasmic predominance may reflect activation of rapid 

signaling cascades, while the nuclear presence indicates potential involvement in 

transcriptional regulation. This dual localization was statistically significant (p < 

0.042), highlighting a potentially unique regulatory mechanism in TNBC that differs 

from receptor-positive subtypes. 

In luminal A tumors, a comparatively lower level of VDR expression was 

observed. High cytoplasmic expression was detected in (n = 6, 20%), whereas nuclear 

expression was limited (n = 2, 6.6%) (p < 0.042), as illustrated in Figure 30. The 

relatively restricted nuclear localization in luminal A tumors suggests that VDR 

signaling may be less transcriptionally active in this subtype or that its function is 

more compartmentalized within the cytoplasm. Compared to TNBC, the overall VDR 

expression, especially the dual localization was markedly reduced, possibly due to 

differing hormonal environments or receptor-mediated regulatory controls prevalent 

in luminal A tumors.’ 

The luminal B subtype exhibited a consistent trend with exclusive cytoplasmic 

localization. VDR ‘expression was confined to the cytoplasm in (n = 4, 13.3%), and 

no nuclear staining was observed (p < 0.042). This pattern reinforces the hypothesis 

that in luminal B tumors, VDR may exert its effects primarily through non-genomic 

mechanisms. The absence of nuclear VDR could be attributed to differential co-
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regulator expression or altered intracellular trafficking, both of which can impact 

VDR nuclear translocation. The limited expression may also indicate a diminished 

role for VDR in the biological behavior of luminal B cancers.’ 

 

In HER2-enriched tumors, a ‘distinctly different VDR expression pattern was 

noted. No cytoplasmic VDR expression was observed in any of the samples, whereas 

nuclear VDR localization was present in (n = 3, 10%) (p < 0.042), as depicted Figure 

30.’  

 

 

 

 

 

 

 

FIGURE 30: ‘VDR localization (40X) in TNBC subtypes showing high expression in the 

cytoplasm and nucleus. (A-B) TNBC: (A) High VDR expression in the cytoplasm, (B) high VDR 

expression in the nucleus. (C-D) Luminal A: (C) High VDR expression in the cytoplasm, (D) high 

VDR expression in the nucleus. (E) Luminal B: High VDR expression in the cytoplasm. (F) HER2-

enriched: High VDR expression in the nucleus. Scale bar = 13.75 µm Abbreviations: VDR, vitamin 

D receptor; HER2, human epithelial growth factor receptor’ 2; TNBC, triple-negative breast cancer. 



5. RESULTS  

 

Vitamin D3 Mediated Regulation of Hormone Receptors in the Pathogenesis of Triple- Negative Breast Cancer       105 
 

 

This ‘subtype-specific nuclear expression suggests that in HER2-driven 

tumors, VDR may engage in direct transcriptional regulation, potentially interacting 

with oncogenic pathways unique to this group. The absence of cytoplasmic expression 

may imply limited involvement in non-genomic signaling or altered receptor stability 

in the cytoplasmic compartment. When comparing the four subtypes collectively, 

TNBC demonstrated the most prominent and dual localization of VDR, with both 

cytoplasmic and nuclear expression detected in a subset of tumors. This pattern 

contrasts with luminal A and B tumors, where expression was predominantly 

cytoplasmic, and HER2-enriched’ tumors, where VDR was confined to the nucleus.  

TABLE 6: ‘Expression of VDR in tumor cells in molecular subtypes of breast 

cancer.’ 

Staining 

intensity 

VDR expression in 

cellular location 

TNBC  

 (n = 15) 

Luminal A 

(n = 8) 

Luminal 

B 

(n = 4) 

HER2- 

enriched 

(n = 3) 

p-value 

 

High 

VDR cytoplasm, n (%) 10 (33.3) 6 (20) 4 (13.3) 0 (0)  

P <0.042* VDR nucleus, n (%) 5 (16.6) 2 (6.6) 0 (0) 3 (10) 

 

 

 

 

The statistical analysis ‘confirmed that the differences in VDR localization 

among subtypes were significant (p < 0.042), reinforcing the biological relevance of 

the expression patterns. A summary of VDR localization and frequency across the 

subtypes is presented in Table 1, and representative immunohistochemical images 

illustrating the subtype-specific expression patterns are shown in Figure 30. 

 

5.2 Cytoplasmic ERβ1 Immunoreactivity in TNBC and Luminal A Subtypes 

In addition to examination of VDR expression, this study also investigated the 

immunohistochemical expression of ERβ1, with a specific focus on its cytoplasmic 

localization in two molecular subtypes of BC: TNBC and luminal A.  A total of 18 

histologically confirmed IDC cases were included in this analysis, comprising TNBC 

(n = 10) and luminal A (n = 8) subtypes. Other molecular subtypes, including luminal 

B and HER2-enriched, were excluded from this analysis due to insufficient tissue 

*Indicates statistical significance (p < 0.05). 

Abbreviations: VDR, ‘vitamin D receptor; TNBC, triple-negative breast cancer; HER2, human 

epithelial growth factor receptor 2.’ 
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sections availability. The assessment was restricted to cytoplasmic expression, as 

nuclear staining was absent in all analyzed samples. In TNBC cases, cytoplasmic 

ERβ1 expression was observed in all tumors, albeit with variable intensity. Moderate 

cytoplasmic expression was the most prominent pattern, present in (n = 9, 50%) and 

(n = 1, 5.5%), exhibited high cytoplasmic ERβ1 expression, as showed in Figure 31. 

This distribution pattern indicates that ERβ1 is retained in the cytoplasm in a majority 

of TNBC tumors. 

The moderate to high expression levels observed in TNBC support the 

hypothesis that cytoplasmic ERβ1 may play a regulatory role, potentially through 

non-genomic signaling pathways, in the absence of ERα and PR signaling. The 

frequency distribution in TNBC was statistically significant (p < 0.025),’ reinforcing 

the biological relevance of cytoplasmic ERβ1 in this aggressive subtype.  

  In contrast, luminal A tumors demonstrated a ‘distinctly different pattern of 

ERβ1 expression. Among the 8 cases analyzed, high cytoplasmic expression was 

observed in (n = 5, 27.7%), while moderate expression was noted in (n = 3, 16.6%), 

as represented in Figure 31.’ 

 

 

 

 

FIGURE 31: ‘ERβ1 moderate to high expression in the cytoplasm (40X) in TNBC and luminal A. 

(A-B) TNBC: (A) Moderate ERβ1 expression in the cytoplasm, (B) High ERβ1 expression in the 

cytoplasm. (C-D) Luminal A: (C) Moderate ERβ1 expression in the cytoplasm, (D) High ERβ1 

expression in the cytoplasm. Scale bar: 13.75 µm Abbreviations: ERβ1, estrogen receptor beta 1; 

TNBC, triple-negative breast cancer.’ 
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Notably, ‘no luminal A tumors showed low or absent ERβ1 expression. Despite the 

higher proportion of tumors with strong cytoplasmic staining, the total frequency of 

moderate expression was considerably lower in luminal A compared to TNBC.’  

 

Staining 

intensity 

ERβ1 expression  

in cellular location 

TNBC 

 (n = 10) 

Luminal A  

(n = 8) 

p-value 

 

ERβ1 cytoplasm 

Moderate, n (%) 9 (50) 3 (16.6)  

P <0.025* High, n (%) 1 (5.5) 5 (27.7) 

 

 

 

These ‘subtype-specific expression trends were summarized in Table 2 and 

representative immunohistochemical staining images of ERβ1 expression are 

presented in Figure 31. The data illustrate that while both TNBC and luminal A 

tumors exhibit cytoplasmic ERβ1 staining, the intensity distribution varies between 

them. TNBC exhibits a predominance of moderate’ expression, ‘suggesting a 

consistent but possibly sub-optimized regulatory role. In contrast, the higher 

proportion of strongly stained luminal A cases suggests enhanced receptor 

stabilization or signaling efficiency in this subtype.’ 

The ‘comparative findings also underscore the potential utility of ERβ1 as a 

molecular biomarker for TNBC characterization. Its consistent cytoplasmic 

expression in TNBC supports its consideration as a candidate for functional studies 

and therapeutic targeting, especially in tumors lacking ERα. In luminal A tumors, 

where ERα-driven genomic signaling predominates, cytoplasmic ERβ1 may serve a 

modulatory or inhibitory function. 

Furthermore, the significant difference in the pattern of ERβ1 expression 

between TNBC and luminal A (p < 0.025) provides a rationale for exploring ERβ1 as 

a discriminative biomarker for subtype classification and stratification in future 

studies. These findings contribute to the growing evidence that ERβ1 plays a context-

dependent role in BC and may have clinical implications for the design of receptor-

targeted therapies in TNBC, particularly in the context of dual-modulation strategies 

involving VDR and ERβ1. 

TABLE 7: ‘Expression of ERβ1 in TNBC and luminal’ 

‘‘A 

*Indicates ‘statistical significance (p < 0.05)  

Abbreviations: ERβ1, estrogen receptor beta 1; TNBC, triple-negative breast cancer.’ 
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In our study, cytoplasmic ERβ1 immunoreactivity was consistently detected in TNBC 

and luminal A BC tissues, with differential intensity patterns suggesting subtype-

specific functional implications. The moderate expression in TNBC and high 

expression in luminal A may reflect underlying biological differences in ERβ1 

activity, potentially contributing to distinct tumor phenotypes and therapeutic 

responses.’ 

 

II Objective 

‘To analyze and compare the in silico binding affinities of vitamin D3 and 17β-

estradiol with key target proteins (ERβ, VDR, EGFR, and VEGF) in triple-negative 

breast cancer.  

 

5.3 Molecular Docking Analysis of Calcitriol and 17β-Estradiol with Target 

Proteins in TNBC 

To evaluate and compare the binding potential of calcitriol and 17β-estradiol with 

critical molecular targets implicated in TNBC, a comprehensive molecular docking 

analysis was conducted. The study specifically assessed the interactions of these two 

compounds with estrogen receptor beta (ERβ), VDR, EGFR, VEGF, and caspase 3. 

These targets were selected based on their established relevance to hormone receptor 

signaling, cellular proliferation, angiogenesis, and apoptosis regulation in TNBC. 

Docking results were analyzed based on binding energy values and key hydrogen 

bonding interactions with specific amino acid residues. 

 

5.3.1 Docking with VDR 

The interaction of calcitriol and 17β-estradiol with the VDR yielded informative 

contrasts. Calcitriol, the natural ligand of VDR, showed a strong binding energy of 

−9.15 kcal/mol, consistent with a high-affinity interaction. It engaged residues such as 

LEU-A414, GLN-A152, and ASP-A149 (Figure 32C). These findings validate the 

structural docking reliability and reflect VDR’s natural binding conformation for 

calcitriol. On the other hand, 17β-estradiol displayed a weaker binding affinity of 

−6.37 kcal/mol, interacting with residues such as SER-A398, ASN-A394, ARG-

A391, SER-A265, ARG-A343, and ASP-A342 (Figure 32D).  
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5.2.2 Docking with ERβ 

Calcitriol and 17β-estradiol exhibited favorable binding affinities with ERβ, with 17β-

estradiol showing a stronger interaction. The binding energy for calcitriol with ERβ 

was −7.85 kcal/mol, while 17β-estradiol demonstrated a significantly lower (more 

favorable) binding energy of −9.08 kcal/mol. As shown in Figure 32A and 32B, 

calcitriol formed hydrogen bonds with LYS-A315, GLU-A274, PRO-A277, GLU-

A276, HIS-A394, and TRP-A345. In contrast, 17β-estradiol interacted with HIS-

A475, PHE-A356, ARG-A346, and GLU-A305.  

 

5.3.2 Docking with EGFR 

In EGFR docking, calcitriol demonstrated the strongest binding among all evaluated 

interactions, with a binding energy of −10.04 kcal/mol. This significant affinity was 

supported by hydrogen bond interactions with LYS-A56, GLU-A78, THR-A57, ASP-

51, and NAG-A1032 (Figure 33A). These interactions indicate a potential for 

calcitriol to modulate EGFR’ signaling, possibly contributing to growth inhibition in 

TNBC. ‘Conversely, 17β-estradiol showed a binding energy of −7.10 kcal/mol with 

EGFR, forming interactions with THR-A406, LYS-A407, ASN-A12, SER-A11, and 

water molecule HOH-A2438 (Figure 33B).’  

 

5.3.3 ‘Docking with VEGF 

VEGF, 17β-estradiol displayed a more favorable interaction (−7.06 kcal/mol) 

compared to calcitriol (−5.72 kcal/mol). Calcitriol bound with GLN-H115 and GLY-

H9 (Figure 33C), while 17β-estradiol interacted with ASN-A214 and LEU-H118 

(Figure 33D). Despite its weaker binding affinity, calcitriol interactions may indicate 

indirect modulation of VEGF-related angiogenesis.  

Overall, the docking results indicate that calcitriol exhibits the highest binding 

affinity for EGFR (−10.04 kcal/mol) and VDR (−9.15 kcal/mol), highlighting its 

potential to regulate both receptor-mediated and growth factor signaling pathways. In 

contrast, 17β-estradiol shows superior affinity for ERβ (−9.08 kcal/mol) and VEGF 

(−7.06 kcal/mol), supporting its role in hormonal and angiogenic regulation. These 

findings are tabulated in Table 3 for clarity and comparison.’ 
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Figure 32: ‘Molecular docking interactions of calcitriol and 17β-estradiol with ERβ and VDR.  

Calcitriol (A, C) and 17β-estradiol (B, D) were docked with ERβ (A, B) and VDR (C, D), 

respectively.’ 

 

Figure 33: ‘Molecular docking interactions of calcitriol and 17β-estradiol with EGFR and VEGF. 

Calcitriol (A, C) and 17β-estradiol (B, D) were docked with EGFR (A, B) and VEGF (C, D), 

respectively.’ 
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5.3.4 ‘Special Interactions Involving N-acetylglucosamine (NAG) and Structural 

Water Molecules (HOH – Water Molecule (H₂O)) 

In the docking interaction of calcitriol with EGFR, one notable hydrogen bond was 

formed with NAG-A1032, which refers to N-acetylglucosamine, a carbohydrate 

moiety frequently found as part of glycosylation sites on membrane-bound proteins 

like EGFR. This interaction suggests that calcitriol may not only engage with amino 

acid residues but also interact with glycosylated regions of the receptor, potentially 

influencing receptor stability or ligand accessibility. Similarly, in the docking of 17β-

estradiol with EGFR, a hydrogen bond was observed with HOH-A2438, representing 

a crystallographic water molecule. These water-mediated interactions often play a 

stabilizing role in ligand binding by bridging between the ligand and the receptor’s 

active site residues. The involvement of HOH-A2438 indicates that water molecules 

may facilitate or stabilize 17β-estradiol orientation within the EGFR binding pocket.’ 

 

Table 8. ‘Binding energy and hydrogen bond interactions of calcitriol and 17β-

estradiol with ERβ, EGFR, and VEGF.’ 

‘Target 

protein’ 
‘Compound’ 

‘Binding energies 

(kcal/mol)’ 
‘Key interacting residues’ 

 

‘VDR’ 

‘Calcitriol’ ‘-9.15’ ‘LEU-A414, GLN-A152, ASP-A149’ 

‘17β-

Estradiol’ 
‘-6.37’ 

‘SER-A398, ASN-A394, ARG-A391, 

SER-A265, ARG-A343, ASP-A342’ 

‘ERβ’ ‘Calcitriol’ 
‘-7.85’ 

‘LYS-A315, GLU-A274, PRO-A277, 

GLU-A276, HIS-A394, TRP-A345’’ 

‘17β-

Estradiol’ 
‘-9.08’ 

‘HIS-A475, PHE-A356, ARG-A346, 

GLU-A305’ 

‘EGFR’ 

 

‘Calcitriol’ 
‘-10.04’ 

‘LYS-A56, GLU-A78, THR-A57, 

ASP-51, NAG-A1032’ 

‘17β-

Estradiol’ 
‘-7.10’ 

‘THR-A406, LYS-A407, ASN-A12, 

SER-A11, HOH-A2438’ 

‘VEGF’ 

 

‘Calcitriol’ ‘-5.72’ ‘GLN-H115, GLY-H9’ 

‘17β-

Estradiol’ 

 

‘-7.06’ ‘ASN-A214, LEU-H118’ 
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III Objective 

To ‘elucidate the molecular mechanism of vitamin D3 and 17β-estradiol agonist 

treatment in triple negative breast cancer progression using in vitro model.  

 

5.4 Effect of Calcitriol, 17β-Estradiol, and Their Combination on MDA-MB-468 

Cell Viability 

To explore the molecular mechanisms by which calcitriol and 17β-estradiol influence 

TNBC progression, the cytotoxic potential of these agents, individually and in 

combination, was evaluated using the MDA-MB-468 cell line, a well-characterized in 

vitro model. Cell viability was measured using the MTT assay across a time course of 

8-, 16-, 24-, and 32-hours following treatment with varying concentrations of each 

compound. 

a) Calcitriol monotherapy (1, 2, 3, 4, and 5 µM) demonstrated a clear dose- and 

time-dependent cytotoxic effect. As shown in Figure 34A, cell viability decreased 

progressively with both increasing dose and extended exposure time. The most 

substantial reduction was seen at the highest concentration (5 µM), with viability 

decreasing to 16 hr (74%), 24 hr (65%), and 32 hr (50%).’  

b) ‘17β-estradiol treatment (100, 200, 300, 400, and 500 nM) also resulted in a 

significant reduction in cell viability, though the response profile differed slightly. 

As shown in Figure 34B, notable declines in viability were recorded at the 500 

nM concentration, 16 hr (76%), 24 hr (68%), and 32 hr (50%). These findings 

indicate a moderate but consistent cytotoxic response.  

c) The combination treatment (calcitriol 5 µM + 17β-estradiol 500 nM) produced the 

most pronounced effects, as represented in Figure 34C. Cell viability was reduced 

to 16 hr (70%), 24 hr (61%), and 32 hr (50%), showing an additive cytotoxic 

effect compared to individual treatments. This enhanced suppression may be 

attributed to simultaneous activation of VDR and ERβ1, leading to more 

comprehensive inhibition of oncogenic signaling pathways, including proliferation 

(EGFR), angiogenesis (VEGF), and apoptosis regulation (caspase-3). 
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While early time points (8 hours) did not exhibit substantial changes in any of 

the treatment groups, a progressive decline in viability was evident beyond 16 hours, 

indicating that the onset of cytotoxic effects is time-dependent. Notably, the greatest 

differences emerged between 24 and 32 hours, a window that appears to correspond to 

sustained receptor-mediated transcriptional changes and accumulation of apoptotic 

signals within the TNBC cells. 

Statistical analysis confirmed the significance of observed effects using one-

way ANOVA followed by Tukey’s post hoc test, with p-values indicating highly 

significant reductions in viability at later time points for all three treatment conditions 

(*p < 0.01, **p < 0.001, ***p < 0.0001). 

FIGURE 34: ‘Effect of calcitriol, 17β-estradiol, and its combination on MDA-MB-468 cell 

viability. Cell viability was assessed using the MTT assay following treatment with (A) Calcitriol (1, 

2, 3, 4, and 5 μM), (B) 17β-estradiol (100, 200, 300, 400, and 500 nM), and (C) combination treatment 

(calcitriol, 5 μM + 17β-estradiol, 500 nM) at the indicated concentrations for 8, 16, 24, and 32 hours. 

Data are expressed as mean ± SEM from three independent experiments. Statistically significant 

differences in cell viability compared to the untreated control at each time point are indicated (*p < 

0.01, **p < 0.001, *p < 0.0001). Statistical analysis was performed using one-way ANOVA followed 

by Tukey’s post hoc test. Abbreviations:  SEM: standard error mean; μM: micromolar; nM: 

nanomolar; hr: hours.’ 
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These findings confirm that both calcitriol and 17β-estradiol exhibit potent 

cytotoxic effects on MDA-MB-468 cells in a time- and dose-dependent manner, with 

combination therapy producing an enhanced inhibitory effect. These data support the 

therapeutic potential of dual receptor targeting, via VDR and ERβ1, as a viable 

strategy in the management of ERβ1-positive TNBC.’ 

 

5.5 IMMUNOBLOT ANALYSIS 

5.5.1 ‘Effect of Calcitriol on ERβ1, EGFR, VEGF, and Caspase-3 Expression in 

MDA-MB-468 Cells 

To further elucidate the molecular mechanisms underlying the cytotoxic 

effects of calcitriol in TNBC, Western blot analysis was conducted to evaluate the 

expression levels of key regulatory proteins, including ERβ1, EGFR, VEGF, and 

caspase-3. MDA-MB-468 cells were treated with 5 µM calcitriol and harvested at 8, 

16, 24, and 32 hours to assess time-dependent modulation of protein expression. 

 

5.3.3 ERβ1 Expression 

As shown in Figure 35A and quantified in Figure 35B, ERβ1 expression 

exhibited a progressive decline following calcitriol treatment. While the change 

between 8 and 16 hours was not statistically significant (p = ns), a marked decrease 

was observed at 24 and 32 hours (p < 0.0001), indicating that prolonged calcitriol 

exposure exerts a sustained suppressive effect on ERβ1 protein levels. The continued 

reduction from 24 to 32 hours (p < 0.0001) suggests that calcitriol not only initiates 

but maintains repression of ERβ1, a tumor suppressor that modulates survival 

pathways in TNBC. This downregulation could potentially reflect feedback signaling 

or altered receptor stability under sustained ligand stimulation. 

 

5.5.2 EGFR Expression 

EGFR, a critical mediator of proliferative and survival signaling in TNBC, 

was significantly suppressed in response to calcitriol (Figure 35C). No significant 

change was detected between 8 and 16 hours (p = ns), but a significant decrease 

occurred from 16 to 24 hours (p < 0.0001), with an additional reduction between 24 

and 32 hours (p = 0.005).  This time-dependent inhibition suggests that calcitriol 
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interferes with EGFR-driven signaling, which may contribute to its antiproliferative 

effects. The delayed but consistent suppression of EGFR supports the idea that 

calcitriol impairs receptor-mediated mitogenic signaling through sustained VDR 

activation. 

5.5.3 VEGF Expression 

VEGF expression, an angiogenic factor essential for tumor vascularization, 

also declined significantly over time (Figure 35D). A robust reduction was observed 

from 8 to 32 hours (p < 0.0001), with a further decrease from 16 to 32 hours (p < 

0.0001), and a smaller yet statistically significant change between 24 and 32 hours (p 

= 0.01). These findings suggest that calcitriol may impair angiogenesis in TNBC 

cells, likely by downregulating VEGF transcription or translation. The consistent 

decrease over extended exposure’ highlights the anti-angiogenic potential of calcitriol, 

supporting its role as a suppressor of tumor progression via vascular inhibition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 35: ‘Representative immunoblot analysis (A) and quantification of protein expression levels of 

ERβ1 (B), EGFR (C), VEGF (D), and caspase-3 (E) in MDA-MB-468 cells treated with 5 µM calcitriol at 

different time intervals (8, 16, 24, and 32 hours). Protein expression levels were normalized to GAPDH and are 

presented as relative percentages. Data are expressed as mean ± SD. Statistical significance is indicated as *p < 

0.01, **p < 0.005, ***p < 0.001, ****p < 0.0001. Statistical analysis was performed using one-way ANOVA 

followed by Tukey’s post hoc test. Abbreviations: ERβ1: estrogen receptor beta 1; EGFR: epidermal growth 

factor receptor; VEGF: vascular endothelial growth factor; Cas 3: caspase 3; GAPDH: glyceraldehyde phosphate 

dehydrogenase; Ctrl: control; hr: hours; kDa: kilodalton; μM: micromolar; ns: not significant.’ 
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5.5.4 ‘Caspase-3 Expression 

Interestingly, caspase-3, an essential effector of the apoptotic cascade, also 

showed time-dependent downregulation following calcitriol treatment (Figure 35E). 

A significant reduction was seen from 8 to 32 hours (p < 0.0001), and between 16 to 

32 hours (p = 0.001). However, expression levels remained unchanged between 24 

and 32 hours (p = ns), suggesting a plateau phase in apoptotic regulation. These 

findings could indicate that calcitriol initially activates apoptotic pathways, but 

sustained exposure leads to compensatory downregulation or exhaustion of caspase-3 

expression as the apoptotic program reaches completion.’ Alternatively, ‘it may 

reflect a time-dependent switch from pro-apoptotic to survival or clearance phases in 

treated cells. 

Collectively, these results demonstrate that calcitriol exerts multi-faceted 

regulatory effects on key TNBC-associated proteins. ERβ1, EGFR, and VEGF were 

all progressively suppressed, reflecting inhibition of receptor-mediated signaling and 

angiogenesis. The downregulation of caspase-3, while initially counterintuitive, may 

represent a temporal response linked to apoptotic progression. The most pronounced 

changes occurred between 24 and 32 hours, a time frame consistent with the observed 

reduction in cell viability. These findings reinforce the hypothesis that calcitriol anti-

cancer activity in TNBC involves coordinated repression of proliferation, 

angiogenesis, and survival signaling, thereby providing a mechanistic basis for its 

therapeutic potential. 

 

5.6 Effect of 17β-Estradiol on ERβ1, EGFR, VEGF, and Caspase-3 Expression in 

MDA-MB-468 Cells 

To investigate the temporal regulation of key oncogenic and tumor-

suppressive proteins in TNBC, MDA-MB-468 cells were treated with 500 nM 17β-

estradiol. Western blot analysis was performed to assess the protein expression levels 

of ERβ1, EGFR, VEGF, and caspase-3 at multiple time points (8, 16, 24, and 32 

hours), providing insights into the hormonal modulation of signaling pathways 

associated with tumor progression, angiogenesis, and apoptosis. 
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5.6.1 ERβ1 Expression 

ERβ1, a tumor suppressor and nuclear hormone receptor, displayed a complex 

temporal pattern following 17β-estradiol treatment. As seen in Figure 36A and 

quantified in Figure 36B, ERβ1 levels declined from 8 to 24 hours, indicating a time-

dependent downregulation, which reached statistical significance from 8 to 24 hours 

(p < 0.001). Notably, the reduction between 16 and 24 hours was not statistically 

significant (p = ns), suggesting a transient stabilization of expression. While, from 24 

to 32 hours, a significant increase in ERβ1 expression was observed (p = 0.0002), 

suggesting a potential compensatory feedback mechanism or receptor reactivation 

after prolonged ligand exposure. This late-stage re-induction of ERβ1 may reflect 

receptor recycling or cellular adaptation to hormonal signaling, consistent with the 

known ligand-activated dynamics of ERβ1. 

 

5.6.2 EGFR Expression 

EGFR, a transmembrane receptor tyrosine kinase involved in proliferation and 

survival signaling, showed a consistent decline in expression following 17β-estradiol 

exposure.’  

As illustrated in Figure 36C, ‘EGFR levels decreased significantly from 8 to 

32 hours (p < 0.0001), with an additional significant drop between 16 and 32 hours (p 

= 0.003). However, the change between 24 and 32 hours was not statistically 

significant (p = ns), suggesting a plateau in suppression, potentially indicating that 

maximal downregulation was achieved by 24 hours. These results suggest that 17β-

estradiol may interfere with EGFR-mediated proliferative signaling in ERβ1-positive 

TNBC cells through sustained transcriptional or post-translational mechanisms.’ 

 

 

5.6.3 ‘VEGF Expression 

VEGF, a major pro-angiogenic factor involved in tumor vascularization, also 

exhibited time-dependent suppression in response to 17β-estradiol. A statistically 

significant decrease was observed from 8 to 32 hours (p < 0.0001), as shown in Figure 

36D. VEGF expression declined significantly between 16 and 24 hours (p < 0.01), but 

the subsequent reduction’ from 24 to 32 hours was not significant (p = ns), ‘again 

suggesting expression stabilization at late time points. The overall reduction in VEGF 
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expression highlights the anti-angiogenic potential of 17β-estradiol treatment, 

possibly mediated through ERβ1 activation, which is known to agonise VEGF 

expression in BC models. 

 

 

 

 

 

 

 

 

 

 

 

 

5.6.4 Caspase-3 Expression 

Caspase-3, a crucial executioner of apoptosis, also showed a gradual and sustained 

reduction following 17β-estradiol exposure. As shown in Figure 36E, expression was 

significantly reduced from 8 to 32 hours (p = 0.0001), with further reductions noted 

between 16 and 32 hours (p = 0.003) and between 24 and 32 hours (p = 0.001). These 

findings suggest that 17β-estradiol may modulate apoptotic signaling in a delayed 

FIGURE 36: ‘Representative immunoblot analysis (A) and quantification of protein expression levels of 

ERβ1 (B), EGFR (C), VEGF (D), and caspase-3 (E) in MDA-MB-468 cells treated with 500 nM 17β-

estradiol at different time intervals (8, 16, 24, and 32 hours). Protein expression levels were normalized to 

GAPDH and are presented as relative percentages. Data are expressed as mean ± SD. Statistical significance is 

indicated as *p < 0.01, **p < 0.003, ***p < 0.001, ****p < 0.0001. Statistical analysis was performed using one-

way ANOVA followed by Tukey’s post hoc test. Abbreviations: ERβ1: estrogen receptor beta 1; EGFR: 

epidermal growth factor receptor; VEGF: vascular endothelial growth factor; Cas 3: caspase 3; GAPDH: 

glyceraldehyde phosphate dehydrogenase; Ctrl: control; hr: hours; kDa: kilodalton; nM: nanomolar; ns: not 

significant.’ 
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manner, possibly through ERβ1-dependent pathways. The consistent suppression of 

caspase-3 across later time points could reflect either completion of apoptosis 

induction or inhibitory feedback mechanisms suppressing its further activation. 

These results collectively demonstrate that 17β-estradiol treatment induces 

time-dependent modulation of key regulatory proteins in TNBC. While ERβ1, EGFR, 

VEGF, and caspase-3 initially decline in expression, certain proteins, particularly 

ERβ1, exhibit late-stage reactivation or stabilization, suggesting complex regulatory 

feedback during hormone-mediated signaling. The suppression of EGFR and VEGF 

implies reduced proliferative and angiogenic potential, whereas changes in caspase-3 

suggest altered apoptotic dynamics. These findings reinforce the role of 17β-estradiol 

in modulating multiple tumor-regulatory pathways and support its potential 

therapeutic value when targeted through ERβ1 positive TNBC. 

 

5.7 Combined Effect of Calcitriol and 17β-Estradiol on ERβ1, EGFR, VEGF, 

and Caspase-3 Expression in MDA-MB-468 Cells 

To assess whether the combination of calcitriol (5 µM) and 17β-estradiol 

(500 nM) produces a more potent regulatory effect than individual treatments, protein 

expression of key markers ERβ1, EGFR, VEGF, and caspase-3 was analyzed using 

Western blot in ERβ1-positive TNBC cells (MDA-MB-468). Cells were harvested at 

8, 16, 24, and 32 hours after combination treatment, and protein levels were 

quantified relative to GAPDH. 

 

5.7.1 ERβ1 Expression 

As shown in Figure 37A and quantified in Figure 37B, ERβ1 expression 

declined progressively over time in response to the combination treatment. Although 

no statistically significant reduction was observed between 8 and 16 hours (p = ns), a 

significant reduction was evident from 8 to 32 hours (p = 0.0001), with a further sharp 

decrease’ from 24 to 32 hours (p = 0.0001). ‘This pattern suggests an initial resistance 

or delayed response to the combined ligands, followed by a robust and sustained 

suppression of ERβ1 expression. Compared to individual treatments, the combination 

induced a more prolonged and consistent downregulation, indicating an effect on 

ERβ1 signaling in TNBC cells. 
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5.7.2 EGFR Expression 

EGFR, a critical mediator of proliferative and pro-survival signaling in TNBC, 

exhibited substantial downregulation across all time points (Figure 37C). The 

expression significantly decreased from 8 to 32 hours, as well as between 16–24 hours 

and 24–32 hours (p = 0.0001 for each interval), demonstrating the combination 

treatment ability to continuously inhibit EGFR over time. This finding supports the 

hypothesis that simultaneous activation of VDR and ERβ1 pathways results in 

enhanced suppression of EGFR expression, thereby weakening proliferative signaling 

cascades in TNBC. 

 

5.7.3 VEGF Expression 

The expression of VEGF, a key pro-angiogenic factor, also showed significant 

time-dependent suppression. As illustrated in Figure 37D, VEGF levels significantly 

decreased from 8 to 32 hours (p < 0.0001), and notable reductions occurred between 

16–24 hours (p = 0.009) and 24–32 hours (p = 0.0004). The persistent decrease in 

VEGF expression highlights the anti-angiogenic potential of the combination 

treatment. While both calcitriol and 17β-estradiol individually reduced VEGF, the 

combined approach produced a more consistent and profound suppression over the 

full treatment course, suggesting enhanced inhibition of angiogenesis-related 

pathways in TNBC cells. 

 

5.7.4 Caspase-3 Expression 

Caspase-3, a downstream executor of apoptosis, exhibited a strong and 

continuous decrease in expression following combination treatment (Figure 37E). 

Protein levels were significantly downregulated from 8 to 32 hours (p < 0.0001), with 

additional significant reductions between 16–32 hours (p = 0.0002) and 24–32 hours 

(p = 0.008). This sustained decline suggests either activation and consumption of 

caspase-3 during apoptosis or post-translational regulation suppressing its availability. 

Compared to monotherapies, the combination treatment demonstrated greater efficacy 

in suppressing caspase-3 expression, indicating a more robust apoptotic response in 

TNBC cells. 
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Together, these results demonstrate that the combination of calcitriol and 17β-

estradiol exerts a more pronounced inhibitory effect on ERβ1, EGFR, VEGF, and 

caspase-3 expression in MDA-MB-468 cells compared to individual treatments. The 

delayed but significant’ suppression ‘of ERβ1 and sustained inhibition of EGFR and 

VEGF point toward a combination modulation of tumor-promoting pathways, 

including proliferation and angiogenesis.’  

Meanwhile, ‘the gradual and continued downregulation of caspase-3 may 

reflect enhanced apoptosis induction under dual receptor targeting conditions. The 

most substantial suppression across all markers was observed between 24 and 32 

hours, suggesting that prolonged combination exposure is necessary to achieve 

maximal therapeutic efficacy. 

  

FIGURE 37: ‘Representative immunoblot analysis (A) and quantification of protein expression levels of ERβ1 (B), 

EGFR (C), VEGF (D), and caspase-3 (E) in MDA-MB-468 cells treated with the combination of calcitriol (5 µM) 

and 17β-estradiol (500 nM) at different time intervals (8, 16, 24, and 32 hours). Protein expression levels were 

normalized to GAPDH and are presented as relative percentages. Data are expressed as mean ± SD. Statistical 

significance is indicated as **p < 0.008, ***p < 0.004, ****p < 0.0001. Statistical analysis was performed using one-

way ANOVA followed by Tukey’s post hoc test. Abbreviations: ERβ1: estrogen receptor beta 1; EGFR: epidermal 

growth factor receptor; VEGF: vascular endothelial growth factor; Cas 3: caspase 3; GAPDH: glyceraldehyde 

phosphate dehydrogenase; Ctrl: control; hr: hours; kDa: kilodalton; ns: not significant.’ 
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These findings underscore the therapeutic potential of dual targeting of VDR 

and ERβ1 pathways in TNBC and provide a mechanistic foundation for future 

combinatorial strategies aimed at hormone receptor-positive subsets within the TNBC 

spectrum.’  
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6. DISCUSSION  

The ‘current study elucidates the mechanistic implications of VDR and ERβ1 

expression across BC subtypes, with particular emphasis on TNBC. The observed 

differential expression patterns suggest distinct functional roles of VDR and ERβ1 in 

modulating tumor growth through genomic and non-genomic pathways. 

 

6.1 VDR Expression and Functional Implications in TNBC 

VDR, mediates its actions primarily via ligand-activated transcriptional regulation. 

Upon binding with calcitriol, VDR heterodimerizes with RXR and binds to VDREs in 

the promoter regions of target genes, initiating transcriptional modulation of 

proliferation, apoptosis, and immune regulation. 

In our cross-sectional analysis, nuclear VDR expression was observed in 

16.6% of TNBC cases, indicating that a subset of tumors retains the capacity for 

VDR-mediated genomic signaling. Cytoplasmic VDR expression was detected in 

33.3% of cases, suggesting partial receptor presence within the cellular compartment. 

Although the overall nuclear localization of VDR was limited, these findings are 

consistent with previous studies reporting VDR negativity in over half of TNBC 

tumors (56.6%).
339

 The detection of nuclear VDR in a subset of TNBC cases 

highlights the potential for selective responsiveness to vitamin D-based interventions, 

particularly in tumors exhibiting retained nuclear receptor expression. This pattern 

aligns with earlier findings that associate low nuclear VDR expression with adverse 

clinical outcomes and heightened tumor aggressiveness in TNBC.
16, 339

 The absence 

of moderate to high nuclear VDR expression in TNBC further underscores its 

disrupted genomic signaling axis. This supports the hypothesis that insufficient 

nuclear translocation and transcriptional activity of VDR compromise its tumor-

suppressive functions. 

Interestingly, luminal A subtypes showed relatively higher cytoplasmic VDR 

expression (20%) and limited nuclear presence (6.6%), suggesting that VDR 

expression is retained in these tumors, its subcellular distribution may influence 

functional outcomes. Contrasting with Huss et al., who reported complete nuclear 

VDR negativity in 6.6% of luminal A cases.
339

 our findings hint at subtype-specific 

regulation of VDR trafficking and activity. Similarly, luminal B subtypes revealed 

13.3% cytoplasmic VDR expression without nuclear localization. This is lower than 
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the 25.6% nuclear expression observed by Huss et al.
339

 possibly indicating variability 

in receptor activation thresholds or post-translational modifications among subtypes. 

In HER2-enriched tumors, nuclear VDR expression was limited (10%) and 

cytoplasmic staining was absent.’ Huss, L. et al. noted that high cytoplasmic VDR in 

HER2-positive cases.
339

 Suggesting a ‘discrepancy possibly linked to sample size or 

HER2-driven alterations in receptor localization dynamics. Mechanistically, these 

findings indicate that HER2 signaling may modulate the VDR pathway through 

PI3K/Akt or MAPK-mediated phosphorylation events that hinder VDR nuclear 

import.
414 

Collectively, these findings support a model wherein impaired VDR 

signaling, whether due to receptor loss, cytoplasmic sequestration, or reduced nuclear 

translocation, contributes to aggressive tumor behavior in TNBC. Restoration of VDR 

signaling via pharmacological ligands like calcitriol may thus reinstate regulatory 

control over genes involved in cell cycle arrest and apoptosis, offering a potential 

therapeutic avenue in TNBC. 

 

6.2 ERβ1 Localization and Its Role in Non-Genomic Signaling in TNBC 

ERβ1, unlike its alpha counterpart (ERα), functions as a tumor suppressor in certain 

contexts, including TNBC. ERβ1 may act through classical genomic mechanisms or 

initiate rapid non-genomic signaling cascades via membrane or cytoplasmic pools. In 

our study, TNBC samples exhibited high levels of cytoplasmic ERβ1, with 50% of 

cases demonstrating moderate expression and 5.5% showing high expression. This 

cytoplasmic predominance suggests a dominant role for ERβ1 in non-genomic 

signaling pathways in TNBC. Such pathways may include PI3K/Akt, Src kinase, or 

MAPK cascades that drive rapid cellular responses such as migration, angiogenesis, 

and proliferation modulation independent of direct gene transcription.
415

 

These observations are consistent with Reese et al., who reported high 

cytoplasmic ERβ1 expression in 70.1% of TNBC samples.
382

 The high frequency of 

cytoplasmic expression, despite the ERα-negative status of TNBC, implies an 

alternative estrogen-mediated signaling mechanism retained via ERβ1. Further, 

cytoplasmic ER immunoreactivity has been found in 23% of ER-negative and only 

1.4% of ER-positive breast cancer cases.
412

 reinforcing the selective importance of 

ERβ1 TNBC. Notably, luminal A tumors demonstrated lower ERβ1 cytoplasmic 

expression (moderate in 16.6%, high in 27.7%), and nuclear ERβ1 expression was 
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absent. This restricted distribution limits ERβ1 potential role in classical estrogen-

responsive gene transcription within luminal A tumors. Consistent with our findings, 

Reese et al. noted that ERβ1 nuclear expression was rare and typically low in non-

TNBC subtypes.
382

 

These expression patterns suggest a mechanistic divergence wherein ERβ1 

exerts predominantly non-genomic influence in TNBC but remains functionally 

quiescent in luminal A tumors due to limited nuclear and cytoplasmic presence. The 

functional significance of ERβ1 cytoplasmic presence in TNBC may relate to its 

interaction with’ membrane-associated proteins or ‘scaffolding molecules, thereby 

influencing intracellular kinase cascades, cell motility, and apoptotic resistance.
416 

 

6.3 Interplay of VDR and ERβ1 in TNBC Progression 

The concurrent low expression of nuclear VDR and elevated cytoplasmic ERβ1 in 

TNBC implies a dual impairment of tumor-suppressive genomic signaling alongside 

heightened activation of potentially pro-survival non-genomic pathways. This unique 

molecular profile may underlie TNBC aggressive phenotype and resistance to 

conventional hormone therapies. 

Mechanistically, the lack of VDR-mediated transcription impairs regulation of 

pro-apoptotic genes such as p21, Bax, and caspase-3, while cytoplasmic ERβ1 may 

potentiate oncogenic signaling through PI3K/Akt activation.
417

 The absence of 

nuclear ERβ1 further restricts its suppressive functions on EMT and stemness-

associated gene transcription.
418

 

The interaction between VDR and ERβ1 signaling may also be reciprocal. 

Evidence suggests that VDR activation can modulate estrogen receptor expression 

and vice versa.
419

 Therefore, therapeutic activation of VDR using calcitriol may 

indirectly influence ERβ1 signaling pathways, potentially restoring apoptotic control 

and inhibiting tumor growth. These findings provide mechanistic insights into the 

complex receptor-mediated landscape of TNBC. The impaired genomic activity of 

VDR and functional diversion of ERβ1 toward non-genomic signaling contribute 

synergistically to the pathogenesis of TNBC. This supports the rationale for exploring 

combined therapeutic strategies that restore VDR function and modulate ERβ1 

signaling.’ 
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Objective II  

The ‘molecular docking analysis provides the first mechanistic evidence that calcitriol 

and 17β-estradiol differentially but complementarily target key oncogenic pathways 

in TNBC.  

 

6.4 Calcitriol Binding Affinity and Mechanism of Interaction 

Calcitriol demonstrated high-affinity binding to VDR (−9.15 kcal/mol), validating the 

docking model and confirming its strong receptor-ligand compatibility. The ligand 

engaged core residues such as LEU-A414, GLN-A152, and ASP-A149, which are 

integral to the VDR ligand-binding domain. This interaction pattern is consistent with 

established structural data and reinforces VDR suitability as a therapeutic target in 

TNBC. Importantly, this high-affinity interaction suggests that calcitriol can facilitate 

VDR nuclear translocation and transcriptional activation of vitamin D-responsive 

genes, thereby promoting anti-proliferative and pro-apoptotic effects in VDR-

expressing TNBC cells.
11

 

In addition to its classical nuclear receptor, calcitriol also exhibited notable 

binding to EGFR, with the strongest docking score across all interactions (−10.04 

kcal/mol). Hydrogen bond contacts with LYS-A56, GLU-A78, THR-A57, ASP-51, 

and NAG-A1032 suggest a potential for calcitriol to engage both the protein backbone 

and glycosylated regions of EGFR. These interactions may influence EGFR stability, 

receptor dimerization, or ligand affinity, possibly impairing downstream PI3K/Akt 

and MAPK signaling.
420

 This finding is particularly significant as EGFR 

overexpression is common in TNBC, and calcitriol interaction with EGFR may 

contribute to growth suppression via receptor inhibition or internalization 

mechanisms.
421

 Calcitriol also showed a moderately favorable binding affinity to ERβ 

(−7.85 kcal/mol), engaging key residues such as GLU-A276, LYS-A315, and TRP-

A345. Although not the natural ligand for ERβ, this interaction suggests a possible 

allosteric modulation or partial agonistic behavior, which may influence receptor 

conformation or its association with co-regulators. Moreover, the engagement of 

calcitriol with apoptotic effector caspase-3 (−9.15 kcal/mol) indicates potential 

regulatory activity over apoptosis execution phases, possibly through stabilization of 

active site residues involved in caspase activation. The binding residues, LEU-A414, 
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GLN-A152, and ASP-A149 highlight the ligand interaction near catalytically relevant 

regions, which may promote pro-apoptotic signaling cascades in cancer cells.
418

 

Interestingly, calcitriol demonstrated a comparatively lower binding affinity for 

VEGF (−5.72 kcal/mol), interacting with GLN-H115 and GLY-H9. These 

interactions may not directly block VEGF-mediated angiogenesis but could modulate 

paracrine or autocrine signaling if calcitriol downregulates VEGF gene expression via 

upstream nuclear receptor signaling.
422’

 

Overall, ‘the data support a mechanistic model wherein calcitriol targets 

multiple oncogenic pathways in TNBC: (1) activation of VDR for transcriptional 

control of growth and apoptosis-related genes, (2) potential interference with EGFR-

mediated proliferative signaling, (3) partial modulation of ERβ, and (4) engagement 

with caspase-3 to support apoptotic execution. 

 

6.5 17β-Estradiol Binding Affinity and Functional Implications 

As expected of a natural estrogen receptor ligand, 17β-estradiol displayed the 

strongest binding affinity for ERβ (−9.08 kcal/mol), with key hydrogen bonds formed 

with HIS-A475, PHE-A356, ARG-A346, and GLU-A305. These residues lie within 

the canonical ligand-binding domain of ERβ, indicating a stable and functionally 

relevant receptor engagement. This strong interaction is consistent with ERβ known 

physiological responsiveness to estrogenic ligands and supports the role of 17β-

estradiol in modulating ERβ-mediated tumor suppressive functions in TNBC.
23

 The 

interaction is particularly relevant for ERβ1-expressing TNBC subsets, as ERβ1 has 

been associated with anti-proliferative and anti-invasive signaling. 

In contrast to calcitriol, 17β-estradiol showed weaker binding to VDR (−6.37 

kcal/mol), with multiple interactions involving SER-A398, ASN-A394, and ARG-

A343. While this interaction is likely non-physiological, the binding profile suggests 

some off-target affinity, potentially influencing VDR behavior under conditions of 

receptor overexpression or altered conformation. However, given the significantly 

lower affinity compared to calcitriol, VDR is unlikely to be a major target of estradiol 

in TNBC. 

The binding of 17β-estradiol to EGFR (−7.10 kcal/mol) involved both protein 

and solvent-mediated interactions, including hydrogen bonds with THR-A406, ASN-

A12, and water molecule HOH-A2438. Water-mediated bridging interactions are 
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known to stabilize ligand positioning and could support partial modulation of EGFR 

kinase activity or dimer interface. Although not as potent as calcitriol in EGFR 

engagement, the interaction hints at potential indirect effects on proliferative signaling 

in TNBC.
423 

A notable observation was the relatively stronger binding affinity of 17β-

estradiol to VEGF (−7.06 kcal/mol) compared to calcitriol. Residue interactions with 

ASN-A214 and LEU-H118 suggest that 17β-estradiol may modulate angiogenic 

signaling, possibly through interference with VEGF receptor activation or ligand 

dimerization. This is mechanistically relevant as angiogenesis is a key feature of 

TNBC aggressiveness, and estrogen-mediated VEGF upregulation has been 

previously reported in BC.
424

 

Binding to caspase-3 was less favorable (−6.37 kcal/mol) compared to 

calcitriol. Nevertheless, interactions with ASP-A342, ARG-A391, and SER-A265 

suggest that 17β-estradiol may’ still exert ‘weak regulatory effects on apoptotic 

machinery, potentially via indirect pathway modulation rather than direct 

activation.
425

 

 

6.6 Comparative Mechanistic Insights and Therapeutic Implications 

The comparative docking profiles reveal that calcitriol exhibits its highest affinities 

toward EGFR and VDR, aligning with its dual function in nuclear hormone signaling 

and growth factor receptor modulation. These interactions support a mechanistic 

rationale for calcitriol anti-proliferative and pro-apoptotic properties in TNBC. 

Conversely, 17β-estradiol showed stronger binding to ERβ and VEGF, reinforcing its 

role in modulating hormone receptor pathways and angiogenesis. Its favorable 

interaction with ERβ supports its potential as a targeted agent in ERβ1-positive 

TNBC. Importantly, these findings have not been reported in prior TNBC docking 

studies, establishing a novel framework for dual ligand targeting. The complementary 

receptor engagement VDR/EGFR by calcitriol and ERβ/VEGF by 17β-estradiol 

suggests the feasibility of a combinatorial therapeutic strategy to address TNBC 

heterogeneity by simultaneously modulating genomic, non-genomic, proliferative, 

and angiogenic pathways. 

The involvement of additional moieties such as N-acetylglucosamine (NAG) 

and structural water molecules (HOH) in EGFR docking further supports the realism 

and depth of ligand-receptor interactions modeled here. These interactions contribute 
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to binding pocket stability and orientation, which are often overlooked in simplified 

docking models. 

These findings reinforce the hypothesis that a dual-compound therapeutic 

strategy may offer a multi-axis approach to managing ERβ1-positive TNBC and 

warrant further in vitro validation.  

 

6.7 Mechanistic Interpretation of In Vitro Findings 

Calcitriol and 17β-estradiol, as endogenous ligands for VDR and ERβ 

respectively, have garnered significant attention for their potential roles in cancer 

biology, particularly within hormone receptor-modulated pathways. In this study, 

their time-dependent effects on MDA-MB-468 TNBC cells were investigated in terms 

of cytotoxicity and modulation of key protein targets involved in proliferation, 

angiogenesis, and apoptosis. The observed responses reveal both individual and 

combined therapeutic potential, underscoring their relevance in ERβ1-positive TNBC 

subtypes.’ 

 

5.7.1 Time-Dependent Cytotoxic Effects and Viability Modulation 

The cytotoxic ‘effects of calcitriol in MDA-MB-468 cells were shown to 

increase in a time-dependent manner, with the most prominent reductions in cell 

viability recorded at 16, 24, and 32 hours. This finding aligns with previous studies 

that demonstrated the’ antiproliferative properties ‘of vitamin D in BC cell models. 

Bajbouj et al. showed a substantial decrease in cell viability in MDA-MB-231 cells 

following high-dose vitamin D exposure, highlighting vitamin D pro-apoptotic and 

anti-proliferative actions through both receptor-dependent and receptor-independent 

mechanisms.
426

 

Similarly, 17β-estradiol induced a marked decline in cell viability over time, with 

statistically significant reductions observed from 16 to 32 hours. These effects 

correspond with earlier findings where MDA-MB-468 cells transfected with ERβ 

showed over 60% inhibition of cell proliferation upon exposure to 17β-estradiol.
427

 

The inhibition was attributed to ERβ-mediated suppression of oncogenic signaling, 

including c-Myc downregulation and altered cell cycle control. The current study 

reinforces this pathway, as 17β-estradiol appears to act via ERβ1-mediated repression 

of proliferative signals. 



6. DISCUSSION  

 

Vitamin D3 Mediated Regulation of Hormone Receptors in the Pathogenesis of Triple- Negative Breast Cancer       130 
 

The combined treatment of calcitriol and 17β-estradiol exhibited an additive cytotoxic 

effect, resulting in enhanced reduction of cell viability at all examined time points. 

The observed combination likely reflects the complementary targeting of multiple 

signaling axes. While calcitriol predominantly modulates nuclear hormone receptor 

and growth factor pathways, 17β-estradiol strongly influences estrogen receptor-

mediated non-genomic processes. This multi-target modulation strategy may provide 

a promising therapeutic approach in managing ERβ1-expressing TNBC. 

 

6.7.2 ERβ1 Modulation and Hormonal Signaling Dynamics 

ERβ1, a tumor suppressor isoform of ERβ, is of particular interest in TNBC. 

In the present study, calcitriol treatment led to a gradual, time-dependent reduction in 

ERβ1 expression, with significant downregulation observed between 24 and 32 hours. 

This downregulation likely represents a ligand-induced regulatory mechanism. 

Nuclear hormone receptors are well known to undergo ligand-mediated repression via 

transcriptional silencing, proteasomal degradation, or disruption of coactivator 

complexes.
362

 Swami et al. demonstrated that calcitriol binding to VDR can inhibit 

ER signaling, either by recruiting transcriptional repressors or by modulating co-

regulator recruitment at estrogen-responsive elements.
428

 Thus, calcitriol may 

indirectly repress ERβ1 expression by altering nuclear receptor crosstalk or chromatin 

remodeling. 

Interestingly, treatment with 17β-estradiol produced a biphasic modulation of 

ERβ1. Expression levels remained stable at 8 hours, followed by mild reduction at 16 

hours and a significant decline at 24 and 32 hours. This pattern is characteristic of 

ligand-induced feedback regulation. Initial receptor stabilization through ligand 

binding is often followed by downregulation due to receptor internalization, 

degradation, or repression of receptor gene transcription. Reports by Jia et al. and 

Lazennec et al.’ highlight such temporal dynamics of ER regulation, ‘where ligand 

binding triggers initial receptor activation and downstream signaling, which 

subsequently leads to self-regulatory feedback suppression.
429, 430 

Therefore, the 

observed biphasic trend may represent a transition from receptor activation to 

proteolytic or transcriptional inhibition. 
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The complementary downregulation of ERβ1 by both calcitriol and 17β-

estradiol suggests that these compounds converge on the regulation of ER pathways. 

Calcitriol appears to modulate ERβ1 expression indirectly via VDR-mediated 

signaling crosstalk, while 17β-estradiol regulates ERβ1 through ligand-dependent 

receptor turnover and feedback control. 

 

6.7.3 EGFR Downregulation and Growth Signal Interference 

The EGFR is frequently overexpressed in TNBC and contributes to tumor 

proliferation, invasion, and therapeutic resistance. In this study, calcitriol induced a 

pronounced, time-dependent suppression of EGFR expression, with significant 

reductions observed at 24 and 32 hours. These findings align with previous research 

indicating that vitamin D and its analogs downregulate EGFR expression, thereby 

suppressing PI3K/Akt and MAPK-driven proliferation in BC cells.
431

 

Mechanistically, calcitriol may achieve this repression by inhibiting EGFR gene 

transcription through VDR-RXR complex binding at EGFR promoter elements or by 

enhancing EGFR ubiquitination and lysosomal degradation. 

Similarly, 17β-estradiol also induced a consistent reduction in EGFR levels, 

particularly evident at later time points. Khode et al. reported that 17β-estradiol 

treatment suppressed EGFR expression in MDA-MB-231 cells, suggesting that 

estrogen signaling may exert growth-inhibitory effects in ERβ1-positive TNBC by 

attenuating growth factor receptor signaling.
432

 The regulation may be mediated by 

ERβ1 recruitment to transcriptional silencers at the EGFR promoter or through 

indirect effects on growth factor signal transduction cascades. 

Combined treatment with both agents could enhance EGFR suppression 

through converging mechanisms: calcitriol acting via transcriptional inhibition and 

degradation, and 17β-estradiol attenuating transcription via ERβ1. This dual 

regulation may represent a viable therapeutic strategy to curb EGFR-driven 

progression in TNBC. 

 

6.7.4 VEGF Suppression and Angiogenesis Inhibition 

Angiogenesis, driven by VEGF, plays a crucial role in TNBC metastasis and tumor 

expansion. Calcitriol treatment significantly reduced VEGF expression in a time-

dependent fashion, with marked suppression evident at 16 and 24 hours and sustained 



6. DISCUSSION  

 

Vitamin D3 Mediated Regulation of Hormone Receptors in the Pathogenesis of Triple- Negative Breast Cancer       132 
 

reduction at 32 hours. This supports earlier findings where vitamin D was shown to 

inhibit hypoxia-inducible factor-1 (HIF-1)’ and VEGF transcription in BC models.
433

 

VDR activation likely interferes with HIF-1α binding to the ‘VEGF promoter or 

promotes expression of anti-angiogenic factors such as thrombospondin. 

Similarly, 17β-estradiol exerted a time-dependent suppressive effect on VEGF 

expression, with the most significant downregulation occurring between 16 and 24 

hours. Although a further reduction was not statistically significant between 24 and 32 

hours, VEGF levels remained consistently low, indicating a plateau in inhibitory 

response. This trend suggests that estrogen-mediated angiogenic regulation may occur 

via a temporally limited activation window, possibly governed by receptor saturation 

or downstream feedback inhibition. ERβ has been implicated in the transcriptional 

repression of VEGF in TNBC, acting either through direct promoter interaction or via 

inhibition of co-activator recruitment.
378

 

The ability of both agents to independently downregulate VEGF highlights a 

significant anti-angiogenic potential. Their concurrent administration may augment 

VEGF suppression, potentially disrupting the tumor vasculature and impairing 

nutrient supply, thereby contributing to overall tumor regression. 

 

6.7.5 Caspase-3 Modulation and Apoptotic Response 

Caspase-3 is a central executioner of apoptosis, responsible for the cleavage of key 

structural and regulatory proteins during programmed cell death. In this study, 

calcitriol treatment resulted in a progressive, statistically significant decrease in 

caspase-3 expression from 8 to 32 hours, with additional suppression between 16 and 

32 hours. This apparent downregulation may initially seem paradoxical; however, it 

likely reflects dynamic activation-degradation kinetics of caspase-3. Upon activation, 

caspase-3 undergoes autocatalysis, followed by proteasomal degradation once 

apoptosis is underway. Hence, the observed reduction in expression may correspond 

to the terminal stages of caspase-3 activity after pro-apoptotic signals have been 

executed.
342

 

17β-estradiol also induced significant downregulation of caspase-3 between 

24 and 32 hours, suggesting a delayed but definitive engagement of apoptotic 

pathways. Estrogen has been reported to influence both intrinsic and extrinsic 

apoptotic cascades in TNBC models, often through ERβ1-mediated transcriptional 
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regulation of pro-apoptotic and anti-apoptotic genes.
434

 Estradiol may also indirectly 

modulate apoptotic machinery by affecting mitochondrial integrity and cytochrome c 

release, leading to caspase activation followed by downstream repression.
435

 

The dual modulation of caspase-3 by calcitriol and 17β-estradiol may reflect their 

overlapping roles in triggering and regulating apoptotic processes.’ Early activation 

followed by degradation ‘could signify effective induction of apoptosis and clearance 

of apoptotic proteins as cells undergo programmed death. 

 

6.7.6 Integrated Mechanism and Therapeutic Relevance 

The collective findings suggest that calcitriol and 17β-estradiol modulate 

multiple cellular pathways in a time-dependent manner to exert their anti-cancer 

effects in ERβ1-positive TNBC cells. Calcitriol exerts high-affinity interaction with 

VDR and strongly modulates EGFR and VEGF expression while regulating apoptosis 

via caspase-3. In parallel, 17β-estradiol preferentially targets ERβ1, downregulates 

EGFR and VEGF, and engages apoptotic regulation. Their combined application 

enhances cytotoxicity and downregulation of key oncogenic proteins, supporting the 

hypothesis of a complementary and potentially interactive effect. 

From a translational perspective, these findings advocate for further 

exploration of combined vitamin D and ER modulation as a therapeutic avenue for 

TNBC patients exhibiting ERβ1 expression. The study also establishes temporal 

benchmarks for the maximal response to each agent, guiding dosing and scheduling 

strategies for future preclinical or clinical trials. 

 

6.8 PROPOSED MECHANISM OF ACTION OF CALCITRIOL AND 17β-

ESTRADIOL IN ERβ1-POSITIVE TNBC CELLS 

The schematic illustrates the complementary and multi-targeted mechanism through 

which calcitriol and 17β-estradiol (E2) modulate cellular pathways involved in TNBC 

pathogenesis. These pathways influence proliferation, apoptosis, angiogenesis, and 

metastatic potential via both genomic and non-genomic actions. 

 

6.8.1 Calcitriol Mechanism via VDR Signaling 

Calcitriol binds to the VDR, which upon activation forms a heterodimer with the 

RXR. This VDR-RXR complex translocates to the nucleus and binds to VDREs on 
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target gene promoters. This transcriptional regulation results in DNA damage 

response activation and the expression of genes responsible for apoptosis, reduced 

proliferation, decreased survival, and suppressed metastasis, as shown in Figure 38. 

Calcitriol also interacts with membrane-bound receptors and intracellular pathways 

that indirectly modulate other signaling molecules such as EGFR and VEGF. In this 

context, calcitriol downregulates EGFR (a key driver of proliferation) and VEGF (a 

central mediator of angiogenesis), thereby suppressing tumor growth and vascular 

support.’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Proposed mechanism of VDR and ERβ1-mediated regulation in TNBC.   

‘Calcitriol binds to the VDR, which forms a heterodimer with the RXR and translocates to the 

nucleus, where it binds to the VDRE to regulate the expression of genes involved in apoptosis, 

proliferation, and cell survival. Simultaneously, 17β-estradiol interacts with ERβ1, promoting non-

genomic signaling pathways. The combined downregulation of ERβ1, EGFR, VEGF, and caspase-3 

contributes to decreased proliferation, metastasis, and survival, while promoting apoptosis in TNBC 

cells. 

Abbreviations: VDR, vitamin D receptor; RXR, retinoid X receptor; VDRE, vitamin D response 

element; ERβ1, estrogen receptor beta 1.’ 
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6.8.2 ‘17β-Estradiol Mechanism via ERβ1 Activation 

17β-estradiol binds specifically to ERβ1, forming the E2–ERβ1 complex. This 

complex, localized in the cytoplasm, primarily mediates non-genomic signaling, as 

illustrated in Figure 38. It rapidly modulates intracellular signaling cascades without 

directly altering gene transcription, often affecting kinase activation, apoptosis 

regulation, and cross-talk with growth factor signaling pathways. The non-genomic 

effects can suppress cell proliferation and support differentiation or cell death, 

depending on cellular context. 

 

 

5.8.3 Convergent Effects on Downstream Targets 

Both VDR and ERβ1 pathways converge on critical downstream effectors, 

particularly caspase-3, which is a central executioner in the apoptotic cascade. The 

combined treatment’ results ‘in reduced expression of EGFR, VEGF, and caspase-3, 

indicating suppression of survival and angiogenic signaling along with potential 

apoptotic regulation. 

 

6.8.4 Therapeutic Implications 

This dual targeting strategy, activating VDR through calcitriol and modulating ERβ1 

through 17β-estradiol, leverages both genomic and non-genomic signaling 

mechanisms. It leads to coordinated suppression of tumor-promoting pathways and 

enhances anti-tumor responses. These findings support the rationale for using 

hormone-based combination therapy in ERβ1-positive TNBC to achieve multi-

pathway inhibition and durable therapeutic efficacy.’ 
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This ‘study reveals significant variations in the expression patterns of VDR 

and ERβ1 across TNBC subtypes. The predominance of cytoplasmic VDR expression 

in TNBC, accompanied by limited nuclear localization, suggests a potentially distinct 

functional role for VDR in this aggressive phenotype. Similarly, the exclusive 

cytoplasmic localization of ERβ1 in both TNBC and luminal A tumors indicates 

subtype-specific differences in receptor signaling and regulation. These findings 

underscore the importance of investigating the spatial dynamics of receptor 

expression as a potential determinant of tumor behavior and therapeutic 

responsiveness. 

In parallel, the in vitro analysis demonstrated that calcitriol and 17β-estradiol 

modulate the expression of ERβ1, EGFR, VEGF, and caspase-3 in a time-dependent 

manner. This regulation points to their involvement in key oncogenic pathways 

governing proliferation, angiogenesis, and apoptosis in ERβ1-positive TNBC. 

Notably, the combination treatment exhibited potential additive effects, supporting its 

relevance as a therapeutic strategy for dual-target modulation. 

Taken together, these findings provide preliminary evidence for the therapeutic 

relevance of co-targeting VDR and ERβ1 in TNBC.  

 

LIMITATIONS 

 

The present study did not include in vivo experiments, which limits the 

translational validation of the observed in vitro effects of calcitriol and 17β-estradiol 

in ERβ1-positive TNBC. 

 

FUTURE PERSPECTIVES  

 

Future studies should aim to further elucidate the molecular pathways 

underlying these receptor interactions, particularly those involved in hormone 

receptor signaling and downstream effector cascades. Additionally, to validate and 

extend these observations, larger multicenter clinical trials are warranted to evaluate 

VDR and ERβ1 expression across diverse demographic groups and clinical settings.’ 

Preclinical validation using appropriate TNBC xenograft models will also be essential 

to ‘assess the translational potential of hormone-based combination therapies in 

ERβ1-positive TNBC.’ 
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TNBC, characterized by the absence of ER, PR, and HER2, ‘remains one of 

the most aggressive and therapeutically challenging breast cancer subtypes. Due to its 

poor prognosis and lack of targeted therapies, identifying novel molecular targets is a 

clinical imperative. This thesis explores the biological significance and therapeutic 

potential of VDR and ERβ1 in TNBC, using an integrative approach combining IHC, 

molecular docking, and in vitro experiments. 

IHC analysis was conducted to investigate the differential expression and 

subcellular localization of VDR and ERβ1 across various BC subtypes. Notably, 

TNBC tissues showed predominant cytoplasmic VDR expression with partial nuclear 

localization, whereas luminal A tumors exhibited lower expression with limited 

nuclear involvement. Luminal B tumors demonstrated exclusive cytoplasmic staining, 

and HER2-enriched tumors displayed only nuclear localization. These subtype-

specific patterns suggest that VDR may function through both genomic and non-

genomic mechanisms in TNBC, in contrast to the more compartmentalized signaling 

in other subtypes. The statistical analysis confirmed significant variation in VDR 

localization across subtypes (p < 0.042), highlighting its potential role in tumor-

specific signaling dynamics. 

Similarly, ERβ1 expression in TNBC and luminal A tumors revealed 

exclusive cytoplasmic localization, with TNBC cases predominantly exhibiting 

moderate expression and luminal A tumors showing higher intensity. Nuclear ERβ1 

staining was absent in all cases. This differential cytoplasmic expression pattern, 

significant between TNBC and luminal A tumors (p < 0.025), underscores ERβ1 

potential non-genomic role and its suitability as a subtype-specific molecular marker. 

The findings suggest that ERβ1, though traditionally regarded as a tumor suppressor, 

may participate in alternative signaling pathways when localized in the cytoplasm, 

particularly in ERβ1 positive TNBC. 

To explore the binding interactions of calcitriol and 17β-estradiol with key 

molecular targets, molecular docking studies were performed. Calcitriol exhibited 

strong binding affinity to VDR (−9.15 kcal/mol) and EGFR (−10.04 kcal/mol), 

indicating potential regulation of receptor-mediated signaling and cell proliferation 

pathways. In contrast, 17β-estradiol showed high affinity for ERβ (−9.08 kcal/mol) 

and VEGF (−7.06 kcal/mol), suggesting a role in modulating hormonal and 

angiogenic signaling. These in silico interactions support the hypothesis that calcitriol 
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and 17β-estradiol act on complementary pathways, with possible synergy when used 

in combination. These findings provide a molecular rationale for co-targeting VDR 

and ERβ1 in TNBC management.’ 

Further, in vitro assays using MDA-MB-468 cells ‘assessed the cytotoxic 

effects of calcitriol and 17β-estradiol, both individually and in combination. MTT 

assays demonstrated time- and dose-dependent reductions in cell viability, with the 

combination treatment producing the most pronounced inhibitory effect, especially 

between 24 and 32 hours. This additive cytotoxicity suggests enhanced suppression of 

oncogenic pathways when both ligands are applied together, likely due to dual 

activation of VDR and ERβ1 signaling axes. 

To delineate the downstream molecular mechanisms, immunoblot analysis 

was conducted to measure the expression of ERβ1, EGFR, VEGF, and caspase-3 

following treatment. Calcitriol significantly suppressed ERβ1, EGFR, and VEGF in a 

time-dependent manner, reinforcing its role in repressing tumor-promoting pathways. 

Notably, caspase-3 levels also declined over time, possibly reflecting activation-

consumption during apoptosis or regulatory feedback mechanisms. 

Treatment with 17β-estradiol showed a complex expression profile, with early 

downregulation of ERβ1 followed by reactivation at 32 hours, indicative of receptor 

recycling or compensatory feedback. EGFR and VEGF levels consistently declined, 

while caspase-3 expression was progressively suppressed. These results suggest that 

17β-estradiol may modulate apoptosis and angiogenesis via ERβ1-mediated 

pathways. 

The combination treatment produced the most robust and sustained 

suppression of all four markers. ERβ1 expression declined consistently, EGFR and 

VEGF were markedly downregulated, and caspase-3 showed sustained inhibition. The 

enhanced effect of the combination treatment confirms the advantage of dual-

targeting VDR and ERβ1 for simultaneously disrupting proliferation, angiogenesis, 

and apoptotic regulation in ERβ1-positive TNBC. 

Overall, this study identifies distinct patterns of VDR and ERβ1 expression in 

BC subtypes, particularly TNBC, and establishes the molecular basis for their 

functional involvement in tumor biology. The findings provide compelling evidence 

that co-targeting these receptors using calcitriol and 17β-estradiol holds therapeutic 

promise.’  
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